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Abstract: Background: Chronic ankle instability (CAI) is a common peripheral joint injury and there
is still no consensus on the mechanisms. It is necessary to investigate electrocortical parameters to
provide clinical insight into the functional alterations of brain activity after an ankle sprain, which
would greatly affect the implementation of rehabilitation plans. The purpose of this study was
to assess cortical activation characteristics during drop-jump landing among soccer athletes with
CAI. Methods: A total of 24 participants performed the drop-jump landing task on a force platform
while wearing a 64-channel EEG system. The differences of power spectral density (PSD) in theta
and alpha (alpha-1 and alpha-2) bands were analyzed between two groups (CAI vs. CON) and
between two limbs (injured vs. healthy). Results: CAI participants demonstrated significantly higher
theta power at the frontal electrode than that in healthy control individuals (F(1,22) = 7.726, p = 0.011,
η2p = 0.260). No difference in parietal alpha-1 and alpha-2 power was found between groups (alpha-
1: F(1,22) = 0.297, p = 0.591, η2p = 0.013; alpha-2: F(1,22) = 0.118, p = 0.734, η2p = 0.005). No limb
differences were presented for any frequency band in selected cortical areas (alpha-1: F(1,22) = 0.149,
p = 0.703, η2p = 0.007; alpha-2: F(1,22) = 0.166, p = 0.688, η2p = 0.007; theta: F(1,22) = 2.256, p = 0.147,
η2p = 0.093). Conclusions: Theta power at the frontal cortex was higher in soccer athletes with CAI
during drop-jump landing. Differences in cortical activation provided evidence for an altered neural
mechanism of postural control among soccer athletes with CAI.

Keywords: chronic ankle instability; electroencephalography; cortical activation; power spectral
density; soccer athletes

1. Introduction

Ankle sprain, the most common lower extremity injury, accounting for 9.4% to 18%
of all sports injuries [1–3], often occurs in walking, running, jumping, and cutting move-
ments [4]. It has been reported that at least 73% of individuals with a history of ankle sprain
had some type of residual symptoms [5], and among which chronic ankle instability (CAI)
was the most frequent sequelae [6]. Researchers concluded that within the first year after
an initial ankle sprain, 40% of patients developed into CAI [7], which is characterized by
recurrent sprains, pain, perceived instability, and dysfunction [8,9], leading to 20–40% of
individuals having to stop exercising [10]. Soccer, as the most popular sport in the world,
is a complex contact sport that involves relatively high risks and rates of injury in both
professional and amateur players [11,12]. In addition, the ankle joint is under the most
stress due to sudden postural changes and stops, jumping, and tackling [13]. Techniques
such as tackling can create a corresponding eversion or inversion rotation of the ankle,
thus increasing the risk of ankle sprain [14], which not only reduces quality of life and
impairs athletic performance, but also increases the risk of joint degeneration and early-
onset osteoarthritis. According to statistics, the incidence of osteoarthritis in CAI people is
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68–75% [15], significantly higher than that in general population [16], and this prevalence
of osteoarthritis is higher in soccer players with CAI [17,18], which brings great pain to
patients and also imposes a considerable burden on health and economic sectors. There-
fore, exploring the mechanism of CAI in soccer players can provide a theoretical basis for
prevention and rehabilitation, so as to reduce ankle sprains and shorten suspension time.

Despite the theories regarding the development of CAI evolving over decades, there
is still no consensus on the mechanisms of CAI. Most traditional models believe that CAI is
a musculoskeletal disorder with adaptations typically occurring in the periphery rather
than in the brain [19]. However, recent studies [20–24] have continuously confirmed that
changes in the central nervous system (CNS) may occur after acute and chronic ligament
injury, and these changes involved multiple cortical regions in the brain, such as the
somatosensory cortex and motor cortex, which may negatively affect the recovery process
and be associated with self-reported function [19]. As a result, one widely held view is that
impaired sensorimotor integration through complex neural networks contributes to the
development of CAI [25]. That is, with deficient ligament afferent, proprioception, and
other somatosensory input, the brain is less able to modulate movement and joint stability
through descending neuromuscular pathways [26]. Reorganization of the CNS treated the
ankle sprain injury as a neurophysiological dysfunction rather than as a simple peripheral
musculoskeletal injury [27], and this evidence explained the severe and long-standing
dysfunction associated with CAI [28].

Research at the reflexive and cortical levels of CNS adaptations in individuals with
ligament injury has grown rapidly [29–31]. However, studies on the ankle are significantly
less prevalent than those on the knee. The earliest study on cortical plasticity after joint
injury in humans was using electroencephalography (EEG) to observe changes in the
somatosensory cortex in an anterior cruciate ligament (ACL) injury population [32]. This
neurophysiological technique uses surface electrodes to detect electrophysiological signals
from excitatory and inhibitory action potential depolarization in various areas of the
cerebral cortex. Therefore, using EEG to assess cortical activation can provide insight into
CNS reorganization by highlighting areas of the brain that may be associated with people
who have sports injuries. Unfortunately, there are only three EEG studies [33–35] on CAI
or functional ankle instability (FAI) individuals, and only one of those studies focused on
athletes. In the studies mentioned above, researchers aimed at investigating the effects
of training program on cortical activities. In addition, the existing literature has not yet
presented a clear understanding of cortical changes that exist among the CAI population.
Thus, continued investigation of cortical activity may help to explain how neuromuscular
impairments arise. Meanwhile, it is crucial to understand the neuromechanical alterations
after an ankle sprain in order to aid the secondary prevention of their long-term sequelae
and make advances in therapeutic treatments [19]. Therefore, the purpose of this study was
to assess cortical activation characteristics in soccer athletes with CAI during drop-jump
landing movement. Based on previous study results [29] and given that landing tasks
are more challenging for people with CAI, which means that this group of individuals
requires more attention and neural resources, we hypothesized that CAI participants would
display greater cortical activation than heathy control participants (CON) while they were
performing the drop-jump landing task.

2. Methods
2.1. Study Design

This report is a part of larger explorative investigation of cortical activity among soccer
athletes with CAI. In order to examine characteristics in central activation patterns in the
CAI population, the current study carried out a groups (CAI vs. CON) × limbs (injured
vs. healthy) design. All tests were performed on both injured (also known as involved)
and healthy (also known as uninvolved) side and comparisons were made between groups
and limbs. Sample size was calculated using G*Power software (v.3.1) with 80% power,
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5% type I error, and 55% effect size, and a minimum of 10 participants in each group were
recommended [36].

2.2. Participants

A total of 26 volunteers were enrolled in this study. Two potential subjects in the
CON group were excluded, one due to failure EEG recording, the other due to COVID-19
prevention and control. As a result, 24 participants were included in data analysis, and
there were no differences in demographics between groups except CAIT score (t = −18.534,
p = 0.000) (Table 1). Inclusion criteria for CAI participants were as follows: (1) being a
collegiate soccer athlete; (2) being between 18 and 24 years of age; (3) unilateral injured; (4) a
history of at least one significant lateral ankle sprain, including inflammatory symptoms
and disruption of sport or physical activity; (5) the initial sprain and the most recent injury
must have occurred more than 12 and 3 months prior to the study enrollment, respectively;
(6) a history of at least 2 episodes of ‘giving way’, and/or recurrent sprain and/or ‘feelings
of instability’ in the 6 months prior to the study enrollment; and (7) a CAIT score ≤ 24. All
but the first three meet the criteria as recommended by the International Ankle Consortium
for CAI patients [9]. Inclusion criteria for healthy control participants were (1) being a
collegiate soccer athlete; (2) being between 18 and 24 years of age; (3) without history of
ankle sprain; and (4) meeting a CAIT score ≥ 28. The involved limb for CON subjects was
matched by limb dominance to the CAI group. Volunteers were excluded if they (1) had a
history of lower limb surgery or fracture; (2) had an acute injury to the musculoskeletal
structures of other joints of the lower extremity in the previous 3 months, which impacted
joint integrity and function; (3) had a history of a balance or vestibular disorder; (4) had
any other health problem that may have affected their balance; or (5) had a positive result
in the talus tilt test and/or anterior ankle drawer test.

Table 1. Participant Demographics.

Measure CAI CON t p

Gender, n (M/F) 13/3 6/2
Age, y 20.81 ± 1.56 20.38 ± 1.19 0.696 0.493

Height, cm 175.41 ± 8.54 176.00 ± 6.16 −0.173 0.865
Mass, kg 70.58 ± 9.34 66.15 ± 8.87 1.112 0.278

CAIT, score 18.31 ± 2.52 30.00 ± 0.00 −18.534 0.000 *
CAI: chronic ankle instability group; CON: healthy control group; M: male; F: female; CAIT: Cumberland Ankle
Instability Tool. * Indicates p < 0.05.

A single investigator (Y.Z.) performed all the screening procedures for enrolling
participants. All participants had normal vision at the time of the experiment and were
instructed to refrain from consuming caffeine within 12 h before the EEG test started.
Before experiment, the subjects were informed in detail about the procedure and provided
written informed consent. This study was approved by the Sports Science Experiment
Ethics Committee of Beijing Sport University (2021195H) and registered in Chinese Clinical
Trial Registry (ChiCTR2200055738).

2.3. Electroencephalography Test Protocol

The test was conducted at the Sport Rehabilitation of Beijing Sport University. Given
that this study was part of a larger investigation, the task was evaluated while the athletes
were on the force platform (Kistler.9286A, Switzerland). EEG data were collected using
64 Ag/AgCl scalp electrodes (NeuSen.W64, Neuracle, Changzhou, China) placed in accor-
dance with the international 10/20 system. Cortical activity was recorded continuously via
16 EEG channels (FP1, FP2, F3, Fz, F4, FC3, FCz, FC4, C3, Cz, C4, CP3, CP4, P3, Pz, P4), and
each electrode impedance was kept lower than 10 KΩ [37,38] throughout the experiment to
ensure a sufficient signal-to-noise ratio. The acquired EEG signals were sampled at 1000 Hz
by the NeuroNexus on a dedicated computer and saved for offline analysis.
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Cortical activity was measured while subjects performed the forward drop-jump
landing task on the force platform [39]. To reduce bias, all participants wore the same
shoes and were tested with random legs order. On oral cue, the players took off with 2 feet
and landed on the testing leg from an aerobic step of 20 cm height. They were asked to
balance for 10 s with their hands on the hips, opposite hip flexed to 30◦, and knee flexed
to 45◦, while keeping their eyes fixed on a visual target on the wall. Both legs were tested
3 successful times with trials separated by 30 s of rest [40]. One practice trial per leg was
performed before actual testing commenced. No instructions were given for jump height.
Participants were asked to keep their eyes open and blink comfortably throughout the
testing. A trial in which the participant did not maintain balance for the full required time,
moved hands off hips, hopped or shifted the involved foot on the force plate, touched
down with the contralateral leg, or landed with the involved foot not completely on the
force plate was considered a failure. The test was stopped if participants failed, and the trial
was reattempted until 3 successful trials were completed. The entire test was supervised by
two investigators (X.Z. and W.S.)

2.4. Data Reduction and Analysis

EEG data were preprocessed using MNE-Python, an open-source software package.
Continuous EEG data were band-pass filtered between 3 and 30 Hz (4th order Butterworth
FIR) with additional notch filters to reduce line noise (50 Hz). Independent components
analysis (ICA) was used to eliminate artifacts and epochs with an absolute difference larger
than 150 µV were also excluded as artifacts. The topographic map of ICA components is
shown in Figure 1. The raw, filtered, and artifact-free EEG signals are shown in Figure 2a–c.
Data were cut into 3.5 s epochs for drop-jump landing. In the EEG signals, Fast Fourier
Transforms (FFT) were calculated. The average power spectra were computed for each trial
in each subject and divided into different frequencies: theta (4–7 Hz), alpha-1 (7–10 Hz),
and alpha-2 (10–12 Hz). Finally, theta and alpha (alpha-1 and alpha-2) activity in the frontal
(Fz) and parietal (Pz) lobes were analyzed, respectively.
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2.5. Statistical Analysis

The data were analyzed using SPSS software version 24.0 (IBM Corp, Armonk, NY,
USA). Shapiro–Wilk (S-W) test and Levene test were used to determine whether variables
fitted normal distribution and variance homogeneity, respectively. The EEG outcome
measures were transformed to normal distribution by using natural logarithmic based
transformation, if needed. Continuous variables are reported as mean ± standard deviation.
Demographics data between two groups were compared using independent-samples t test.
To examine cortical activity a mixed-design ANOVA with 2 groups (CAI vs. CON) as
between-subject factor, 2 limbs (injured vs. healthy) as within-subject factor was conducted.
Partial eta squares (η2p) were reported to show the effect sizes. Effect sizes of <0.01 were
interpreted as small, 0.01 to 0.06 as medium, and ≥0.14 as large effect [41]. The statistical
significance level was set at p < 0.05.

3. Results

Brain activity demonstrated significantly higher frontal (Fz) theta power in the CAI
group vs. the healthy control group (F(1,22) = 7.726, p = 0.011, η2p = 0.260) (Table 2),
indicating an increased cortical activation during drop-jump landing among CAI patients.
There was no difference in alpha-1 and alpha-2 power in the parietal (Pz) cortex between the
CAI and CON group (alpha-1: F(1,22) = 0.297, p = 0.591, η2p = 0.013; alpha-2: F(1,22) = 0.118,
p = 0.734, η2p = 0.005) (Table 2). In addition, we did not find any significant differences in
alpha-1, alpha-2, and theta power between the injured and healthy side in CAI patients
(alpha-1: F(1,22) = 0.149, p = 0.703, η2p = 0.007; alpha-2: F(1,22) = 0.166, p = 0.688, η2p = 0.007;
theta: F(1,22) = 2.256, p = 0.147, η2p = 0.093) (Table 3).
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Table 2. EEG results in CAI and CON groups.

Drop-Jump Landing

Measure CAI CON F p η2p

Alpha-1 (Pz) 2.84 ± 1.05 3.10 ± 1.32 0.297 0.591 0.013
Alpha-2 (Pz) 2.54 ± 1.09 2.71 ± 1.16 0.118 0.734 0.005

Theta (Fz) 4.27 ± 0.73 3.47 ± 0.50 7.726 0.011 * 0.260
CAI: chronic ankle instability group; CON: healthy control group; * indicates p < 0.05.

Table 3. EEG results between two limbs in CAI group.

CAI

Measure Injured Side Healthy Side F p η2p

Alpha-1 (Pz) 2.84 ± 1.05 2.92 ± 0.92 0.149 0.703 0.007
Alpha-2 (Pz) 2.54 ± 1.09 2.61 ± 1.01 0.166 0.688 0.007

Theta (Fz) 4.27 ± 0.73 4.06 ± 0.81 2.256 0.147 0.093
CAI: chronic ankle instability group.

4. Discussion

To investigate the activation differences on the cerebral cortex in people with chronic
ankle instability, we measured and compared the EEG power at different frequencies
during injury-related drop-jump landing movement in soccer athletes with and without
CAI. Partially consistent with our research hypothesis, the theta band power was increased
in soccer athletes with CAI during drop-jump landing, but there were no differences in
alpha-1 and alpha-2 activity between groups or between limbs.

The main findings in our study were that theta band power in the frontal area (Fz)
showed significant difference between groups (CAI vs. CON), but we did not find any limb
(injured vs. healthy) differences in the CAI group during drop-jump landing. Theta rhythm
is a 4–8 Hz oscillation in the local field potential and has been linked to the encoding of new
information into episodic memory and spatial navigation, which was first characterized
in rodents in the 1930s [42]. Since theta power increases in a large variety of different
tasks, it is reasonable to assume that theta power reflects unspecific factors such as task
difficulty, attentional demands, and cognitive load [43]. The frontal theta frequency is
thought to be generated in the anterior cingulate cortex which is an important part of the
human attentional system involved in target selection, error detection, and performance
monitoring [44]. In addition, increased frontal theta power indicates that individuals are
engaged in a more complex and vigilant situation than that in a resting state [44]. Therefore,
frontal theta power is frequently used as an indicator of concentration and task complexity.
Consistent with our assumptions, soccer athletes with CAI demonstrated a significantly
higher theta power on the Fz electrode, indicating a higher focused attention compared
with the CON group. Speculations could lead to the idea that drop-jump landing from
the same height makes the task more complex for CAI individuals, and therefore, a higher
level of concentration is needed to select the relevant information to maintain stability
during the drop-jump landing task. This result was supported by Baumeister, who found
increased frontal theta power in ACL-reconstructed patients compared with the healthy
control group while they were asked to reproduce knee angle [45]. In addition, Miao found
that compared with healthy individuals, the theta band power significantly increased in
ACL rupture participants during walking, jogging, and landing [46]. According to the
neuroplasticity hypothesis, neural changes have been interpreted as adaptation strategies of
the CNS to compensate for the trauma-induced sensory deafferentation aiming to maintain
motor tasks performance [19]. However, Giesche [47] did not find any differences between
the ACL-reconstructed and healthy control group in frontal theta power. This result may be
due to the fact that he assessed the cortical activity before movement initiation, in which the
subjects stood in a stable position without needing excessive sensory input from the knee
joint. Unlike Giesche’s study, the trials in our experiment covered movement preparation,
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initiation, and execution; especially in patients with ankle instability, maintaining a stable
landing can be challenging, which may make a difference between groups in frontal theta.
Although the results mentioned above were derived from the knee joint, we can still
obtain evidence about cortical activation alterations following ligament injury. To achieve
joint stability, the peripheral mechanoreceptors such as ligament, cutaneous, and tendon
would elicit action potentials along afferent axons to the spinal cord in the process of joint
loading [33]. The sensory signal would then continue ascending in the central nervous
system by passing through the thalamus and terminating in the primary somatosensory
cortex [48]. Unfortunately, joint injury could result in a lack of neural communication
between the ligament and the somatosensory cortex [32,49], which affects somatosensory
perception in CAI patients [29]. As a result, individuals with CAI reflect the need for
higher neurocognitive attention and processing during muscle contraction to compensate
for the loss of sensory input from the injured ankle joint. Therefore, we believed that
soccer athletes with CAI showed higher frontal theta power for movement planning and
movement execution as compensation for reduced afferent information during the drop-
jump landing task of the injured joint.

We did not find any group (CAI vs. CON) or limb (injured vs. healthy) differences in
parietal (Pz) alpha (alpha-1 and alpha-2) power during drop-jump landing among soccer
athletes. Alpha is one of the fundamental functional operators of the brain for signal
processing and communication in sensory or cognitive processes in the brain [50]. In
addition, alpha activity is described as a form of cortical idling, with its amplitude inversely
related to the amount of cortical resources allocated to task performance [51,52], showing
relatively extensive event-related desynchronization (ERD) in perception, judgment, and
memory tasks [53–55]. Previous studies have further divided alpha band into slow (alpha-
1, 7–10 Hz) and fast (alpha-2, 10–12 Hz) components, and have found them to have
slightly different task correlates [56]. Alpha-1 is obtained widespread over broad regions
of the cortex and in response to almost any type of task and attentional process, with
reduced power values indicating a global activation and therefore a higher unspecific
arousal level [57]. Alpha-2 reflects restricted and task-specific demands and develops
during the processing of sensory-semantic information in parieto-occipital regions [58]. We
investigated the alpha-1 and alpha-2 power in the parietal (Pz) area among soccer athletes
with and without CAI. Considering the alpha rhythm tends to decrease in amplitude as
tasks become more difficult and more attention-demanding [59,60], we hypothesized that
soccer athletes with CAI will show lower alpha power during drop-jump landing. However,
no difference on parietal alpha-1 and alpha-2 power was found in the current study.
Contrary to our findings, Baumeister [45] found decreased alpha-2 power in the parietal
cortex in ACL reconstruction patients compared with healthy control individuals in a joint
position paradigm, indicating that the patients potentially require more neuronal resources
in the parietal cortex while performing the more complex task. Similar to Baumeister’s
study, other researchers [44,61,62] have found increased alpha-2 power in experts or the
intelligent compared with novices or the average. A higher level of alpha amplitude has
been seen as an index of top-down processing, representing a mechanism for increasing
the signal to noise ratio within the cortex by actively inhibiting non-essential or conflicting
processes [63,64]. Effective cognition is not a function of how hard the brain works but
rather how efficiently it works, which is known as the neural efficiency hypothesis. Training-
related changes in alpha power might be interpreted as a strategy to use neuronal resources
more efficiently. It has been reported that EEG activity in the alpha band increased with
training in CAI patients [35]. In addition, Slobounov [40] revealed that depression of alpha
power was associated with loss of balance and considered alpha activity as a predictor of
future instability in posture.

There could be several reasons why our results did not match the expectations. At
first, there may be a ceiling effect in our study subjects. The ability to focus on sensory
information related to performance is one of the key elements for elite athletes [65]. In
addition, the CNS of soccer athletes has highly adapted due to long-term training and
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competition. Therefore, they had developed task solving strategies to achieve successful
performance, such as focused attention and an economy in sensory information processing.
This, combined with the small sample size of our preliminary study, makes it difficult
to detect alpha (alpha-1 and alpha-2) power differences during drop-jump landing. In
addition, the small number of movement repetitions is also a limitation of our research. We
chose three times of successful completion of the task as the statistical calculation times
of the EEG, which is supported by Slobounov and Miao [40,46]. However, considering
that dynamic tasks tend to produce excessive noise and movement artifacts, a minimum of
40 trials per participant was recommended to obtain a steady EEG signal [34,66]. We will
improve the testing paradigm in future studies. Finally, the amplitude of band activity is
not only affected by age, mental state, and the cognitive task being performed, but also by
the cerebral location from which the EEG signal is being recorded [50]. Therefore, signal
acquisition at different electrodes may lead to inconsistent results. Burcal [34] measured
the electrical activity of the alpha band on the Cz electrode and found that the amplitude
of alpha activity did not change after 4 weeks of balance training in a CAI population.
Uzlasir [35] found that after receiving balance training using stroboscopic glasses, the alpha
power on the Cz electrode increased, while the alpha power on te occipital region remained
unchanged in CAI patients. Moreover, Miao et al. [46] calculated alpha power on nine
electrodes from the frontal area to parietal lobe, and also obtained inconsistent results.
Basar once stressed that different locations in the brain may show completely different
behaviors, and that might help to account for the discrepancies in the results of several
authors by facilitating hypotheses based on alpha activity [50]. Based on the fact that
correlations and coherences between all locations are functionally relevant, the view that
assumptions about alpha activity should include all locations has been proposed.

It is also worth noting that we did not find any differences in alpha (alpha-1 and
alpha-2) and theta powers between the involved and uninvolved side in CAI patients,
which means that we could observe EEG changes during the drop-jump landing task in
CAI patients even on their uninvolved side. The result is in line with earlier findings
reported by other authors. In an investigation to evaluate corticomotor excitability in
individuals with CAI, Pietrosimone [21] and McLeod [22] separately demonstrated that
the CAI group had higher bilateral fibularis longus resting motor threshold and lower
bilateral fibularis longus motor-evoked potentials amplitudes compared with healthy
controls, indicating decreased descending corticomotor excitability of bilateral fibularis
longus muscles which can stabilize the ankle joint. A study on EEG after ligament injury
by Baumeister [45] observed that ACL reconstruction also influences the uninvolved side.
These bilateral motor cortical excitability changes after unilateral joint injury suggest that
functional reorganization of the CNS overrides mechanical deficits. Thus, the idea of using
the uninjured side as a reference should be seriously reconsidered.

There are also some limitations to our study. Firstly, the retrospective study design was
unable to determine if the changes in power spectrum occur after unilateral CAI or if the
altered cortical activation is a predisposing factor that may lead to CAI. That is, we cannot
establish a causal relationship between CAI and cortical changes. Therefore, prospective
investigations are needed to verify our speculation. Secondly, although our study investi-
gated the cortical alterations in more sport-relevant and injury-relevant patterns compared
with studies assessing in sitting or lying position, we still chose the anticipated task mainly
requiring feedback control. Considering athletes are required to quickly adapt to changing
environments and cannot just rely on anticipated movements, future studies should include
unanticipated jump-landing tasks in order to elucidate its value in predicting injury and
monitoring recovery. Thirdly, due to the COVID-19 prevention and control requirements of
Beijing Sport University and considering that this experiment is a preliminary study, we
failed to recruit enough healthy control subjects, which may have masked cortical differ-
ences that could be identified with larger sample sizes. Therefore, we suggest that at least
16 participants be included in each group in future study (power = 0.8, effect size = 0.4).
Finally, only three trials per participant were required for analysis, and it was difficult to
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obtain stable EEG signals. Thus, researchers should reconsider the number of tests based
on different research objectives.

5. Conclusions

Theta power at the frontal cortex was higher in soccer athletes with CAI than in healthy
controls during drop-jump landing. However, no differences existed in parietal alpha-1
and alpha-2 power between groups. We did not find differences in alpha and theta power
between the injured and healthy side in soccer athletes with CAI.
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