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Abstract: Data mining involves the computational analysis of a plethora of publicly available datasets
to generate new hypotheses that can be further validated by experiments for the improved under-
standing of the pathogenesis of neurodegenerative diseases. Although the number of sequencing
datasets is on the rise, microarray analysis conducted on diverse biological samples represent a
large collection of datasets with multiple web-based programs that enable efficient and convenient
data analysis. In this review, we first discuss the selection of biological samples associated with
neurological disorders, and the possibility of a combination of datasets, from various types of samples,
to conduct an integrated analysis in order to achieve a holistic understanding of the alterations in the
examined biological system. We then summarize key approaches and studies that have made use of
the data mining of microarray datasets to obtain insights into translational neuroscience applications,
including biomarker discovery, therapeutic development, and the elucidation of the pathogenic mech-
anisms of neurodegenerative diseases. We further discuss the gap to be bridged between microarray
and sequencing studies to improve the utilization and combination of different types of datasets,
together with experimental validation, for more comprehensive analyses. We conclude by providing
future perspectives on integrating multi-omics, to advance precision phenotyping and personalized
medicine for neurodegenerative diseases.

Keywords: microarray analysis; biological samples; messenger RNA (mRNA); microRNA (miRNA);
circular RNA (circRNA); long non-coding RNA (lncRNA); multi-omics integration; translational
neuroscience; biomarker discovery; therapeutic development

1. Introduction

Over the past few decades, methods for quantifying the transcriptome have developed
and expanded from microarray gene expression and quantitative polymerase chain reac-
tion [1,2] to bulk RNA-seq and single-cell or single-nucleus RNA sequencing (sc/snRNA-
seq) [3]. RNA-seq techniques have been at the forefront of studies aimed at understanding
the heterogeneity of neurological diseases, including Alzheimer’s disease (AD), Parkinson’s
disease (PD), and multiple sclerosis (MS) [3,4]. It also has the unique ability of being able to
detect novel sequences and splice variants [3,5]. However, RNA-seq methods are generally
more labor intensive in data analysis and not as cost efficient in terms of data storage,
and they may possess transcript length bias, which is currently mediated by long-read
sequencing [5]. Although microarray gene expression analysis is limited to transcripts
that are already established for the model organism being analyzed, it is able to detect
highly varied genes [6]. Despite the technical differences, results from microarray and
RNA-seq analyses have been shown to be highly consistent with each other [7]. In the
context of data mining, microarray analysis is still widely adopted due to its low cost,
high efficiency, limited bias [8], greater statistical power [9], and vast number of public
neuroscience datasets available for data mining [3,10].
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Data mining enables the utilization and comparison of deposited datasets contain-
ing high-dimensional features to efficiently acquire information related to translational
neuroscience, which can be used to generate new hypotheses and may be validated experi-
mentally [11]. When mining for transcriptomics data, it is important to take into account the
type of RNA data and biological samples used in the analysis. For example, to probe for the
pathogenic mechanisms of neurodegenerative diseases, the RNA profiles of post-mortem
brain tissues from patients will provide insights into the specific alterations of the biological
pathways that might play key roles in disease pathogenesis. On the other hand, regarding
biomarker discovery, alterations in the RNA signatures from biological samples that can
be obtained non-invasively, such as blood, could be used. Changes in the RNA profiles
of cerebrospinal fluid (CSF) are sometimes utilized for biomarker discovery, although it
is worth noting that CSF extraction can be invasive. Hence, there is a pressing need for
the further investigation and establishment of blood biomarkers of neurodegenerative
diseases [12,13]. Finally, drug discovery in translational neuroscience requires the testing
of therapeutics in physiologically relevant models. Induced pluripotent stem cells (iPSCs)
derived from patients are important models that can be used to test how therapeutics alter
RNA profiles, protein expression, and cellular functions.

In this review, we will discuss the various biological samples that are commonly
used for transcriptomic analysis of neurological diseases, with a specific focus on their
limitations and advantages. We then discuss the pipeline for mining of microarray gene
expression data, including the identification of datasets, quality control checks, statistical
analysis, and functional annotations of genes. We further summarize the various types
of RNA samples, including protein coding messenger RNA (mRNA) and non-coding
RNA such as microRNA (miRNA), circular RNA (circRNA), and long non-coding RNA
(lncRNA), that have been studied using microarray analysis for translational neuroscience
applications. Furthermore, we discuss the gaps to be bridged between microarray and RNA-
seq techniques and highlight how these two methods are complementary to each other. We
conclude by providing future perspectives for the advancement of multi-omics integration,
precision phenotyping, and personalized medicine for neurodegenerative diseases.

2. Biological Samples for Microarray Analysis

The selection of biological samples for data mining forms the core basis of both bioin-
formatics and experimental analyses, and it determines the outcomes and conclusions
of studies. In neuroscience, these biological samples mostly consist of brain tissues, CSF,
peripheral blood, as well as human stem cells. Samples collected from healthy controls or
patients with neurodegenerative diseases are subjected to an array of quantitative and qual-
itative biological measurements, such as microarray characterizations and image analysis.
The results of these measurements are interpreted to understand the brain functionality
throughout various stages of disease [14,15]. It is important to classify biological samples
based on basic demographic information, as well as genotypes (e.g., patients containing
pathogenic mutations), phenotypes (e.g., observable characteristics that arise from the
diseases), and clinical outcomes (e.g., patient-derived characteristics such as the Braak
stage) of the subjects [16]. Another consideration lies in the ease of obtaining the biological
samples for analysis, including the experimental procedures involved and whether it is
invasive. Furthermore, the selection of biological samples should also be determined based
on the applications of the studies, whether it is for biomarker identification, drug discovery,
or the elucidation of disease mechanisms.

2.1. Brain Tissues

The use of human post-mortem brain tissues provides direct observations concerning
the pathology and disease state when the patient is deceased. However, the inability
to obtain brain tissue samples from living patients over time, and only during the last
stage of life, creates bias and cannot be used to assess the initial stages of the disease.
It is also difficult to elucidate the course of disease progression that determines clinical
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outcomes and disease phenotypes associated with the patients [17,18]. Furthermore, the
main issues with using tissue samples for analysis lie in tissue heterogeneity, including
diversity and variability, as well as low reproducibility across patient subjects [19,20].
Heterogeneity associated with neurodegeneration is further supported with a machine-
learning technique that analyzes imaging datasets to reveal data-driven disease phenotypes,
temporal progression, and trajectories that are distinct across patients [21]. Due to these
abnormalities, a combined analysis of multiple datasets, containing different batches of
samples and large number of patients, would provide a more accurate analysis. The
increased utilization of data mining of brain tissue-associated microarray datasets holds
promise for biomarker discovery and enhanced understanding of disease mechanisms in
neurological disorders, leading to improved prognosis [22,23].

2.2. CSF and Peripheral Blood

To profile living patients, CSF and peripheral blood are often used as biological sam-
ples due to their extractability and diagnostic applications [24,25], and they are less likely to
be affected by heterogeneity [19]. Unlike peripheral blood with expansive applications, the
primary application of CSF is for the detection and diagnosis of neurological diseases [26].
Among several other candidates, established CSF biomarkers such as β-amyloid and tau
can be used for the early diagnosis of AD [27], whereas α-synuclein and neurofilament
light chains have been shown to aid the diagnosis of PD and MS, respectively [28–31]. On
the other hand, establishing blood biomarkers has been a highly sought after strategy due
to their extremely low invasiveness, low cost, and accessibility [32–34]. Currently, work is
being conducted in order to increase the precision of measurements and to increase the cor-
roboration between blood biomarkers and established CSF biomarkers [35]. This suggests
that blood biomarkers may be used in clinical practice for diagnosing neurodegenerative
diseases in the near future. However, for blood biomarkers to be fully implemented and
consistent with observations from other biological samples, such as brain tissues, more
correlation studies need to be conducted and new analysis methods need to be developed to
take into account the variability between samples and individual patients [35,36]. Multiple
studies utilizing peripheral blood have been focusing on examining miRNA expression
levels due to their biomarker-quality characteristics [37–39]. More specifically, miRNAs are
small non-coding RNAs that are being utilized for analyzing dysregulated genes due to
their abundance, tissue specificity, and stability [40]. Currently, CSF and peripheral blood
are often used in combination for disease evaluation, with the disease state being confirmed
by established CSF biomarkers, and differentially expressed genes (DEGs) are isolated from
peripheral blood to help reinforce the credibility of the proposed blood biomarkers [26,41].
With the need to provide treatment for asymptomatic patients with neurodegenerative
diseases, such as AD, as well as to screen for risk in large numbers of young individuals,
the development of biomarkers is shifting from a focus on CSF to peripheral blood, due to
the ease of extractability and decreased invasiveness [42].

2.3. Human Stem Cells

The use of human stem cells is on the rise due to the high applicability of these
cells in understanding disease mechanisms, as well as in regenerative therapy [43]. Stem
cell therapy offers the ability to regenerate neural tissue and ameliorate the effects of
neurodegeneration [44,45]. In addition, human iPSCs from patient fibroblasts can be
differentiated to derive a vast source of central nervous system (CNS) cell types and
contribute to a generation of multicellular organoids [46]. Other advantages associated
with using stem cells include their ability to proliferate while maintaining developmental
potential, the ease of modifying their genes, and the direct modeling of human biology
without species-specific confounding factors [47]. Compendium-based big data approaches
have been proposed to characterize the identity of each differentiated cell type from stem
cells, which holds the key to understand the molecular events associated with the cell
type and its biological applications [48–50]. For example, it has been shown that Aβ
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secreted from early-onset familial AD iPSC-derived neurons, was highly responsive to
γ-secretase inhibitors and modulators, indicating their potential use for the identification
and validation of candidate drugs [51]. The use of stem cells in model systems has also led
to an increase in the utilization of iPSCs for drug screening and in vitro drug analysis [52].
These studies illustrate the potential of using datasets obtained from human stem cells
for bioinformatic analysis to provide extensive insights into biomarker discovery and
therapeutic development. Lastly, stem cells play a key role in regenerative medicine, and
it is important to understand the mechanisms that regulate regeneration across different
species and in different tissues. Recently, a Regeneration Roadmap database has been
constructed which contains a comprehensive and systematic collection of gene expression
and omics data associated with regenerative biology, and it can facilitate data mining
studies [53].

In addition to the abovementioned biological samples, bioinformatic analysis also
utilizes other samples including plasma, urine, feces, gut microbiome, mucus, saliva,
and sputum to study metabolic changes of metabolites [54–59]. One study has shown
that gut microbiome samples can be isolated and quantified using sequencing to study
MS [60]. Additionally, gut microbiome alterations have been shown to modulate CNS
autoimmunity in animal studies [60,61]. In vitro cell lines, as well as in vivo models,
including transgenic and knock-in mice, have also been used to validate human data
acquired from mining datasets associated with neurodegenerative diseases [62]. To this
end, the array of biological samples that can be used for bioinformatics analysis is vast.
A combination of datasets from various types of samples could be utilized for integrated
analysis to understand the biological changes in localized regions (e.g., brain tissues) or
in circulation (e.g., CSF and/or blood). It may also be used to understand the correlation
and association within physiological systems in response to treatments, drug responses,
and disease progression. Therefore, it is important to pinpoint the research question of
interest to ensure the usage of appropriate datasets for computational analysis, and so
that they fit into the correct biological context for meaningful interpretation. In many
instances, the utilization of multiple datasets of various biological samples, in conjunction
with experimental validation, is necessary to confirm findings.

3. RNA Based Microarray Gene Expression Analysis

AD and PD are the most common neurodegenerative diseases in the world, and they
are characterized by progressive neuron loss [63,64]. On the other hand, MS is a prevalent
neuroinflammatory and neuroimmunological disorder characterized by the loss of myeli-
nation in the CNS. It also has a neurodegenerative component in the progressive phase
which currently does not have effective treatments [65]. Pathogenic mechanisms of neu-
roinflammation and neurodegeneration includes the dysregulation of biological processes,
such as altered signaling pathways [66–68], as well as mutant protein production and toxic
protein aggregation [69–71]. While targeting aberrant signaling pathways and toxic protein
aggregates represent important therapeutic strategies [72–74], gene-level interventions
can also be useful for treatment of neurodegenerative diseases. This is especially when
preventing the expression of toxic gain-of-function genes does not detrimentally affect
homeostatic cellular processes [75]. Therefore, it is vitally important to understand the
changes in RNA expression of different biological samples in diseased states (Figure 1A),
and to understand how alterations in RNA levels could have potential therapeutic efficacy.
In this section, we will discuss the different types of RNA that are quantified using microar-
ray (Figure 1B) and current microarray-based data mining studies that are associated with
neurodegenerative diseases (Figure 1C), which can provide more insights into translational
neuroscience applications (Figure 1D).
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RNA (miRNA, circRNA, and lncRNA) obtained from biological samples. (C) Data mining of micro-
array datasets associated with neurodegenerative diseases. Different genes detected by the micro-
array analysis are illustrated by different colors. (D) Translational neuroscience applications includ-
ing drug discovery, the elucidation of disease mechanisms, and biomarker identification. The figure 
was created using BioRender. 
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base being the predominant repository [79]. The GEO database has a built-in tool, GEO2R, 
which is a graphical user interface that can be used to compare two or more groups of 
samples to identify the DEGs with statistical significance [79]. When isolating DEGs from 
the data mining of transcriptomic datasets, using a web-based tool such as GEO2R, or a 
command line-based analysis method using R scripts (Figure 2A), it is important to take 
into account the necessary quality control steps (Figure 2B) and statistical methods (Figure 
2C) for the analysis. For quality control, it may be necessary to normalize the raw data 
[81], to perform a quality control assessment of the alignment, and to account for any con-
taminating species [82]. Feature selection may be required to remove genes that serve no 
biological purpose due to consistent expression across all samples [83,84], depending on 
the distribution of expression values of the samples used. For statistical analysis, using 
GEO2R as an example, it utilizes the R studio limma package for a differential analysis, 
where empirical Bayes moderated t-statistics and associated P-values, together with fold 
change values, are produced and used to evaluate the significance and extent of gene ex-
pression changes between diseased samples and healthy controls [85]. GEO2R also pro-
vides several graph plotting functions, such as the production of volcano and box plots, 
as well as uniform manifold approximation and projection (UMAP), that provides a fur-
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diseased conditions. Venn diagram analysis can also be performed to obtain overlapping 
DEGs across different datasets concerning similar disease conditions, in order to increase 
the stringency when determining significant genes with expression changes. 

Figure 1. Data mining of different types of RNA in various biological samples for translational
neuroscience applications. (A) Various types of biological samples, including post-mortem brain
tissues, CSF, peripheral blood, and human stem cells. (B) Different types of coding (mRNA) and
non-coding RNA (miRNA, circRNA, and lncRNA) obtained from biological samples. (C) Data mining
of microarray datasets associated with neurodegenerative diseases. Different genes detected by the
microarray analysis are illustrated by different colors. (D) Translational neuroscience applications
including drug discovery, the elucidation of disease mechanisms, and biomarker identification. The
figure was created using BioRender.

3.1. Pipeline for the Data Mining of Microarray Datasets

The microarray method has been one of the most commonly used methods of transcrip-
tomic analysis. It is used for identifying protein-encoding transcripts or non-coding RNAs
that are differentially expressed in diseased states (as compared with healthy controls) by
quantifying various RNA expression levels [76]. There are multiple databases archiving
microarray datasets [77–80], with the Gene Expression Omnibus (GEO) database being
the predominant repository [79]. The GEO database has a built-in tool, GEO2R, which is
a graphical user interface that can be used to compare two or more groups of samples to
identify the DEGs with statistical significance [79]. When isolating DEGs from the data
mining of transcriptomic datasets, using a web-based tool such as GEO2R, or a command
line-based analysis method using R scripts (Figure 2A), it is important to take into account
the necessary quality control steps (Figure 2B) and statistical methods (Figure 2C) for the
analysis. For quality control, it may be necessary to normalize the raw data [81], to per-
form a quality control assessment of the alignment, and to account for any contaminating
species [82]. Feature selection may be required to remove genes that serve no biological
purpose due to consistent expression across all samples [83,84], depending on the distribu-
tion of expression values of the samples used. For statistical analysis, using GEO2R as an
example, it utilizes the R studio limma package for a differential analysis, where empirical
Bayes moderated t-statistics and associated P-values, together with fold change values,
are produced and used to evaluate the significance and extent of gene expression changes
between diseased samples and healthy controls [85]. GEO2R also provides several graph
plotting functions, such as the production of volcano and box plots, as well as uniform
manifold approximation and projection (UMAP), that provides a further understanding
of the expression level of genes and their expression changes under diseased conditions.
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Venn diagram analysis can also be performed to obtain overlapping DEGs across different
datasets concerning similar disease conditions, in order to increase the stringency when
determining significant genes with expression changes.
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Figure 2. Pipeline for the data mining of microarray gene expression. (A) Searching for suitable
microarray datasets to be analyzed using web-based tools or command line scripts. Different genes
identified by microarray analysis are represented by different colors. (B) Pre-processing of datasets
via normalization, quality control, and feature selection. (C) Statistical tests to obtain DEGs with
corresponding P-values (significance) and LogFC (fold-change). Downregulated genes are illustrated
in red and upregulated genes are illustrated in purple. (D) Enrichment analysis and visualization
using pathway analysis, gene set enrichment analysis (GSEA), and network analysis to provide a
biological interpretation of the DEGs. Different pathways or functional annotations of the DEGs are
illustrated by different colors. The figure was created using BioRender.

After obtaining the DEGs, there are multiple web-based and application-based pro-
grams that are available to elucidate the functional annotations of the DEGs and to provide
insight into their role in disease mechanisms (Figure 2D). Tools aimed at conducting
pathways analysis and identifying functionally enriched biological processes include the
Database for Annotation, Visualization, and Integrated Discovery (DAVID) [86], Ingenuity
Pathway Analysis (IPA) [87], Gene Set Enrichment Analysis (GSEA) [88], Centrality-based
Pathway enrichment (CePa) [89], Signaling Pathway Impact Analysis (SPIA) [90], Fun-
Rich [91], and ExpressAnalyst [92]. Such tools are used to identify specific genes that are
involved in biological processes that may pertain to disease pathogenesis, and to investigate
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how those biological processes are dysregulated under disease conditions compared with
control conditions. Although the isolated DEGs are the inputs for most analysis tools, it is
important to note that GSEA not only takes into account the DEGs and their expression
values, but all transcriptomic expression values from each sample, for every gene in the
raw data. Using an entire gene set, as opposed to specifically isolated DEGs, enables a more
holistic analysis of the dysregulation of genes in diseased states. Programs and tools aimed
at providing information on network visualization and specific protein–protein interactions
include STRING [93], Cytoscape [94], and NetworkAnalyst [95]. These programs not only
enable the isolation of nodes involved in functionally enriched biological pathways, but
they also allow the identification of hub genes and assess the extent to which interactions
and connectivity occur.

3.2. Microarray Analysis of Coding RNA (mRNA)

Microarray analysis has been used to assemble data that are representative of the
mRNA expression levels of tens of thousands of genes in different neurodegenerative
diseases. It can also identify DEGs in these disease states, which can be further explored
to establish therapeutics or biomarkers. Here, we summarize results from data mining
studies to elucidate the changes in gene expression in various sample types under different
neurological conditions (Table 1).

Table 1. Summary of upregulated and downregulated genes identified from a microarray analysis of
mRNA obtained from brain tissues and blood samples in AD and PD, as well as from CSF in MS.
Arrows represent the direction of changes of the gene levels.

AD

Brain
tissue
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AD 

Brain  
tissue 

 HDAC1, WWTR1, ITGB1, PDGFRB, PLOD1, MAP4K4, NFKBIA, 
TYROBP, GSN, TIMP1 
  
SIRT3, RAB7A, BDNF, VLDLR, APLP2 

Blood 
 VCAM1, TYK2, TCIRG1, PPP3CB, SNCB, SACS, GSN, TIMP1 
 CTSD, RPL11, SNCA, FKBP1B, BDNF, VLDLR, APLP2 

PD Brain   SRRM2 

HDAC1, WWTR1, ITGB1, PDGFRB, PLOD1, MAP4K4,
NFKBIA, TYROBP, GSN, TIMP1
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In addition to studying mRNA, several non-coding RNAs, including miRNA, 

circRNA, and lncRNA, are isolated from peripheral blood for diagnosis or mechanistic 
analysis [121]. With non-coding RNAs making up most of the human genome, they are 
becoming increasingly sought after in neurodegenerative studies due to their role in neu-
ral cell specification during development, and in higher cognitive processes such as 
memory and plasticity [122]. Similar to mRNA, non-coding RNAs can also exhibit cell 
type specific expression levels to shape the cellular expression landscape and reinforce 
cellular identity. Importantly, non-coding RNAs are capable of modulating gene expres-
sion at the post-transcriptional level, binding to protein factors, controlling epigenetic 
mechanisms, and playing key roles in regulating many biological processes [123,124]. 

For example, miRNA plays a key role in the post-transcriptional gene regulation of 
mRNA expression [125]. Tissue specific miRNAs are becoming increasingly pursued for 
biomarker discovery due to their non-invasive extraction, accuracy, reproducibility, and 
predictability [126,127]. A data mining study that made use of blood datasets from MS 
patients found that the upregulation of miRNA hsa-miR-328-3p [128], hsa-miR-20a-5p 
[128], and miR-196 [129] occurred, as did the downregulation of miR-9 [129]. In AD, the 
dysregulation of miRNA has been identified in peripheral blood (upregulated: hsa-miR-
186-5p [130]; downregulated: hsa-miR-125a-3p, hsa-miR-22-3p, hsa-miR-24-3p, hsa-miR-
6131, and hsa-miR-125b-1-3p [131]) and in brain tissues (downregulated: hsa-miR-29c 
[132] and hsa-miR-26b-5p [133]). Another study found that the downregulation of miR-
425 was implicated in AD pathogenesis, and a miR-425 deficient transgenic mouse was 
used to validate the results [134]. The loss of miR-425 in mice induced neuroinflammation 
and neuronal loss, it exacerbated cognitive impairment, and increased amyloid precursor 
protein amyloidogenic processing [134]. Interestingly, another study combined GEO da-
tasets from AD tissues and experimental validation using blood samples from AD pa-
tients, and they found differential results with regard to hsa-miR-185-5p being upregu-
lated in AD brain tissues, while being downregulated in AD blood samples [135]. 
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3.2. Microarray Analysis of Coding RNA (mRNA) 
Microarray analysis has been used to assemble data that are representative of the 

mRNA expression levels of tens of thousands of genes in different neurodegenerative dis-
eases. It can also identify DEGs in these disease states, which can be further explored to 
establish therapeutics or biomarkers. Here, we summarize results from data mining stud-
ies to elucidate the changes in gene expression in various sample types under different 
neurological conditions (Table 1). 

In AD, a vast number of data mining studies have been conducted to examine altered 
gene expression in brain tissues (upregulated: HDAC1 [96], WWTR1 [97], ITGB1 [98], 
PDGFRB [99], PLOD1 [99], MAP4K4 [99], NFKBIA [99,100]; downregulated: SIRT3 [101], 
BDNF [97], RAB7A [98]) and in peripheral blood (upregulated: VCAM1 [102], TYK2 [103], 
TCIRG1 [103], PPP3CB [103], SNCB [103], SACS [103]; downregulated: CTSD [102], RPL11 
[104], SNCA [103], FKBP1B [103]). Although there is a limited number of studies analyzing 
CSF samples in microarray analysis, a meta-analysis has reported that NRGN is upregu-
lated in the CSF samples of AD patients [105]. Another data mining study utilizing the 
GEO datasets of human AD brain tissues found that TYROBP is a key regulator of patho-
gen phagocytosis in microglia, and it is upregulated in late-onset AD [106]. Importantly, 
they further validated their results using a mouse model expressing TYROBP in microglia, 
and they revealed gene expression changes that significantly overlapped with the TY-
ROBP network in the human brain [106]. In terms of biomarker discovery, a data mining 
study found five potential biomarker genes of AD. More specifically, GSN, BDNF, TIMP1, 
VLDLR, and APLP2 were validated both in bioinformatic analysis using AD GEO datasets 
of human brain tissues, and in an experimental validation using peripheral blood from 
AD patients [107]. 

In PD data mining studies, LILRB3 and CSF3R have been shown to be upregulated 
[108], and ICAM1 was shown to be downregulated in whole blood analysis [109]. Addi-
tionally, MAPK8, CDC42, NDUFS1, COX4I1, and SDHC have been shown to be signifi-
cantly downregulated in PD brain tissues [110]. Another study revealed a significant up-
regulation of the RNA splicing factor, serine/arginine repetitive matrix 2 (SRRM2), in PD 
through the computational analysis of GEO datasets containing human brain tissues, cells, 
and whole blood. This was validated experimentally, and the analysis showed a signifi-
cant upregulation of the upstream exons of SRRM2 [111]. In MS, a data mining study an-
alyzing CSF found NLRP3, LILRB2, C1QB, CD86, C1QA, CSF1R, IL1B, and TLR2 to be 
downregulated in MS [112], many of which have been supported and validated experi-
mentally in other studies [113–115]. Another study found that similar genes, involved in 
inflammation or immune responses, existed in MS and COVID-19 patients [116]. Addi-
tionally, through network analysis, they found that genes IL1B, P2RX7, IFNB1, TNF, and 
CASP1 enhanced the network connectivity between the combined gene sets of MS and 
COVID-19, which is associated with NOD-like receptor signaling [116]. 

Table 1. Summary of upregulated and downregulated genes identified from a microarray analysis 
of mRNA obtained from brain tissues and blood samples in AD and PD, as well as from CSF in MS. 
Arrows represent the direction of changes of the gene levels. 

AD 

Brain  
tissue 

 HDAC1, WWTR1, ITGB1, PDGFRB, PLOD1, MAP4K4, NFKBIA, 
TYROBP, GSN, TIMP1 
  
SIRT3, RAB7A, BDNF, VLDLR, APLP2 

Blood 
 VCAM1, TYK2, TCIRG1, PPP3CB, SNCB, SACS, GSN, TIMP1 
 CTSD, RPL11, SNCA, FKBP1B, BDNF, VLDLR, APLP2 

PD Brain   SRRM2 

VCAM1, TYK2, TCIRG1, PPP3CB, SNCB, SACS, GSN,
TIMP1
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Multiple neurodegenerative studies have been utilizing both microarray and RNA-
seq analyses simultaneously, and they have isolated DEGs common to both methods of 
expression quantification [117–119]. For example, a systemic biological approach has also 
been adopted to integrate RNA-seq datasets for COVID-19 and microarray datasets for 
AD. This was conducted in order to examine and identify the common transcriptional 
alterations between COVID-19 and AD patients [119]. This study identified 26 hub genes 
that could be potential biomarkers and therapeutic targets for COVID-19 patients with 
AD comorbidities. Another PD study made use of both microarray and RNA-seq datasets 
to identify 12 significant genes that are commonly dysregulated between the blood and 
brain, including C10orf32, CCDC82, COL5A2, COQ7, GPNMB, HSD17B1, KANSL1, 
NCKIPSD, PM20D1, SP1, FRRS1L, and IL1R2 [117]. This study demonstrates that both 
disease processes and systemic disease factors may affect brain and blood cells in a similar 
manner. The correlation and corroboration between blood and brain transcriptomic data 
are further exemplified in a recent study in PD [120]. Together, these findings identify 
molecular signatures in PD patients’ brain and blood for potential pathophysiologic and 
prognostic importance, and these findings may potentially be applicable to other diseases, 
including AD and MS. 

3.3. Microarray Analysis of Non-Coding RNA (miRNA, circRNA, and lncRNA) 
In addition to studying mRNA, several non-coding RNAs, including miRNA, 

circRNA, and lncRNA, are isolated from peripheral blood for diagnosis or mechanistic 
analysis [121]. With non-coding RNAs making up most of the human genome, they are 
becoming increasingly sought after in neurodegenerative studies due to their role in neu-
ral cell specification during development, and in higher cognitive processes such as 
memory and plasticity [122]. Similar to mRNA, non-coding RNAs can also exhibit cell 
type specific expression levels to shape the cellular expression landscape and reinforce 
cellular identity. Importantly, non-coding RNAs are capable of modulating gene expres-
sion at the post-transcriptional level, binding to protein factors, controlling epigenetic 
mechanisms, and playing key roles in regulating many biological processes [123,124]. 

For example, miRNA plays a key role in the post-transcriptional gene regulation of 
mRNA expression [125]. Tissue specific miRNAs are becoming increasingly pursued for 
biomarker discovery due to their non-invasive extraction, accuracy, reproducibility, and 
predictability [126,127]. A data mining study that made use of blood datasets from MS 
patients found that the upregulation of miRNA hsa-miR-328-3p [128], hsa-miR-20a-5p 
[128], and miR-196 [129] occurred, as did the downregulation of miR-9 [129]. In AD, the 
dysregulation of miRNA has been identified in peripheral blood (upregulated: hsa-miR-
186-5p [130]; downregulated: hsa-miR-125a-3p, hsa-miR-22-3p, hsa-miR-24-3p, hsa-miR-
6131, and hsa-miR-125b-1-3p [131]) and in brain tissues (downregulated: hsa-miR-29c 
[132] and hsa-miR-26b-5p [133]). Another study found that the downregulation of miR-
425 was implicated in AD pathogenesis, and a miR-425 deficient transgenic mouse was 
used to validate the results [134]. The loss of miR-425 in mice induced neuroinflammation 
and neuronal loss, it exacerbated cognitive impairment, and increased amyloid precursor 
protein amyloidogenic processing [134]. Interestingly, another study combined GEO da-
tasets from AD tissues and experimental validation using blood samples from AD pa-
tients, and they found differential results with regard to hsa-miR-185-5p being upregu-
lated in AD brain tissues, while being downregulated in AD blood samples [135]. 
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mRNA expression levels of tens of thousands of genes in different neurodegenerative dis-
eases. It can also identify DEGs in these disease states, which can be further explored to 
establish therapeutics or biomarkers. Here, we summarize results from data mining stud-
ies to elucidate the changes in gene expression in various sample types under different 
neurological conditions (Table 1). 

In AD, a vast number of data mining studies have been conducted to examine altered 
gene expression in brain tissues (upregulated: HDAC1 [96], WWTR1 [97], ITGB1 [98], 
PDGFRB [99], PLOD1 [99], MAP4K4 [99], NFKBIA [99,100]; downregulated: SIRT3 [101], 
BDNF [97], RAB7A [98]) and in peripheral blood (upregulated: VCAM1 [102], TYK2 [103], 
TCIRG1 [103], PPP3CB [103], SNCB [103], SACS [103]; downregulated: CTSD [102], RPL11 
[104], SNCA [103], FKBP1B [103]). Although there is a limited number of studies analyzing 
CSF samples in microarray analysis, a meta-analysis has reported that NRGN is upregu-
lated in the CSF samples of AD patients [105]. Another data mining study utilizing the 
GEO datasets of human AD brain tissues found that TYROBP is a key regulator of patho-
gen phagocytosis in microglia, and it is upregulated in late-onset AD [106]. Importantly, 
they further validated their results using a mouse model expressing TYROBP in microglia, 
and they revealed gene expression changes that significantly overlapped with the TY-
ROBP network in the human brain [106]. In terms of biomarker discovery, a data mining 
study found five potential biomarker genes of AD. More specifically, GSN, BDNF, TIMP1, 
VLDLR, and APLP2 were validated both in bioinformatic analysis using AD GEO datasets 
of human brain tissues, and in an experimental validation using peripheral blood from 
AD patients [107]. 

In PD data mining studies, LILRB3 and CSF3R have been shown to be upregulated 
[108], and ICAM1 was shown to be downregulated in whole blood analysis [109]. Addi-
tionally, MAPK8, CDC42, NDUFS1, COX4I1, and SDHC have been shown to be signifi-
cantly downregulated in PD brain tissues [110]. Another study revealed a significant up-
regulation of the RNA splicing factor, serine/arginine repetitive matrix 2 (SRRM2), in PD 
through the computational analysis of GEO datasets containing human brain tissues, cells, 
and whole blood. This was validated experimentally, and the analysis showed a signifi-
cant upregulation of the upstream exons of SRRM2 [111]. In MS, a data mining study an-
alyzing CSF found NLRP3, LILRB2, C1QB, CD86, C1QA, CSF1R, IL1B, and TLR2 to be 
downregulated in MS [112], many of which have been supported and validated experi-
mentally in other studies [113–115]. Another study found that similar genes, involved in 
inflammation or immune responses, existed in MS and COVID-19 patients [116]. Addi-
tionally, through network analysis, they found that genes IL1B, P2RX7, IFNB1, TNF, and 
CASP1 enhanced the network connectivity between the combined gene sets of MS and 
COVID-19, which is associated with NOD-like receptor signaling [116]. 

Table 1. Summary of upregulated and downregulated genes identified from a microarray analysis 
of mRNA obtained from brain tissues and blood samples in AD and PD, as well as from CSF in MS. 
Arrows represent the direction of changes of the gene levels. 

AD 

Brain  
tissue 

 HDAC1, WWTR1, ITGB1, PDGFRB, PLOD1, MAP4K4, NFKBIA, 
TYROBP, GSN, TIMP1 
  
SIRT3, RAB7A, BDNF, VLDLR, APLP2 

Blood 
 VCAM1, TYK2, TCIRG1, PPP3CB, SNCB, SACS, GSN, TIMP1 
 CTSD, RPL11, SNCA, FKBP1B, BDNF, VLDLR, APLP2 

PD Brain   SRRM2 

SRRM2
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Multiple neurodegenerative studies have been utilizing both microarray and RNA-
seq analyses simultaneously, and they have isolated DEGs common to both methods of 
expression quantification [117–119]. For example, a systemic biological approach has also 
been adopted to integrate RNA-seq datasets for COVID-19 and microarray datasets for 
AD. This was conducted in order to examine and identify the common transcriptional 
alterations between COVID-19 and AD patients [119]. This study identified 26 hub genes 
that could be potential biomarkers and therapeutic targets for COVID-19 patients with 
AD comorbidities. Another PD study made use of both microarray and RNA-seq datasets 
to identify 12 significant genes that are commonly dysregulated between the blood and 
brain, including C10orf32, CCDC82, COL5A2, COQ7, GPNMB, HSD17B1, KANSL1, 
NCKIPSD, PM20D1, SP1, FRRS1L, and IL1R2 [117]. This study demonstrates that both 
disease processes and systemic disease factors may affect brain and blood cells in a similar 
manner. The correlation and corroboration between blood and brain transcriptomic data 
are further exemplified in a recent study in PD [120]. Together, these findings identify 
molecular signatures in PD patients’ brain and blood for potential pathophysiologic and 
prognostic importance, and these findings may potentially be applicable to other diseases, 
including AD and MS. 

3.3. Microarray Analysis of Non-Coding RNA (miRNA, circRNA, and lncRNA) 
In addition to studying mRNA, several non-coding RNAs, including miRNA, 

circRNA, and lncRNA, are isolated from peripheral blood for diagnosis or mechanistic 
analysis [121]. With non-coding RNAs making up most of the human genome, they are 
becoming increasingly sought after in neurodegenerative studies due to their role in neu-
ral cell specification during development, and in higher cognitive processes such as 
memory and plasticity [122]. Similar to mRNA, non-coding RNAs can also exhibit cell 
type specific expression levels to shape the cellular expression landscape and reinforce 
cellular identity. Importantly, non-coding RNAs are capable of modulating gene expres-
sion at the post-transcriptional level, binding to protein factors, controlling epigenetic 
mechanisms, and playing key roles in regulating many biological processes [123,124]. 

For example, miRNA plays a key role in the post-transcriptional gene regulation of 
mRNA expression [125]. Tissue specific miRNAs are becoming increasingly pursued for 
biomarker discovery due to their non-invasive extraction, accuracy, reproducibility, and 
predictability [126,127]. A data mining study that made use of blood datasets from MS 
patients found that the upregulation of miRNA hsa-miR-328-3p [128], hsa-miR-20a-5p 
[128], and miR-196 [129] occurred, as did the downregulation of miR-9 [129]. In AD, the 
dysregulation of miRNA has been identified in peripheral blood (upregulated: hsa-miR-
186-5p [130]; downregulated: hsa-miR-125a-3p, hsa-miR-22-3p, hsa-miR-24-3p, hsa-miR-
6131, and hsa-miR-125b-1-3p [131]) and in brain tissues (downregulated: hsa-miR-29c 
[132] and hsa-miR-26b-5p [133]). Another study found that the downregulation of miR-
425 was implicated in AD pathogenesis, and a miR-425 deficient transgenic mouse was 
used to validate the results [134]. The loss of miR-425 in mice induced neuroinflammation 
and neuronal loss, it exacerbated cognitive impairment, and increased amyloid precursor 
protein amyloidogenic processing [134]. Interestingly, another study combined GEO da-
tasets from AD tissues and experimental validation using blood samples from AD pa-
tients, and they found differential results with regard to hsa-miR-185-5p being upregu-
lated in AD brain tissues, while being downregulated in AD blood samples [135]. 
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Microarray analysis has been used to assemble data that are representative of the 

mRNA expression levels of tens of thousands of genes in different neurodegenerative dis-
eases. It can also identify DEGs in these disease states, which can be further explored to 
establish therapeutics or biomarkers. Here, we summarize results from data mining stud-
ies to elucidate the changes in gene expression in various sample types under different 
neurological conditions (Table 1). 

In AD, a vast number of data mining studies have been conducted to examine altered 
gene expression in brain tissues (upregulated: HDAC1 [96], WWTR1 [97], ITGB1 [98], 
PDGFRB [99], PLOD1 [99], MAP4K4 [99], NFKBIA [99,100]; downregulated: SIRT3 [101], 
BDNF [97], RAB7A [98]) and in peripheral blood (upregulated: VCAM1 [102], TYK2 [103], 
TCIRG1 [103], PPP3CB [103], SNCB [103], SACS [103]; downregulated: CTSD [102], RPL11 
[104], SNCA [103], FKBP1B [103]). Although there is a limited number of studies analyzing 
CSF samples in microarray analysis, a meta-analysis has reported that NRGN is upregu-
lated in the CSF samples of AD patients [105]. Another data mining study utilizing the 
GEO datasets of human AD brain tissues found that TYROBP is a key regulator of patho-
gen phagocytosis in microglia, and it is upregulated in late-onset AD [106]. Importantly, 
they further validated their results using a mouse model expressing TYROBP in microglia, 
and they revealed gene expression changes that significantly overlapped with the TY-
ROBP network in the human brain [106]. In terms of biomarker discovery, a data mining 
study found five potential biomarker genes of AD. More specifically, GSN, BDNF, TIMP1, 
VLDLR, and APLP2 were validated both in bioinformatic analysis using AD GEO datasets 
of human brain tissues, and in an experimental validation using peripheral blood from 
AD patients [107]. 

In PD data mining studies, LILRB3 and CSF3R have been shown to be upregulated 
[108], and ICAM1 was shown to be downregulated in whole blood analysis [109]. Addi-
tionally, MAPK8, CDC42, NDUFS1, COX4I1, and SDHC have been shown to be signifi-
cantly downregulated in PD brain tissues [110]. Another study revealed a significant up-
regulation of the RNA splicing factor, serine/arginine repetitive matrix 2 (SRRM2), in PD 
through the computational analysis of GEO datasets containing human brain tissues, cells, 
and whole blood. This was validated experimentally, and the analysis showed a signifi-
cant upregulation of the upstream exons of SRRM2 [111]. In MS, a data mining study an-
alyzing CSF found NLRP3, LILRB2, C1QB, CD86, C1QA, CSF1R, IL1B, and TLR2 to be 
downregulated in MS [112], many of which have been supported and validated experi-
mentally in other studies [113–115]. Another study found that similar genes, involved in 
inflammation or immune responses, existed in MS and COVID-19 patients [116]. Addi-
tionally, through network analysis, they found that genes IL1B, P2RX7, IFNB1, TNF, and 
CASP1 enhanced the network connectivity between the combined gene sets of MS and 
COVID-19, which is associated with NOD-like receptor signaling [116]. 

Table 1. Summary of upregulated and downregulated genes identified from a microarray analysis 
of mRNA obtained from brain tissues and blood samples in AD and PD, as well as from CSF in MS. 
Arrows represent the direction of changes of the gene levels. 

AD 

Brain  
tissue 

 HDAC1, WWTR1, ITGB1, PDGFRB, PLOD1, MAP4K4, NFKBIA, 
TYROBP, GSN, TIMP1 
  
SIRT3, RAB7A, BDNF, VLDLR, APLP2 

Blood 
 VCAM1, TYK2, TCIRG1, PPP3CB, SNCB, SACS, GSN, TIMP1 
 CTSD, RPL11, SNCA, FKBP1B, BDNF, VLDLR, APLP2 

PD Brain   SRRM2 

LILRB3, CSF3R, SRRM2
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Multiple neurodegenerative studies have been utilizing both microarray and RNA-
seq analyses simultaneously, and they have isolated DEGs common to both methods of 
expression quantification [117–119]. For example, a systemic biological approach has also 
been adopted to integrate RNA-seq datasets for COVID-19 and microarray datasets for 
AD. This was conducted in order to examine and identify the common transcriptional 
alterations between COVID-19 and AD patients [119]. This study identified 26 hub genes 
that could be potential biomarkers and therapeutic targets for COVID-19 patients with 
AD comorbidities. Another PD study made use of both microarray and RNA-seq datasets 
to identify 12 significant genes that are commonly dysregulated between the blood and 
brain, including C10orf32, CCDC82, COL5A2, COQ7, GPNMB, HSD17B1, KANSL1, 
NCKIPSD, PM20D1, SP1, FRRS1L, and IL1R2 [117]. This study demonstrates that both 
disease processes and systemic disease factors may affect brain and blood cells in a similar 
manner. The correlation and corroboration between blood and brain transcriptomic data 
are further exemplified in a recent study in PD [120]. Together, these findings identify 
molecular signatures in PD patients’ brain and blood for potential pathophysiologic and 
prognostic importance, and these findings may potentially be applicable to other diseases, 
including AD and MS. 

3.3. Microarray Analysis of Non-Coding RNA (miRNA, circRNA, and lncRNA) 
In addition to studying mRNA, several non-coding RNAs, including miRNA, 

circRNA, and lncRNA, are isolated from peripheral blood for diagnosis or mechanistic 
analysis [121]. With non-coding RNAs making up most of the human genome, they are 
becoming increasingly sought after in neurodegenerative studies due to their role in neu-
ral cell specification during development, and in higher cognitive processes such as 
memory and plasticity [122]. Similar to mRNA, non-coding RNAs can also exhibit cell 
type specific expression levels to shape the cellular expression landscape and reinforce 
cellular identity. Importantly, non-coding RNAs are capable of modulating gene expres-
sion at the post-transcriptional level, binding to protein factors, controlling epigenetic 
mechanisms, and playing key roles in regulating many biological processes [123,124]. 

For example, miRNA plays a key role in the post-transcriptional gene regulation of 
mRNA expression [125]. Tissue specific miRNAs are becoming increasingly pursued for 
biomarker discovery due to their non-invasive extraction, accuracy, reproducibility, and 
predictability [126,127]. A data mining study that made use of blood datasets from MS 
patients found that the upregulation of miRNA hsa-miR-328-3p [128], hsa-miR-20a-5p 
[128], and miR-196 [129] occurred, as did the downregulation of miR-9 [129]. In AD, the 
dysregulation of miRNA has been identified in peripheral blood (upregulated: hsa-miR-
186-5p [130]; downregulated: hsa-miR-125a-3p, hsa-miR-22-3p, hsa-miR-24-3p, hsa-miR-
6131, and hsa-miR-125b-1-3p [131]) and in brain tissues (downregulated: hsa-miR-29c 
[132] and hsa-miR-26b-5p [133]). Another study found that the downregulation of miR-
425 was implicated in AD pathogenesis, and a miR-425 deficient transgenic mouse was 
used to validate the results [134]. The loss of miR-425 in mice induced neuroinflammation 
and neuronal loss, it exacerbated cognitive impairment, and increased amyloid precursor 
protein amyloidogenic processing [134]. Interestingly, another study combined GEO da-
tasets from AD tissues and experimental validation using blood samples from AD pa-
tients, and they found differential results with regard to hsa-miR-185-5p being upregu-
lated in AD brain tissues, while being downregulated in AD blood samples [135]. 
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Multiple neurodegenerative studies have been utilizing both microarray and RNA-
seq analyses simultaneously, and they have isolated DEGs common to both methods of 
expression quantification [117–119]. For example, a systemic biological approach has also 
been adopted to integrate RNA-seq datasets for COVID-19 and microarray datasets for 
AD. This was conducted in order to examine and identify the common transcriptional 
alterations between COVID-19 and AD patients [119]. This study identified 26 hub genes 
that could be potential biomarkers and therapeutic targets for COVID-19 patients with 
AD comorbidities. Another PD study made use of both microarray and RNA-seq datasets 
to identify 12 significant genes that are commonly dysregulated between the blood and 
brain, including C10orf32, CCDC82, COL5A2, COQ7, GPNMB, HSD17B1, KANSL1, 
NCKIPSD, PM20D1, SP1, FRRS1L, and IL1R2 [117]. This study demonstrates that both 
disease processes and systemic disease factors may affect brain and blood cells in a similar 
manner. The correlation and corroboration between blood and brain transcriptomic data 
are further exemplified in a recent study in PD [120]. Together, these findings identify 
molecular signatures in PD patients’ brain and blood for potential pathophysiologic and 
prognostic importance, and these findings may potentially be applicable to other diseases, 
including AD and MS. 

3.3. Microarray Analysis of Non-Coding RNA (miRNA, circRNA, and lncRNA) 
In addition to studying mRNA, several non-coding RNAs, including miRNA, 

circRNA, and lncRNA, are isolated from peripheral blood for diagnosis or mechanistic 
analysis [121]. With non-coding RNAs making up most of the human genome, they are 
becoming increasingly sought after in neurodegenerative studies due to their role in neu-
ral cell specification during development, and in higher cognitive processes such as 
memory and plasticity [122]. Similar to mRNA, non-coding RNAs can also exhibit cell 
type specific expression levels to shape the cellular expression landscape and reinforce 
cellular identity. Importantly, non-coding RNAs are capable of modulating gene expres-
sion at the post-transcriptional level, binding to protein factors, controlling epigenetic 
mechanisms, and playing key roles in regulating many biological processes [123,124]. 

For example, miRNA plays a key role in the post-transcriptional gene regulation of 
mRNA expression [125]. Tissue specific miRNAs are becoming increasingly pursued for 
biomarker discovery due to their non-invasive extraction, accuracy, reproducibility, and 
predictability [126,127]. A data mining study that made use of blood datasets from MS 
patients found that the upregulation of miRNA hsa-miR-328-3p [128], hsa-miR-20a-5p 
[128], and miR-196 [129] occurred, as did the downregulation of miR-9 [129]. In AD, the 
dysregulation of miRNA has been identified in peripheral blood (upregulated: hsa-miR-
186-5p [130]; downregulated: hsa-miR-125a-3p, hsa-miR-22-3p, hsa-miR-24-3p, hsa-miR-
6131, and hsa-miR-125b-1-3p [131]) and in brain tissues (downregulated: hsa-miR-29c 
[132] and hsa-miR-26b-5p [133]). Another study found that the downregulation of miR-
425 was implicated in AD pathogenesis, and a miR-425 deficient transgenic mouse was 
used to validate the results [134]. The loss of miR-425 in mice induced neuroinflammation 
and neuronal loss, it exacerbated cognitive impairment, and increased amyloid precursor 
protein amyloidogenic processing [134]. Interestingly, another study combined GEO da-
tasets from AD tissues and experimental validation using blood samples from AD pa-
tients, and they found differential results with regard to hsa-miR-185-5p being upregu-
lated in AD brain tissues, while being downregulated in AD blood samples [135]. 

NLRP3, LILRB2, C1QB, CD86, C1QA, CSF1R, IL1B, TLR2

In AD, a vast number of data mining studies have been conducted to examine al-
tered gene expression in brain tissues (upregulated: HDAC1 [96], WWTR1 [97], ITGB1 [98],
PDGFRB [99], PLOD1 [99], MAP4K4 [99], NFKBIA [99,100]; downregulated: SIRT3 [101],
BDNF [97], RAB7A [98]) and in peripheral blood (upregulated: VCAM1 [102], TYK2 [103],
TCIRG1 [103], PPP3CB [103], SNCB [103], SACS [103]; downregulated: CTSD [102],
RPL11 [104], SNCA [103], FKBP1B [103]). Although there is a limited number of stud-
ies analyzing CSF samples in microarray analysis, a meta-analysis has reported that NRGN
is upregulated in the CSF samples of AD patients [105]. Another data mining study utiliz-
ing the GEO datasets of human AD brain tissues found that TYROBP is a key regulator
of pathogen phagocytosis in microglia, and it is upregulated in late-onset AD [106]. Im-
portantly, they further validated their results using a mouse model expressing TYROBP in
microglia, and they revealed gene expression changes that significantly overlapped with
the TYROBP network in the human brain [106]. In terms of biomarker discovery, a data
mining study found five potential biomarker genes of AD. More specifically, GSN, BDNF,
TIMP1, VLDLR, and APLP2 were validated both in bioinformatic analysis using AD GEO
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datasets of human brain tissues, and in an experimental validation using peripheral blood
from AD patients [107].

In PD data mining studies, LILRB3 and CSF3R have been shown to be upregu-
lated [108], and ICAM1 was shown to be downregulated in whole blood analysis [109].
Additionally, MAPK8, CDC42, NDUFS1, COX4I1, and SDHC have been shown to be sig-
nificantly downregulated in PD brain tissues [110]. Another study revealed a significant
upregulation of the RNA splicing factor, serine/arginine repetitive matrix 2 (SRRM2), in PD
through the computational analysis of GEO datasets containing human brain tissues, cells,
and whole blood. This was validated experimentally, and the analysis showed a significant
upregulation of the upstream exons of SRRM2 [111]. In MS, a data mining study analyzing
CSF found NLRP3, LILRB2, C1QB, CD86, C1QA, CSF1R, IL1B, and TLR2 to be downregu-
lated in MS [112], many of which have been supported and validated experimentally in
other studies [113–115]. Another study found that similar genes, involved in inflammation
or immune responses, existed in MS and COVID-19 patients [116]. Additionally, through
network analysis, they found that genes IL1B, P2RX7, IFNB1, TNF, and CASP1 enhanced
the network connectivity between the combined gene sets of MS and COVID-19, which is
associated with NOD-like receptor signaling [116].

Multiple neurodegenerative studies have been utilizing both microarray and RNA-seq
analyses simultaneously, and they have isolated DEGs common to both methods of expres-
sion quantification [117–119]. For example, a systemic biological approach has also been
adopted to integrate RNA-seq datasets for COVID-19 and microarray datasets for AD. This
was conducted in order to examine and identify the common transcriptional alterations
between COVID-19 and AD patients [119]. This study identified 26 hub genes that could be
potential biomarkers and therapeutic targets for COVID-19 patients with AD comorbidities.
Another PD study made use of both microarray and RNA-seq datasets to identify 12 sig-
nificant genes that are commonly dysregulated between the blood and brain, including
C10orf32, CCDC82, COL5A2, COQ7, GPNMB, HSD17B1, KANSL1, NCKIPSD, PM20D1, SP1,
FRRS1L, and IL1R2 [117]. This study demonstrates that both disease processes and systemic
disease factors may affect brain and blood cells in a similar manner. The correlation and
corroboration between blood and brain transcriptomic data are further exemplified in a
recent study in PD [120]. Together, these findings identify molecular signatures in PD
patients’ brain and blood for potential pathophysiologic and prognostic importance, and
these findings may potentially be applicable to other diseases, including AD and MS.

3.3. Microarray Analysis of Non-Coding RNA (miRNA, circRNA, and lncRNA)

In addition to studying mRNA, several non-coding RNAs, including miRNA, circRNA,
and lncRNA, are isolated from peripheral blood for diagnosis or mechanistic analysis [121].
With non-coding RNAs making up most of the human genome, they are becoming increas-
ingly sought after in neurodegenerative studies due to their role in neural cell specification
during development, and in higher cognitive processes such as memory and plasticity [122].
Similar to mRNA, non-coding RNAs can also exhibit cell type specific expression levels
to shape the cellular expression landscape and reinforce cellular identity. Importantly,
non-coding RNAs are capable of modulating gene expression at the post-transcriptional
level, binding to protein factors, controlling epigenetic mechanisms, and playing key roles
in regulating many biological processes [123,124].

For example, miRNA plays a key role in the post-transcriptional gene regulation
of mRNA expression [125]. Tissue specific miRNAs are becoming increasingly pursued
for biomarker discovery due to their non-invasive extraction, accuracy, reproducibility,
and predictability [126,127]. A data mining study that made use of blood datasets from
MS patients found that the upregulation of miRNA hsa-miR-328-3p [128], hsa-miR-20a-
5p [128], and miR-196 [129] occurred, as did the downregulation of miR-9 [129]. In AD, the
dysregulation of miRNA has been identified in peripheral blood (upregulated: hsa-miR-186-
5p [130]; downregulated: hsa-miR-125a-3p, hsa-miR-22-3p, hsa-miR-24-3p, hsa-miR-6131,
and hsa-miR-125b-1-3p [131]) and in brain tissues (downregulated: hsa-miR-29c [132] and
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hsa-miR-26b-5p [133]). Another study found that the downregulation of miR-425 was
implicated in AD pathogenesis, and a miR-425 deficient transgenic mouse was used to
validate the results [134]. The loss of miR-425 in mice induced neuroinflammation and neu-
ronal loss, it exacerbated cognitive impairment, and increased amyloid precursor protein
amyloidogenic processing [134]. Interestingly, another study combined GEO datasets from
AD tissues and experimental validation using blood samples from AD patients, and they
found differential results with regard to hsa-miR-185-5p being upregulated in AD brain
tissues, while being downregulated in AD blood samples [135].

With an integrative analysis using both microarray and RNA-seq datasets, seven
miRNAs that interact with the eight DEGs were identified in early and late mild cognitive
impairment patients [136]. Another study that focused on PD identified changes in miRNA
expression in the PD patient’s blood leukocytes when compared with control patients.
These changes were identified using RNA-seq techniques, microarray analysis, as well
as data mining of GEO microarray data [137]. This study found 16 miRNAs that were
differentially expressed in PD patients, and a specific interest in transcription factor FOXP1,
which they found was implicated in a miRNA-mediated feedback loop that controlled the
survival of midbrain dopaminergic neurons. In addition to these findings, it is worth noting
the significance of miRNAs and other RNAs in other molecular mechanisms associated
with brain diseases, such as vascular dysfunction [138] and retinopathies [139,140], which
can deepen our understanding of disease mechanisms, and it may potentially serve as
prognostic indicators for neurodegenerative diseases.

In addition to miRNA, circRNA has been suggested to have multiple functions, such
as regulating transcription in the nucleus, binding to protein factors, acting as a miRNA
“sponge” to compete for miRNA pairing with other RNAs, and being more stable in tissues
compared with linear RNAs [141]. Furthermore, circRNA expression is enriched in the
brain, aiding in its likelihood to be used in studies associated with neurodegenerative dis-
eases [141]. A bioinformatics analysis using GEO datasets has found circRNAs originating
from the following AD pathology-linked genes, DOCK1, NTRK2, DLG1, KIF1B, TRAPPC9,
and APC, which are altered in AD [142]. A different study focusing on PD found that
miRNA-7 (miR-7), which is bound to by circular the RNA sponge for miR-7 (ciRS-7) [143],
is mostly expressed in neurons. Moreover, it represses α-synuclein protein, which ulti-
mately protects against oxidative stress [143]. Although there are limited studies on role
of circRNA in MS, an amyotrophic lateral sclerosis (ALS) study performing microarray
analysis on the peripheral blood of ALS patients found that circRNAs hsa_circ_0000567 and
hsa_circ_0023919 were downregulated, and hsa_circ_0063411 and hsa_circ_0088036 were
upregulated [144]. These genes are involved in muscle differentiation in mice, clathrin-
mediated endocytosis at neuromuscular junctions, Ago-mediated gene silencing, and there
is speculation that they are involved in immune responses.

In addition, lncRNAs are non-coding RNA molecules that are more than 200 nu-
cleotides in length [145], and their function is essential for many biological processes,
including epigenetic regulation, cell signal transduction, immune response, and cell pro-
liferation and differentiation. Moreover, their abnormal expression can result in a variety
of neurodegenerative diseases [146]. By analyzing GEO datasets, a study has found that
lncRNA-XIST was downregulated in the whole blood of PD patients [147]. Many neurode-
generative studies have focused on the specific upregulation of the nuclear paraspeckle
assembly transcript 1 (NEAT1) under diseased conditions. An AD study found that the
lncRNAs LOC100507557 (downregulated), LOC101929787 (upregulated), NEAT1 (upregu-
lated), and JAZF1-AS1 (downregulated) were differentially expressed, and they were found
to be dysregulated in five distinct anatomical regions of the brain [148]. With the 15-fold
upregulation of NEAT1 in the entorhinal cortex, it is the highest upregulated lncRNA in
all the analyzed brain regions and has the potential to serve as a biomarker of AD. Using
an integrative analysis consisting of microarray, RNA-seq, and genome-wide association
study (GWAS) datasets, a study identified five key lncRNAs associated with AD risk, and
they were involved in the regulation of the immune system [149].
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3.4. Bridging Gaps between Microarray and RNA-Seq Analysis

The experimental aspects of microarray and RNA-seq are similar in terms of how
RNA is converted into cDNA. It is followed by signal quantification, although the technical
details may provide slightly different information. In microarray analysis, cDNA is fluo-
rescently labelled and hybridized with a complementary strand of a known gene, and the
fluorescence release directly corresponds with the level of genetic expression of the specific
gene in the biological sample [150]. In sequencing studies, gene expression levels are
quantified by counts in RNA-seq, which is equivalent to the number of reads mapped on
each gene. It is worth noting that newer forms of RNA-seq can directly sequence individual
RNA strands with a method known as nanopore direct RNA-seq (DRS). Nanopore DRS
allows for the sequencing of single RNA strands, including nucleotide modifications (e.g.,
methylation, 5′ end capping, 3′ polyadenylation) and all exons, and it has been used to
sequence both coding and non-coding RNAs [151]. In sc/snRNA-seq, unique molecular
identifiers (UMIs) are further acquired to provide cell-type specific information of the gene
expression [152]. The counts may be varied depending on the covariates of the gene or sam-
ples such as library size and gene length. As discussed earlier, RNA-seq can detect splice
variants and novel sequences, whereas RNA microarray is limited to established transcripts
for the model organism being analyzed, although this difference may not affect studies
that do not require this detailed level of information. On the other hand, sc/snRNA-seq
techniques are of great interest because they not only provide the average expression level
for an ensemble of cells, such as in the typical microarray and RNA-seq analyses [153], but
also the ability to quantify gene expression levels in specific cell types [153–156]. Although
single cell microarray analyses have previously been reported [152,157], the resolution and
the heterogeneity that can be resolved might not be comparable to current sc/snRNA-seq,
and they are dependent on the samples that can be obtained.

In addition to the experimental aspects, there have been major gaps in standardizing
data analysis pipelines to process different raw data obtained by the different methods of
RNA profiling. Although the data analysis for microarray datasets is more straightforward,
as it is directly quantified at the expression level, analyses for RNA-seq and sc/snRNA-
seq are more complex, with less standardized protocols, a need for more data storage,
and a knowledge of coding [158]. With the increasing availability of publicly accessible
transcriptomic datasets, many web-based and application-based tools are being created
to aid in the analysis of such high-content data. The GEO2R [159] and Bioinformatics
Array Research Tool (BART) [160] are web-based programs that are capable of carrying
out statistical DEG analysis on deposited GEO microarray datasets. Web-based tools
have also emerged to facilitate RNA-seq analysis such as BEAVR [161], RNAlysis [162],
RNAdetector [163], OneStopRNAseq [164], and Integrative Differential Expression Analysis
for Multiple EXperiments (IDEAMEX) [165]. They consist of graphical user interfaces to
assist in conducting DEG statistical analyses, and to assist with the visualization of the
results with RNA-seq data. Furthermore, recent studies have also provided simplified
and practical guides [166,167], as well as streamlined scRNA-seq data analysis, such as
ScAmpi [168]. Additionally, there are tools that enable the analysis and visualization
of sc/snRNA-seq data, including Automated Single-cell Analysis Pipeline (ASAP) [169],
and the CanceR Single Cell ExpressioN Toolkit (CReSCENT) [170]. We have included a
summary table of the data mining tools and programs used to analyze microarray, RNA-seq,
and sc/snRNA-seq datasets (Table 2).
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Table 2. Summary of data mining tools and programs that can be used analyze microarray, RNA-seq,
and sc/snRNA-seq datasets.

Data Mining Tools/Programs Datasets Analyzed References

GEO2R Microarray data [159]

BART Microarray data [160]

BEAVR RNA-seq data [161]

RNAlysis RNA-seq data [162]

RNAdetector RNA-seq data [163]

OneStopRNAseq RNA-seq data [164]

IDEAMEX RNA-seq data [165]

ScAmpi ScRNA-seq data [168]

ASAP Sc/snRNA-seq data [169]

CReSCENT Sc/snRNA-seq data [170]

An approach to compare and reconcile microarray and RNA-seq analysis methods,
specifically in terms of data mining, is check for the similarities between the specific DEGs
identified, or to conduct enrichment analysis of all DEGs to see if there are similar pathways
and networks obtained from the respective methods. To quantify the similarities between
the data obtained from microarray and RNA-seq methods, studies have been carried out
to examine the correlation between the expression intensity values. One study specifi-
cally used microarray and RNA-seq analysis to quantify the mRNA expression in human
brains, which was collected from the Allen Human Brain Atlas. They found consistent,
reproducible measurements between the two methods, with a high correlation between
expression values (R = 0.78) [171]. They also showed that RNA-seq scaling factors can be
applied to improve the sensitivity of microarrays to detect DEGs. Another study examin-
ing the lncRNA expression levels in iPSC-derived neurons illustrated a high correlation
(R = 0.64) between the expression values of microarray and RNA-seq analysis [172]. These
studies suggest that both are suitable methods used for high-throughput gene expression
analysis. It is important to note that there is a possibility for false positives, particularly
when using a small sample size [173,174]. Hence, the use of multiple datasets, rigorous
analysis methods, and stringent statistical parameters is critical to reduce false positives.

3.5. Experimental Validation to Advance Therapeutic Development and Biomarker Identification

The current emergence of the big data era and the outburst of transcriptomic datasets
from studies with different experimental conditions, biological samples, disease models,
developmental states, and responses to treatments, indicate the need for an accurate and
reliable data mining process. This presents the need for a thorough interpretation of the
outcomes from data mining and their relevance to true biological observations. To test the
effect of the DEGs obtained from data mining, we can either knockout or overexpress the
key protein of interest, or we can administer modulators of certain signaling pathways to
observe how the cellular systems respond to these alterations. It is also important to check
whether any of these treatments are toxic to the cells. Typically, when alterations in protein
expression or function correlate with disease progression, it indicates that the protein plays
a major role in the disease mechanism. High-throughput screening of small molecules or
antisense oligonucleotides that can modulate protein function would lead to a therapeutic
discovery. Generally, biomarkers are established based on certain key proteins that can be
detected in CSF or blood to provide a prognosis of the disease pathogenesis.

Studies have been conducted to quantify the variation and discrepancies between
microarray and RNA-seq data [150,174,175], and programs have been created for their
integration [176,177]. With evidence showing the corroboration of results between two
methods of data collection [7,150], data mining of microarray datasets remain useful
for generating novel hypotheses, validating existing RNA-seq data, or integrating novel
RNA-seq analysis. Transcriptomics datasets can be extremely high dimensional and may
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contain tens of thousands of genes, whereas experimental datasets may only contain tens
of genes [178]. Furthermore, different analysis criteria adopted in data mining, such as
the biological samples used, the number and combination of datasets analyzed, and the
cut-off parameters selected, may cause inconsistent results between studies. Hence, there is
a definite need to experimentally validate the results obtained from data mining to ensure
their accuracy and usefulness.

4. Summary and Future Perspectives

A vast number of studies related to neurodegenerative diseases have made use of
microarray datasets for the data mining of transcriptomics data. This is mainly due to
the expansiveness and diversity of deposited microarray datasets, as well as the ease of
processing due to many accessible web-based analysis tools and established computational
pipelines. Additionally, it is important to note the ability of microarray datasets to quantify
the expression of non-coding RNA species, including miRNA, circRNA, and lncRNA. With
the advancements in RNA sequencing technologies, microarray analysis has become less
utilized, although it remains important to recognize the ability of microarray analysis as a
resource to validate RNA-seq results and vice versa, and it may also be used as a basis for
hypothesis testing and generation. It is important to note that data mining may subject to
technological and biological biases as well as systematic errors that can impact downstream
analyses [179]. A good strategy would be to combine the data mining of both microarray
and RNA-seq datasets to increase the stringency and the accuracy of the DEGs identified.

The future of omics analysis lies at the interface of multi-omics integration, where
genomics, transcriptomics, proteomics, metabolomics, lipidomics, as well as spatial omics
can be utilized simultaneously [180]. One of the main challenges of integrative approaches
concerns increased dimensionality due to the increased complexity of the omics datasets
associated with the biological systems. An integrative analysis, such as independent bi-
ological integration or unsupervised machine learning, will enable the reconstruction of
biological systems, with a holistic understanding of gene and protein regulation at dif-
ferent omic levels for translational applications [180,181]. Multi-omics data integration
would provide a more sophisticated and accurate analysis for early disease detection (e.g.,
lysosomal dysfunction [182,183]), as well as increase precision phenotyping and person-
alized medicine [184–187]. It is also important to take into account pharmacogenomics
to understand that individuals will respond differently to different medicines based on
many biological and environmental factors. Exploring different omic datasets through
established pipelines of multi-omics integration will unlock a broad range of opportunities
for translational applications, including elucidation of disease mechanisms, biomarker
discovery, and therapeutic development.
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43. Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem Cells: Past, Present, and Future. Stem Cell Res. Ther. 2019, 10,
68. [CrossRef] [PubMed]

44. Hung, C.W.; Liou, Y.J.; Lu, S.W.; Tseng, L.M.; Kao, C.L.; Chen, S.J.; Chiou, S.H.; Chang, C.J. Stem Cell-Based Neuroprotective and
Neurorestorative Strategies. Int. J. Mol. Sci. 2010, 11, 2039–2055. [CrossRef] [PubMed]

45. Hoang, D.M.; Pham, P.T.; Bach, T.Q.; Ngo, A.T.L.; Nguyen, Q.T.; Phan, T.T.K.; Nguyen, G.H.; Le, P.T.T.; Hoang, V.T.; Forsyth, N.R.;
et al. Stem Cell-Based Therapy for Human Diseases. Signal Transduct. Target. Ther. 2022, 7, 272. [CrossRef] [PubMed]

46. Kim, J.; Koo, B.-K.; Knoblich, J.A. Human Organoids: Model Systems for Human Biology and Medicine. Nat. Rev. Mol. Cell Biol.
2020, 21, 571–584. [CrossRef] [PubMed]

47. Kabir, M.H.; O’Connor, M.D. Stems Cells, Big Data and Compendium-Based Analyses for Identifying Cell Types, Signalling
Pathways and Gene Regulatory Networks. Biophys. Rev. 2019, 11, 41–50. [CrossRef] [PubMed]

48. Müller, G.A.; Tarasov, K.V.; Gundry, R.L.; Boheler, K.R. Human ESC/IPSC-Based “omics” and Bioinformatics for Translational
Research. Drug Discov. Today Dis. Model. 2012, 9, e161–e170. [CrossRef] [PubMed]

49. Novak, G.; Kyriakis, D.; Grzyb, K.; Bernini, M.; Rodius, S.; Dittmar, G.; Finkbeiner, S.; Skupin, A. Single-Cell Transcriptomics
of Human IPSC Differentiation Dynamics Reveal a Core Molecular Network of Parkinson’s Disease. Commun. Biol. 2022, 5, 49.
[CrossRef]

50. Billing, A.M.; Dib, S.S.; Bhagwat, A.M.; da Silva, I.T.; Drummond, R.D.; Hayat, S.; Al-Mismar, R.; Ben-Hamidane, H.; Goswami,
N.; Engholm-Keller, K.; et al. A Systems-Level Characterization of the Differentiation of Human Embryonic Stem Cells into
Mesenchymal Stem Cells. Mol. Cell. Proteomics 2019, 18, 1950–1966. [CrossRef]

51. Yagi, T.; Ito, D.; Okada, Y.; Akamatsu, W.; Nihei, Y.; Yoshizaki, T.; Yamanaka, S.; Okano, H.; Suzuki, N. Modeling Familial
Alzheimer’s Disease with Induced Pluripotent Stem Cells. Hum. Mol. Genet. 2011, 20, 4530–4539. [CrossRef]

52. Pandey, S.; Jirásko, M.; Lochman, J.; Chvátal, A.; Chottova Dvorakova, M.; Kučera, R. IPSCs in Neurodegenerative Disorders: A
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