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Abstract: Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopment disorder that
affects millions of children and typically persists into adulthood. It must be diagnosed efficiently
and consistently to receive adequate treatment, otherwise, it can have a detrimental impact on the
patient’s professional performance, mental health, and relationships. In this work, motor activity data
of adults suffering from ADHD and clinical controls has been preprocessed to obtain 788 activity-
related statistical features. Afterwards, principal component analysis has been carried out to obtain
significant features for accurate classification. These features are then fed into six different machine
learning algorithms for classification, which include C4.5, kNN, Random Forest, LogitBoost, SVM,
and Naive Bayes. The detailed evaluation of the results through 10-fold cross-validation reveals that
SVM outperforms other classifiers with an accuracy of 98.43%, F-measure of 98.42%, sensitivity of
98.33%, specificity of 98.56% and AUC of 0.983. Thus, a PCA-based SVM approach appears to be
an effective choice for accurate identification of ADHD patients among other clinical controls using
real-time analysis of activity data.

Keywords: ADHD; motor activity; diagnosis; actigraphic; PCA; SVM; classification; machine learning

1. Introduction

ADHD (Attention Deficit Hyperactivity Disorder) is a prevalent childhood disorder
characterized by inattention, hyperactivity, and impulsivity [1]. Children with ADHD have
poor behavioral regulation and control, causing them to react inappropriately to a variety
of stimuli. The incidence rate for school-age children globally is about 5%; approximately
80–85 percent of ADHD tweens tend to face difficulties into adolescence, and 60% encounter
symptoms in adults [2]. ADHD can have a significant impact on academic attainment and
social interactions, as it makes it difficult for the patients to focus their attention and manage
their behavior [3,4]. Adult ADHD frequently has a more diverse clinical presentation that
extends beyond the basic motor symptoms seen in children and includes a broader range
of emotional dysregulation and functional impairment [5]. Adult ADHD tends to be
characterized by inattention, which manifests itself as disorganization and distraction-,
task- and focus-related difficulties, as well as a proclivity for daydreaming [6]. Adult
ADHD is usually linked to other mental conditions such as depression, mood, anxiety and
sleeplessness [7,8]. Moreover, the symptoms of ADHD frequently coincide with those of
other psychiatric illnesses, such as affective and internalizing disorders, autism spectrum
disorder, and autistic-like features [9]. There may be external factors that raise the chance
of ADHD, such as exposure to chemicals and maternal lifestyle throughout pregnancy, but
these characteristics are not prevalent in all human beings [10]. Furthermore, the disorder’s
occurrence cannot be linked to a particular biomarker, such as a single faulty gene [11].

While males are more likely to be diagnosed with ADHD and the percentage of them
receiving treatment is high, the existing research trends show that prevalence has been rising
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amongst females and people of various races over the last century [12]. Although females
have lesser incidence rates than males, they have severe impairments associated with
their diagnoses that necessitate early detection to minimize the chances of psychological
illnesses, self-harm and suicidality [13]. The lack of clear ADHD diagnosis is due to a
lack of understanding of the brain mechanisms that cause the disorder. The severity of
ADHD symptoms, IQ, co-morbidities, family conflict or environmental discomfort, earlier
care for ADHD, and the incidence of concurrent diseases are all significant factors that
influence the trajectory of ADHD [6,14]. In the diagnosis of this disorder, stimulants are
undoubtedly regarded as the most promising treatment, however, they carry a high risk
of misuse, addiction, and pose different side effects such as loss of appetite, high blood
pressure, heart problems, mood disorders, etc., [1]. However, there exist strong associations
between adult ADHD with a higher risk of substance abuse [15]. The current way of
diagnosing ADHD is a subjective evaluation and thorough clinical observation which are
mostly imprecise and erroneous, so there is a need for more objective methods. Since
the diagnosis is exclusively based on observed behavior and reported symptoms, there
is a possibility of over-and-under-diagnosis and also there are no valid objective tests to
identify ADHD [16].

Nowadays, sensory data gathered from patients and evaluated using machine learn-
ing approaches has attracted a lot of attention as a way to supplement existing subjective
diagnostic practices in mental health, particularly ADHD [17]. Recent technological ad-
vancements, notably in the field of wearable devices, have enabled unparalleled access
to physiological data. Moreover, wearable devices are employed in a variety of applica-
tions such as analyzing physical health and mental health. The studies using actigraph
data from both adolescents and adults have found that motor activity has a significant
role to play in the ADHD diagnosis. Moreover, HRV has been researched concerning
ADHD, although the results are relatively less promising [1]. Generally, Electrocardiogram
(ECG) [18], electroencephalogram (EEG) [19,20], magnetic resonance imaging (MRI) [21,22],
game simulators [23], accelerometers [24] and many other methods are available for collect-
ing sensory data. In practice, research is also carried out to analyze the EEG signal in the
field of concentration of attention in mothers and children [25]. However, the activity data
collected from actigraphic devices are considered as a gold standard for detecting different
patterns such as sleep and awake states. The results derived from activity data are more
precise, accurate, and reliable [26].

In light of these considerations, the present study presents a Support Vector Machine
(SVM)-based approach for accurately identifying patients with ADHD among other clinical
controls using activity data analysis. This approach makes use of statistical features
related to the motor activity of patients, which are appropriately selected using Principal
Component Analysis (PCA). The comparative analysis of the given SVM classifier with
other state-of-the-art classifiers viz; Random Forest, C4.5 Decision tree, k-Nearest Neighbor,
Naïve Bayes and LogitBoost, evidently reveals that the proposed PCA- and SVM-based
activity features approach is an effective method for precise detection of ADHD patients
among other patients suffering from different disorders.

This paper has been organized into various sections: Section 2 introduces the key
contributions in this field. The proposed framework and study approaches are elaborated
in Section 3. Section 4 addresses the classification models to be employed along with their
hyper-parameter tuning. The results drawn are presented in Section 5. While Section 6
discusses the research findings and outlines the current work’s constraints and potential
future directions. Finally, the brief conclusions reached from the work’s primary outcomes
are explained in Section 7.

2. Literature Survey

The goal of this systematic literature review is to evaluate the most relevant research
on ADHD Diagnosis utilizing activity-related data and its analysis using machine learning
techniques. A variety of search engines and databases were used, including Google Scholar,
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PubMed, IEEE Explore, Science Direct and others. The keywords were input as a Boolean
search string that included (‘ADHD’ or ‘attention deficit hyperactivity disorder’), (‘activity
data’ or ‘actigraphy’ or ‘accelerometer’) and(‘machine learning’ or ‘deep learning’ or
‘artificial intelligence). The step-by-step search method and filtering of the article stage-wise
are depicted in detail in Figure 1.
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Figure 1. Flow diagram for filtering of articles.

In the first step of the search, 389 items were discovered, whereas 202 of these articles
were removed due to duplicate entries. A further modification was done to match the titles
and abstracts of the retrieved publications. As a result, the set was reduced to 98 items at
this stage by discarding 89 articles that did not fulfill the targeted objectives. However, this
collection also included publications that employed a variety of approaches to diagnose
ADHD, including PPG, Multimodal, MRI, MEG, and others. However, the use of activity
data for identification is a topic of concern. As a result, the other methods were abandoned,
and ten publications based on activity data were scanned. Indeed, upon further analysis,
five were deemed to be suitable and were chosen as the final group for literature analysis.
Table 1 shows a detailed comparison of these articles based on different parameters.
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Table 1. Description of studies that used actigraphy and accelerometer data.

S.No Reference Year Dataset Age
Group

Public/
Private Method Features Model Validation

Approach
Highest

Accuracy

1

Munoz-
Organero

et al.
[27]

2018

22 school
children

with
ADHD = 11,

Paired
Controls = 11

6–15
years Private

Two trial axial
accelerome-
ters: one on
the wrist of

the dominant
arm and the
other on the
axle of the

dominant leg

2D accel-
eration
images

Deep
learning

4-fold
cross-

validation

CNN
87.5% with

wrist
sensor and
93.8% with
axle sensor

2
Faedda

et al.
[28]

2016

155 children
with

ADHD = 44
ADHD +

Depression
= 21

Bipolar = 48
Controls = 42

5–18
years Private Belt worn

actigraphs
28

metrics

Machine
Learn-

ing

4-Fold
cross

validation

SVM
83.1%

3

Amado-
Caballeroat

et al.
[29]

2020

148 children
with

ADHD = 73
Normal = 75

6–15
years Private

Wrist Worn
ActiGraph

GT3x

End-to-
End

Deep
Learn-

ing

10 fold
cross

validation

CNN
98.6%

4
O’Mahony

et al.
[24]

2014

43 children
with

ADHD = 24
Normal = 19

6–11
years Private

Two IMU one
at the waist

and the other
at the ankle of
the dominant

leg

Inertial
measure-

ment
Units

Machine
Learn-

ing

Leave one
out cross-
validation

SVM
95.1%

5 Hicks
et al. [1] 2021

103 patients
with

ADHD = 51
Normal = 52

17–67
years Public

Wrist-worn
Actigraph

device

Feature
extrac-

tion with
tsfresh

Machine
Learn-

ing

10 fold
cross-

validation

Random
Forest

gives 72%

Indeed, the literature review has certain inadequacies that lead to the current investi-
gation through this paper. Some of the few drawbacks that are of concern are:

1. Only one study out of five has utilized an adult dataset to diagnose ADHD.
2. The majority of the studies relied on private datasets, which necessitated a significant

amount of effort and time for data gathering and processing.
3. On the activity datasets, only five studies have used machine learning approaches.
4. The machine learning models applied to the activity dataset even did not provide

many reliable and precise results.

As a result of these limitations, this study aims to improve the precision with which
activity data can be utilized to distinguish ADHD patients from other clinical controls. In
addition, there are relatively few publicly available datasets in this domain, and via this, a
new publicly available dataset has been examined.

3. Methods and Materials

This section provides an overview of the proposed framework for the identification
of ADHD among clinical controls. Figure 2 illustrates the proposed framework, and
based on the dataset, this paradigm is useful for classifying patients with ADHD or Non-
ADHD. In the first stage, data is gathered from varied sources, which consist of details of
patients containing information regarding their background and medical history. Moreover,
it takes as input the results of computerized tests and the patient’s activity log using
wearable devices. Then, the relevant data pertinent to the goals are chosen. Following



Brain Sci. 2022, 12, 831 5 of 17

the selection of necessary data, it is processed through statistical feature extraction and
selection, using principal component analysis. Afterwards, the analysis is performed using
several classification algorithms to precisely choose an optimal algorithm based on various
performance metrics for accurate identification of ADHD patients.
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3.1. Data Acquisition

The present work makes use of a publicly available ‘Hyperaktiv’ dataset [1] for ac-
curate classification of ADHD and non-ADHD patients. It comprises health, activity, and
heart rate data from adult ADHD patients and other clinical controls. It is accessible at
https://osf.io/3agwr (accessed on 2 April 2022) and is licensed under Creative Commons
Attribution-Noncommercial 4.0 International (CC BY-NC 4.0) [1]. For acquisition of this
dataset,103 patients are enrolled out of which 51 patients have been diagnosed with ADHD
and 52 with other disorders termed as clinical controls. The information gathered includes
recordings of motor activity, heart rate, results of a computerized test as well as multiple
diagnostic and clinical assessments. The activity log of one of the patients diagnosed with
ADHD is depicted in Figure 3, which has been analyzed over a span of 24 h. The movement
activity is measured in the Inertial Measurement Unit (IMU) using a wrist-worn actigraph
device (Actiwatch, Cambridge Neurotechnology Ltd., England, model AW4). It consists of
a piezoelectric accelerometer configured to record the integration of movement strength,
amount, and duration in the x, y, and z-axes movements greater than 0.05 g at a sampling
frequency of 32 Hz [1,30]. It is clear from the below figure that patients diagnosed with
ADHD are more hyperactive during early mornings and in the evenings. The activity
variation has a pivotal role in the diagnosis of ADHD because of the time-dependent nature
of ADHD hyperactivities [31].

https://osf.io/3agwr
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In this dataset, all the patients are diagnosed by two experienced and qualified psy-
chiatrists using the Mini-International Neuropsychiatric Interview (MINI Plus, version
5.0.0) [32]. The clinical assessments are done by an automated and digital neuropsychologi-
cal response test commonly known as CPT-II (Conner’s Continuous Performance Test) [33],
which is used to access problems with attention. Apart from activity data, the present
dataset also contains ECG-based heart rate data, which have been recorded with a compact
battery-powered chest-worn device that allows for mobility and extensive recording times.
This type of heart rate data can be used to determine the Heart Rate Variability (HRV) [34],
which is a representation of the time difference between successive heartbeats. In the
present data, a total of 80 patients provided heart rate recordings, with 38 ADHD sufferers
logging their heart rates for an average of 20.5 ± 3.9 h, and 42 clinical controls logging their
heart rates for an average of 21 ± 4 h [1].

Furthermore, the feature’s file consists of pre-extracted attributes that are then used for
training and testing of given machine learning models being employed in this work. The
file consisting of patient information contains 32 different attributes for each of 103 patients.
For visual representation and analysis, the software utilized is open source cloud comput-
ing environment Google Colaboratory utilizing Python 3.7.13 [35]. Figure 4a represents the
count of the number of males and females in the study. Figure 4b represents the different
age patterns of the patients involved in the study, where 1 = 17–29 yrs, 2 = 30–39 yrs,
3 = 40–49 yrs, and 4 = 50–67 yrs. Figure 4c,d represent the number of patients diagnosed
with ADHD and other disorders, including attention deficit disorder (ADD). Figure 4e
picturizes the output for the CPT-II test results for the Montgomery and Asberg Depression
Rating Scale (MADRS) [36], which consists of 21 items that access the intensity of depres-
sion. Figure 4f represents the Wender Utah rating scale (WURS) [37], which evaluates the
prevalence and severity of childhood ADHD symptoms.
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3.2. Feature Extraction

In the present work, 788 statistical features have been employed which are extracted
from the activity data of the patients. These features are listed in the features file of the
Hyperaktiv dataset [1]. The features are extracted using the open-source python package
tsfresh [38], which aids in the feature engineering of the time-series data of the activity
dataset [39]. These features are associated with standard deviation, variance, skewness,
kurtosis, root mean square value, entropy and other related metrics.

Since the number of the features present in the dataset file are cumbersome, so to get a
brief overview some of these features are shown graphically using different types of plots.
Figure 5a presents a violin plot of the absolute energy of the activity data. The standard
deviation ranges are shown using a histogram in Figure 5b. While Figure 5c,d analyze
the kernel density estimator for kurtosis and skewness. The values of autocorrelation and
ricker’s continuous wavelet transform are represented in Figure 5e,f respectively. Lastly,
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Figure 5g,h represent the fast Fourier transform coefficient values and permutation entropy
values using kernel density estimator and histogram plots, respectively.
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3.3. Feature Processing

This step entails the processing of the relevant features related to the activity record-
ings. Due to the small dataset size, training and testing would not accurately reflect a
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machine learning model’s generalization capabilities and would unnecessarily diminish its
predictive power. Therefore, Principal Component Analysis (PCA) has been employed in
this work in order to find significant features having strong patterns for accurate identifica-
tion of patients with ADHD. PCA is an unsupervised dimensionality reduction approach.
In this approach, by lowering the variance, the strong patterns in the provided dataset can
be extracted. It is a statistical technique that turns observations of correlated features into a
set of linearly uncorrelated data through orthogonal transformation. In this way, the newly
altered features that are discovered are called the principal components. The reduced
principal component features are either less than or equal to the features initially passed as
an input. The purpose of PCA is to keep as much information as feasible while reducing the
number of variables in a data set [40]. The various steps involved in PCA are standardizing
the range of variables, calculating the covariance matrix, and finally determining the eigen
vectors and eigen values from the matrix [41]. Dimensionality reduction is accomplished
in this dataset by selecting eigenvectors to account for a specific proportion of variance
in the original data. The default variance is 0.95. The data is centered rather than being
standardized. PCA is calculated using the covariance matrix instead of the correlation
matrix. A maximum of five attributes are selected in the formation of modified attributes.
Moreover, all the attributes are considered to be equally important and are retained in the
converted ranked attributes.

To investigate the accuracy further, the dataset size is resampled. It creates a random
subset of the dataset, with or without replacement. The entire sample needs to be fitted into
the memory perfectly. It allows the calculation of standard errors and confidence intervals
easily. The confidence intervals become more reliable as the sample size grows. However, it
increases the risk of overfitting noise in the data. The consequences of this problem can be
reduced by combining the resampling method with the cross-validation procedure, which
has been employed in the current work.

4. Model Selection
4.1. Machine Learning Techniques and Hyperparameter Tuning

To categorize patients with ADHD and other clinical controls, six different machine
learning algorithms are employed which include Naive Bayes (NB), k-Nearest Neighbor
(kNN), Support Vector Machine (SVM), C 4.5 Decision Tree, Random Forest (RF), and
LogitBoost. The eventual aim is to create algorithms with the highest classification accuracy
while using the fewest possible features possible. To boost the performance of these models,
essential hyperparameters must be identified and tuned to exactly fit these machine learn-
ing models using given data for creating reliable and accurate models. Moreover, these
parameters assist in finding the right balance of bias and variance and hence preventing the
model from overfitting and underfitting. The machine learning models and hyperparam-
eters tuning are implemented using WEKA 3.8.6. The hyperparameter tuning for varied
chosen algorithms is as follows:

4.1.1. Support Vector Machine (SVM)

SVM is a kernel-based machine learning model for classification and regression chal-
lenges. Due to its strong theoretical foundation and capacity to generalize, SVMs have
become one of the most extensively used classification methods in recent years. SVM’s main
goal is to separate classes in a training set by using a surface that maximizes the margin
between them. It maximizes the generalization capabilities of the model [42]. This algo-
rithm is typically used for linearly separable data, but it can also be used for non-linearly
separable data using the kernel approach.

In this work, the type of SVM used is C-SVC, where C stands for the penalty parameter
of the error term, and the cost value is taken as 1. It strikes a balance between the need for a
smooth decision border and the accuracy with which the training points are identified. The
batch size is indeed 100, and the cache is 40 MB. The termination criteria tolerance (eps)
is 0.001. The type of kernel employed in this model is the radial basis function, and the
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degree of the kernel is set to three. The seed value is taken as 1 and the shrinking heuristics
are configured to true.

4.1.2. Naive Bayes (NB)

The Naive Bayes classifier is a probabilistic classifier based on Bayes’ theorem, which
states that each feature contributes equally to the target class. The NB classifier assumes
that each feature is independent of the others and does not interact with them, implying
that each feature contributes equally to the probability of a sample belonging to a specific
class [43]. It is simple to use and compute and performs well on large datasets with many
dimensions. This algorithm works best when associated features are removed from the
model since they are voted twice in the model. It is noise-robust and ideal for real-time
applications [43].

For this classifier, the preferred number of instances that are processed in one batch is
100. The ‘use kernel estimator’ is set to false, so normal distribution is used for numeric
attributes. The ‘use supervised discretization’ value and ‘do not check capabilities’ are both
initialized to false.

4.1.3. C 4.5 Decision Tree

C4.5 is based on the information gain ratio being evaluated by entropy. The test
features are picked using the information gain ratio measure at each node in the tree. These
measures are known as feature or attribute selection measures. The test feature for the
current node is the attribute with the highest information gain ratio. The proportion of
observations to total observations is known as the Information Gain Ratio (IGR) [44]. When
a data set is large, the decision tree is pruned, which implies that extraneous branches that
are insignificant in the overall computation are deleted.

In this classifier, the batch size and seed parameters are both set to 100 and 1, respec-
tively. When the ‘collapse tree’ property is set to True, the sections of the tree that do not
minimize training error are deleted. The value of the number of folds is taken as three,
which defines the amount of data used for reduced error pruning where two folds are used
for tree growth and one fold is utilized for pruning. While the confidence factor is set to
0.25, the ‘subtree raising’ is considered true when pruning. The minimum number of the
object variable is set to two. The MDL correction is utilized when discovering splits on
numeric attributes.

4.1.4. Random Forest (RF)

Random Forest is based on ensemble learning, which is a way to integrate multiple
classifiers to solve complicated problems and enhance the effectiveness of the algorithm.
It is a classifier that combines several decision trees on different subsets of a dataset and
averages their results to increase the dataset’s predictive accuracy. The random forest
collects forecasts from each tree and predicts the ultimate output based on the majority
votes of projections, rather than depending on a single decision tree. The more the number
of trees in the forest, the higher the accuracy and lower the risk of overfitting. It predicts
output with good accuracy and runs quickly even with a huge dataset even if data values
are missing [45].

In RF classifier, the bag size percentage, number of iterations, and batch size are all set
to 100 by default. The maximum depth and number of iterations of the tree are both set
to 0. To create the ensemble, there is a need for one execution slot. The “Store out of Bag
Predictions” is tuned to false and the seed value is fixed to one.

4.1.5. k-Nearest Neighbor (kNN)

kNN is a case-based classification algorithm that keeps all of the training data. It is
a simple but efficient classification approach that has been proved to be one of the most
powerful techniques in text categorization. A model is created for kNN to improve its
efficiency while keeping its classification accuracy. To classify a data record t, the k closest



Brain Sci. 2022, 12, 831 11 of 17

neighbors are obtained, forming a t neighborhood [46]. However, in order to apply kNN,
the proper value for k is chosen, as the performance of classification is strongly dependent
on this number. There are a few ways to figure out the k value, but one simple option is to
run the algorithm numerous times with different inputs.

In kNN, the number of neighbors (k) is chosen to one. The batch size is one hundred.
In the nearest neighbor search algorithm, the linear NN Search algorithm is employed in
the analysis. When conducting cross-validation, the mean absolute error is utilized. The
window size parameter is set to 0, implying that there is no limit on the number of training
instances. The distance weighting and cross-validate are set to false.

4.1.6. Logit Boost (LBoost)

LogitBoost is a popular boosting type for categorizing binary and multi-class data. It is
an additive tree regression method that reduces the logistic loss. The boosting algorithm for
LogitBoost is deduced from the statistical approach in which the loss, the function model
and the optimization strategy are all three essential components. This algorithm uses a
binomial log-likelihood to modify the loss function linearly. In this, outliers and noise are
less noticeable [47].

For this classifier, the Zmax response threshold is set to 3.0. All of the seed, shrinkage,
pool size and number of threads variables are set to one. The chosen base classifier is the
Decision Stump. The number of iterations is set to ten. The likelihood threshold is set equal
to −1.79769313, while the weight threshold and batch size are adjusted at 100.

4.2. Performance Evaluation

The performance of an algorithm for a specific task is evaluated using different metrics.
For this purpose, the confusion matrix is widely used, which is a four-quadrant table
with rows and columns for presenting the classifier’s classification results. It aids in the
compilation of performance evaluation measures. The four quadrants in the matrix consist
of True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN).
Various performance metrics derived from the confusion matrix, which are employed in
the present work, include accuracy [48], sensitivity [48], specificity [48], F-measure [49] and
AUC [50]. These metrics are illustrated as per the following details:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

F-measure =
2 ∗ Precision ∗ Recall
Precision + Recall

(2)

Sensitivity =
TP

TP + FN
(3)

Specificity =
TN

TN + FP
(4)

AUC is a cumulative measure of performance that takes into account all possible
classification thresholds. AUC is a two-dimensional region beneath the complete AUC
curve from (0, 0) to (1, 1). The AUC value varies from 0 to 1. The AUC of a model whose
predictions are 100 percent incorrect is 0.0, whereas the AUC of a model whose predictions
are 100 percent correct is 1.0 [50].

5. Results

This section demonstrates the results of multiple classification algorithms to ensure
the relevancy of the proposed methodological approach for the detection of ADHD. The
different classification algorithms chosen for this work are C4.5, kNN, LBoost, NB, SVM,
and RF. For all the algorithms, ten-fold cross-validation is used to analyze the result. The
performance of the employed classification algorithms is presented in Table 2 in terms of
accuracy, sensitivity, specificity, F-measure and AUC.
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Table 2. Performance evaluation results of different classification algorithms.

S.No Model Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

F-Measure
(%) AUC

1 C4.5 95.29 95.28 95.28 95.28 0.973
2 kNN 97.65 97.64 97.64 97.64 0.975
3 LBoost 89.02 89.03 88.96 88.99 0.941
4 NB 80.39 79.86 81.21 80.02 0.889
5 SVM 98.43 98.33 98.56 98.42 0.983
6 RF 97.25 97.27 97.23 97.25 0.999

Furthermore, the comparison is drawn graphically for accuracy values among given
ML algorithms in Figure 6, which also shows the superiority of SVM among other al-
gorithms for accurate identification of ADHD patients, whereas Figures 7–9 display the
performance of given ML algorithms in terms of sensitivity, specificity and F-measure
values of ADHD and non-ADHD classes. Figure 10 presents AUC curves for SVM, RF,
C4.5, kNN, LB and NB classifiers.
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6. Discussion
6.1. This Work

It is evident from Table 2 that the SVM classifier outperforms with an accuracy of
98.43% and the Naïve Bayes algorithm exhibits the lowest accuracy of 80.39% among
other classification algorithms. The other performance metrics values such as F-Measure,
sensitivity, specificity, and AUC for SVM are 98.42%, 98.33%, 98.56%, and 0.983, respectively.
However, the evaluation results of RF and kNN are quite close to the performance of SVM.
They both have showcased accuracies of nearly 97.25% and 97.65%, respectively. While
the AUC for RF is the maximum among all the algorithms, which is 0.999. According
to the findings of the evaluation, the NB and LBoost do not appear to be appropriate
classifiers for identifying ADHD as they exhibit much lower values of performance metrics
in comparison to the other models.

Figures 7–9 pictorially represent how well these metrics performed on various models
to differentiate between the two classes of classifying the ADHD patients from clinical
controls. As expected, SVM classifier has performed well for this task in terms of sensi-
tivity, specificity and F-measure having class ADHD values of 100%, 100% and 98.54%,
respectively.

As per Figure 10 and Table 2, SVM exhibits a significantly high value of AUC along
with Random Forest having values of 0.983 and 0.999, respectively. On the other hand, NB
classifier shows a poor AUC of 0.889 only. Therefore, the thorough analysis of given ML
algorithms reveals that SVM algorithm performs better amongst other algorithms with
maximum values of accuracy, sensitivity, specificity, F-measure and an optimal value of
AUC, which makes it a suitable choice for accurate identification of ADHD patients among
other clinical controls.

6.2. Contributions and Limitations

This research work utilizing activity data provides an efficient machine learning model,
which can efficiently differentiate between ADHD and clinical controls with an accuracy
of 98.43% and AUC of 0.983. However, this study also poses some limitations. The key
drawback is the scarcity of data samples due to clinical data collection difficulties. Another
issue is that the subtype of ADHD was not taken into account due to the diversity of the
ADHD population [11]. Additionally, new strategies for detecting ADHD, such as transfer
learning, can be applied [51]. Deep learning algorithms can also be used to distinguish
ADHD patients from clinical controls using EEG data [52]. Moreover, indicators such as
pupil size can be used to determine whether or not a patient has ADHD [16]. In connection
to ADHD, the gender and age difference factors could also be used [12]. Furthermore, the
relationship between heart rates and ADHD could also be investigated, and the validity of
computerized tests used to diagnose ADHD could be tested.

6.3. Future Scope

Future research plans include looking at ADHD in context with the patients’ heart
rates. The research should be expanded to look into the causes and effects of additional
conditions such as anxiety, bipolar disorder, unipolar disorder, and depression on ADHD.
Additionally, the validity of the computerized tests that are currently used to assess the
prevalence of ADHD must be examined.

7. Conclusions

In this study, the optimal autonomic model for the diagnosis of ADHD is determined
using six machine learning algorithms. The phenomenal performance of classifiers in this
work is attributed to the computed feature selection approach and most importantly, the
identification and combination of complementary features using PCA. The SVM model
proposed is the most accurate classifier, classifying at 98.43% accuracy with high sensitivity,
specificity and F-measure. The overall analysis of the proposed work clearly reveals
that PCA based SVM approach is a highly suited method for accurate identification of
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ADHD patients. The overall findings provide new information regarding accurate machine
learning algorithms, which can reduce misinterpretation and can be used to assess treatment
effectiveness.
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