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Abstract: Alzheimer’s disease (AD) exhibits sex-linked variations, with women having a higher
prevalence, and little is known about the sexual dimorphism in progressing from Mild Cognitive
Impairment (MCI) to AD. The main aim of our study was to shed light on the sex-specific conversion-
to-AD risk factors using Random Survival Forests (RSF), a Machine Learning survival approach, and
Shapley Additive Explanations (SHAP) on dementia biomarkers in stable (sMCI) and progressive
(pMCI) patients. With this purpose, we built two separate models for male (M-RSF) and female
(F-RSF) cohorts to assess whether global explanations differ between the sexes. Similarly, SHAP local
explanations were obtained to investigate changes across sexes in feature contributions to individual
risk predictions. The M-RSF achieved higher performance on the test set (0.87) than the F-RSF (0.79),
and global explanations of male and female models had limited similarity (<71.1%). Common influ-
ential variables across the sexes included brain glucose metabolism and CSF biomarkers. Conversely,
the M-RSF had a notable contribution from hippocampus, which had a lower impact on the F-RSF,
while verbal memory and executive function were key contributors only in F-RSF. Our findings
confirmed that females had a higher risk of progressing to dementia; moreover, we highlighted
distinct sex-driven patterns of variable importance, uncovering different feature contribution risks
across sexes that decrease/increase the conversion-to-AD risk.

Keywords: Alzheimer’s disease; random survival forests; sex differences

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative pathology that differentially affects
women and men [1–5], where women have a higher prevalence than men, representing
two-thirds of AD patients in the US [3]. Many hypotheses exist about sex differences in
the progression from Mild Cognitive Impairment (MCI) to AD, but the literature reports
heterogeneous findings [2,6]. Generally, the higher prevalence of AD in women has been
associated with longer female life expectancy and with biases in patient enrollment [7].
However, other studies showed a more complex picture, focusing on the neurobiological
vulnerability of women, probably related to sex hormones, like estrogen [5,7]. Regarding the
psychosocial aspects, women are more prone to life stress, social isolation, and insomnia [8],
and their vulnerability to stressful events is enhanced by genes like the APOE e4 allele [9].
In a non-cognitively impaired population, women demonstrate higher scores in verbal
tasks and slower cognitive decline than men at all ages, while men perform better than
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women in visuospatial and motor coordination tasks [2]. Differences in verbal memory
tasks are lost at the early stage of AD [2], although other works found that these differences
also persist at early stages [10,11]. However, the literature agrees in affirming that women
lose their better verbal memory performance when dementia is diagnosed [2,10,11]. A
recent study [4] that performed a sex-stratified analysis found that auditory verbal memory
and difficulties in activities of daily living are stronger risk factors for women than men in
predicting the progression from MCI to AD. Regarding neuroimaging evidence, women
showed a faster rate of brain atrophy than men [2,4], and in particular, hippocampal volume
changes in women compared to men had a more prominent contribution to the progression
from a normal cognitive state to MCI or AD [5]. The rate of changes in white matter
hyperintensities also showed sex-linked characteristics, affecting more men than women
when progressing to AD [5]. Two other recent studies demonstrated the vulnerability of
women to AD pathology: the first one [12] explored brain glucose metabolism and the
plasma beta-amyloid 42/40 ratio, and the second one [13] investigated a combination of
functional and structural markers.

On the other hand, several works showed that no sex differences in the progression
to AD exist and that the risk is equal between males and females [6,14], contradicting the
hypothesis of sexual dimorphism in dementia [15], and stating that those differences are
due only to the longer life expectancy of women.

Given these discrepancies in the literature, we aimed to investigate the sex differences
in the risk prediction of conversion from MCI to AD using a Machine Learning survival
approach, Random Survival Forests (RSF) [16,17]. RSF is an adaptation of the Random
Forests (RF) [18,19] algorithm to handle right-censored data and to provide the assessment
of survival probability and risk, which is fully nonparametric and thus independent from
data distribution; it can handle multicollinearity and it intrinsically provides feature selec-
tion [16,17]. RSF showed stability and robustness when trained on multi-modal data, and it
had better performance on biomedical datasets [20,21] as well as on dementia data [22,23]
compared to statistical approaches like the Cox Proportional Hazard [24] (CPH). More-
over, we demonstrated in [23] that the black-box nature of RSF and its poor explainability
could be overcome through the model-agnostic method Shapley Additive Explanations
(SHAP) [25]. SHAP provides a unified framework to interpret ML predictions based on
game theory, which assigns to each feature a Shapley value that represents its average
marginal contribution to the predicted risk across all possible feature coalitions [23,26].

In the present work, we used a dataset from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) consisting of well-known dementia biomarkers [22,23], such as clinical,
cognitive, cerebrospinal fluid (CSF) and imaging features, of stable MCI patients (sMCI)
and progressive MCI patients (pMCI), who change their diagnosis to AD over time. In
detail, we applied RSF and SHAP separately on the male and female MCI cohorts to predict
the risk of conversion to AD, and more importantly to assess whether global and local
explanations differ between the sexes. Differences in the explanations of male and female
models were quantified using the Rank-Biased Overlap [27] (RBO), which has been used
in survival analysis [22,23] to estimate the overlap between ML feature importance by
varying the number of the top variables that are considered as important [28]. Finally,
we investigated the individual predictions of male and female MCI patients, stratified
by high-, medium-, and low-risk grades, using SHAP waterfall plots, which provide a
highly intelligible overview of the variable contribution to the decrease or increase in the
conversion-to-AD risk.

2. Materials and Methods
2.1. Dataset Preparation

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public–private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance
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imaging (MRI), positron emission tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of Mild
Cognitive Impairment (MCI) and early Alzheimer’s disease (AD).

ADNI enrolls participants between the ages of 55 and 90 who are recruited at 57 sites
in the United States and Canada. After obtaining informed consent, participants undergo
a series of initial tests that are repeated at intervals over subsequent years, including a
clinical evaluation, neuropsychological tests, genetic testing, lumbar puncture, and MRI
and PET scans. Details about the inclusion/exclusion criteria and about the enrollment
procedure can be found on the ADNI website.

Data table files (csv) from ADNI were downloaded on 5 June 2023, and they were as
follows: DXSUM_PDXCONV_ADNIALL, ADNIMERGE, NEUROBAT, CDR, GDSCALE,
FAQ, MMSE, ADASSCORES, UPENNBIOMK_MASTER_FINAL (9, 10, 12), and BAIPET-
NMRC_04_12_18. The software KNIME 4.6.1 [29] was used to filter and join these tables.
Details about the dataset preparation can be found elsewhere [22,23]. Briefly, the final
dataset used for the ML analysis included patients whose diagnosis changed over time
from MCI to AD (pMCI) and patients who maintained their baseline diagnosis as stable
MCI (sMCI). The event or censorship occurrence was a binary variable, where 1 (pMCI
patient) represents the event of conversion from MCI to AD, and 0 represents censorship
(sMCI patient). The time variable represented the number in months (m06, m12, m18, m24,
m36, and m48) after the baseline visit in which the event/censorship occurred. The time in-
terval ranged from 6 months to 36 months (3 years), which was different from [23] because
data for month 48 were unusable due to the low sample size (16 males; 6 females). All data
and all subjects were from the ADNI1 protocol and collected at baseline or the screening
visit. The description of demographics, clinical, neuropsychological, and neuroimaging
features are reported in Appendix A.

The final dataset consisted of 365 subjects that were split by sex: 233 males divided
into 136 sMCI (M-sMCI) and 97 pMCI (M-pMCI), and 132 females divided into 62 sMCI
(F-sMCI) and 70 pMCI (F-pMCI).

Categorical variables (PTETHCAT, PTRACCAT, PTMARRY) were converted to numer-
ical data using the One-Hot Encoding approach [30,31] (python function get_dummies()).
Missing data were imputed using the missForest algorithm [32] (python package missingpy
0.2.0), which demonstrated less error than statistical imputation methods on dementia [33]
and Parkinson’s disease [34] data. The descriptive statistics of the dataset stratified by sex
are reported in Table 1.

2.2. Statistical Analysis

Statistical analyses were performed to compare features between male sMCI and male
pMCI patients (M-sMCI vs. M-pMCI), and female sMCI and female pMCI patients (F-sMCI
vs. F-pMCI). Moreover, we compared male sMCI with female sMCI patients (M-sMCI vs.
F-sMCI), and male pMCI with female pMCI patients (M-pMCI vs. F-sMCI).

Analysis of variance (ANOVA) was employed to assess differences between groups
in terms of age and years of education, while the Chi-square test was applied to evaluate
differences in the distributions of categorical variables. Analysis of covariance (ANCOVA)
with age as a covariate was employed for clinical and cognitive variables, while for neu-
roimaging features, ANCOVA had age and ICV (significant at p < 0.05). All statistical tests
were implemented with Python 3.8 and the package scikit-learn 1.1.3.
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Table 1. Demographic, clinical, cognitive, CSF, and imaging data of sMCI and pMCI patients stratified
by sex.

M
(233)

F
(132)

sMCI
(136)

pMCI
(97)

sMCI
(62)

pMCI
(70)

Demographic:
Age 74.7 ± 7.3 74.6 ± 7.5 75.8 ± 7.6 74.6 ± 6.0
Education level 15 ± 3.3 15.4 ± 2.9 16.2 ± 2.6 16.1 ± 2.8
Biomarker:
APOE4 (0/1/2) 82/42/12 38/43/16 28/26/8 16/43/11
Clinical scale:
CDRSB 1.4 ± 0.8 1.9 ± 0.9 1.6 ± 0.9 1.8 ± 1.1
FAQ 2.3 ± 3.2 5.6 ± 5.3 2.8 ± 4.1 5.6 ± 4.5
Neuropsychological assessment:
ADAS11 10.5 ± 4.2 13.12 ± 3.8 10.5 ± 4.6 13.2 ± 4.5
ADAS13 16.8 ± 6.0 21.3 ± 5.0 16.9 ± 6.7 21.1 ± 6.2
ADASQ4 5.6 ± 2.2 7.13 ± 1.9 5.5 ± 2.4 7.1 ± 2.0
MMSE 27.3 ± 1.8 26.68 ± 1.7 27.2 ± 1.7 26.6 ± 1.8
RAVLT_immediate 33.1 ± 9.6 27.25 ± 6.9 33.1 ± 10.6 27.2 ± 6.2
RAVLT_learning 3.8 ± 2.3 2.74 ± 1.9 3.7 ± 2.3 3.0 ± 2.0
RAVLT_forgetting 4.5 ± 2.4 4.86 ± 2.09 4.5 ± 2.3 5.0 ± 2.2
RAVLT_perc_forgetting 59.9 ± 31.5 77.62 ± 27.6 63.8 ± 31.0 79.0 ± 28.5
LDELTOTAL 4.3 ± 2.7 2.8 ± 2.4 4.8 ± 2.5 3.3 ± 3.1
DIGITSCOR 38.9 ± 11.1 34.13 ± 11.2 37.0 ± 9.7 34.0 ± 10.5
TRABSCOR 116.4 ± 64.2 146.85 ± 79.9 125.6 ± 67.1 149.9 ± 80.2
mPACCdigit −3.9 ± 3.9 −3.9 ± 4.8 −3.8 ± 3.8 −3.9 ± 4.9
mPACCtrailsB −3.8 ± 4.0 −3.7 ± 4.8 −3.8 ± 3.8 −3.0 ± 4.8
GDTOTAL 1.6 ± 1.4 1.54 ± 1.3 1.6 ± 1.3 1.6 ± 1.4
COPYSCOR 4.7 ± 0.7 4.5 ± 1.2 4.6 ± 0.8 4.7 ± 0.6
BNTTOTAL 25.5 ± 4.0 24.55 ± 4.6 26.2 ± 3.2 25.7 ± 3.6
CSF:
ABETA42 1027.5 ± 398.4 676.7 ± 224.3 881.4 ± 364.2 708.8 ± 309.2
TAU 307.2 ± 89.4 316.43 ± 73.2 307.5 ± 110.9 331.0 ± 90.2
PTAU 30.4 ± 10.8 31.76 ± 8.0 31.2 ± 14.0 33.3 ± 10.8
Neuroimaging:
Ventricles 41,196.5 ± 24,245.5 44,937.2 ± 18,888.8 48,192.5 ± 26,633.5 50,164.0 ± 27,112.5
Hippocampus 6699.8 ± 987.2 5862.6 ± 923.9 6452.7 ± 963.8 6092 ± 1095.6
WholeBrain 1,005,263.4 ± 106,966.9 973,259.03 ± 115,953.1 1,013,898.5 ± 100,967.5 990,467.4 ± 111,353.5
Entorhinal 3480.9 ± 711.5 2997.0 ± 698.9 3475.5 ± 707.2 3031.5 ± 723.4
Fusiform 16,831.29 ± 2179.3 15,618.0 ± 2409.4 16,947.7 ± 2161.6 15,884.9 ± 2393.1
MidTemp 19,134.46 ± 2554.2 17,311.45 ± 3127.2 19,604.9 ± 2652.1 17,911.5 ± 2708.5
ICV 1,562,645.6 ± 163,009.0 1,554,468.3 ± 170,366.0 1,609,215.3 ± 162,431.2 1,587,939.1 ± 176,315.7
FDG 1.2 ± 0.1 1.07 ± 0.1 1.2 ± 0.1 1.1 ± 0.1
HCI 7.1 ± 2.8 9.54 ± 2.5 7.1 ± 2.7 9.9 ± 2.9
Occurrence of event (pMCI = 1) and censorship (sMCI = 0) per timepoint (in months):
m06 17 14 3 8
m12 12 27 5 20
m18 14 20 7 15
m24 21 18 10 18
m36 72 18 37 8

Mean and standard deviation are calculated after imputation of missing data. For abbreviations see Appendix A.
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2.3. Random Survival Forests

Various studies have assessed the efficacy of ML techniques for dementia survival
analysis, especially for predicting the conversion risk from MCI to AD [31,35–39]. Most of
them showed that Random Survival Forests [17] had better performance than the classical
statistical approaches like Cox Proportional Hazard, or other methods based on Random
Forests [18,19]. In particular, we demonstrated in [22] that RSF had higher accuracy than
Conditional Survival Forest (CSF) [40] and Extra Survival Trees (XST) [41] in predicting the
conversion-to-AD risk on dementia biomarkers from ADNI. Moreover, we showed in [23]
that the clinical utility of RSF can be boosted through SHAP to enhance its interpretability.
The strengths of RSF rely on the robustness to outliers, no convergence issues, preservation
from overfitting thanks to out-of-bag (cross-validated) prediction, the reliable inference
of training data, and particularly its intrinsic variable importance measure, which is fully
nonparametric and independent from data distributions [17].

In detail, RSF follows the same principles of RF [18,19] for growing decision trees,
and when splitting tree nodes, it applies bootstrapping and random feature selection. The
rule for splitting a node is based on the log-rank test statistic to maximize the survival
difference between daughter nodes. For each node in the tree, the null hypothesis that
there is no difference between the two groups in the probability of an event is tested. The
ensemble’s cumulative hazard is estimated with cumulative hazard functions calculated
for each tree, while out-of-bag (OOB) estimators are used to assess the prediction accuracy
and the variable importance [16,17,22].

2.4. Machine Learning Analysis

A forked repository (https://github.com/bacalfa/pysurvival/, Bacalfa) from the
python package PySurvival (https://square.github.io/pysurvival/, Fotso et al., 2019) was
used to conduct survival analyses to have the compatibility of the RSF algorithm imple-
mentation with the sklearn package (accessed on 1 December 2023). The package seaborn
(0.12.2) was employed to modify the original plotting functions of PySurvival.

Two RSF models were built separately, one trained only on male MCI patients (M-RSF)
and the second trained only on female MCI patients (F-RSF), with the same procedure
in [23] and as described below. Datasets were randomly split with a static seed into training
and test sets (80–20%) stratified by the column event and time to maintain the original
distribution of occurrences, obtaining 109 sMCI and 77 pMCI in the training set and 27 sMCI
and 20 pMCI in the test set for the male group, and 50 sMCI and 55 pMCI in the training
set and 12 sMCI and 15 pMCI in the test set for the female group. Hyperparameter tuning
was applied to maximize the performance on the training set through a randomized search
(RandomizedSearchCV) with a 3-fold cross-validation (cv) and 50 repetitions [20,22,23,31].
RSF hyperparameters were as follows: maximum depth (max_depth), minimum number
of samples required to be at a leaf node (min_node_size), number of features to consider
when looking for the best split (max_features), and percentage of original samples used in
each tree building (sample_size_pct). As described in [22,23], the number of trees was kept
static at 200, and importance mode (importance_mode) was set to permutation for both
M-RSF and F-RSF to allow their comparison.

The performance of RSF models was evaluated using Harrell’s concordance index (c-
index) [42] on training sets (with a 5-fold cross-validation) and on test sets. The c-index was
born to generalize the area under the ROC curve (AUC) in the presence of right-censored
data and for the survival analysis; the model has an almost perfect discriminatory power if
its value is close to 1, while it has no ability to discriminate between low- and high-risk
subjects if it is close to 0.5 (random prediction) [22,23]. In addition to the c-index, we
evaluated the accuracy of the predicted survival function on the test set across multiple
timepoints with the Integrated Brier score (IBS) [43]. The IBS value is between 0 and 1,
where 0 is for a perfect model, while a cut-off limit of 0.25 is considered as critical [43].

https://github.com/bacalfa/pysurvival/
https://square.github.io/pysurvival/
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The estimated survival time curve of test sets was obtained using the Kaplan–Meier
method (KM) [44] and visually compared with predicted survival curves determined by
the M-RSF and F-RSF models. Deviations from KM curves were quantified using the Root
Mean Square Error (RMSE) and median/mean absolute error.

2.4.1. Global Explanation

In addition to the feature importance provided intrinsically by the two models M-
RSF and F-RSF, we evaluated the permutation importance [23], which is defined as an
increase in the prediction error when a feature’s value is randomly shuffled. Permutation
importance was implemented using ELI5 [45] with 50 repetitions (python package scikit-
learn 1.3.0) [23].

As a further global explanation, we employed Shapley Additive Explanation [25]
(SHAP, python package SHAP 0.42.1), which is a model-agnostic unified framework based
on game theory to interpret ML classification predictions and has also been recently ap-
plied for survival analysis [23]. Two SHAP explainers (shap.Explainer) were fit separately
on predicted risk scores of training sets by M-RSF and by F-RSF (function predict_risk
by pysurvival).

A pairwise similarity between the global explanations of the two models, M-RSF
and F-RSF, was quantitively evaluated using the Rank-Biased Overlap [27] (RBO, python
package rbo v.0.1.2, https://github.com/changyaochen/rbo accessed on 1 December 2023),
which can assume values in the range [0, 1], where 0 means disjoint and 1 means identical.
RBO has been used in survival analysis [22,23] to estimate the overlap between ML feature
rankings by varying the number of top variables considered as important (depths d) [28].

No feature selection was applied since the recent literature on survival analysis showed
no improvement in performance [20,23,26]. In the same way, we kept correlated variables,
since it has been demonstrated that multicollinearity did not perturb SHAP explanations of
RSF [23].

2.4.2. Local Explanation

Local explanations of both M-RSF and F-RSF models were explored with SHAP on
test sets. Individual predictions determined by M-RSF and F-RSF were used to manually
stratify male and female pMCI test patients according to their conversion-to-AD risk score
(low, medium, and high) [22]. Then, we estimated the cumulative density function of six
randomly selected pMCI patients, one male and one female per risk grade (M-pMCI#1 and
F-pMCI#1 high risk, M-pMCI#2 and F-pMCI#2 medium risk, M-pMCI#3 and F-pMCI#3
low risk), and one stable MCI test subject per sex (M-sMCI and F-sMCI with a numeric risk
score lower than 1). These test subjects were finally studied with SHAP waterfall plots.

3. Results

The results of statistical analysis between male and female MCI patients are reported
in Table 2. Regarding the analysis of the male group, sMCI and pMCI patients had sig-
nificantly different values in almost all features, except for age, education level, RAVLT
forgetting, mPACCdigit, mPACCtrailsB, GDTOTAL, BNTTOTAL, TAU, PTAU, Ventricles,
WholeBrain, and ICV (p > 0.05). In the female group, sMCI and pMCI patients had a higher
number of statistically insignificant comparisons than the male group. Features without dif-
ferences between female sMCI and female pMCI patients were age, education level, CDRSB,
RAVLT forgetting, DIGITSCOR, TRABSCOR, mPACCdigit, mPACCtrailsB, GDTOTAL,
COPYSCOR, BNTTOTAL, TAU, PTAU, Ventricles, WholeBrain, and ICV (p > 0.05). In the
comparison between male and female sMCI patients, only education level and ABETA42
were significantly different, while no other features showed differences in the comparison
between male and female pMCI patients (Table 2).

https://github.com/changyaochen/rbo
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Table 2. Statistical analysis between male and female MCI patients.

p-Value

M-sMCI vs. M-pMCI F-sMCI vs. F-pMCI M-sMCI vs. F-sMCI M-pMCI vs. F-pMCI

Demographic:
Age 0.95 a 0.32 a 0.35 a 0.96 a

Education level 0.27 a 0.81 a 0.006 a 0.14 a

Biomarker:
APOE4 (0/1/2) 0.005 b 0.02 b 0.14 b 0.58 b

Clinical scale:
CDRSB <0.001 c 0.12 c 0.11 c 0.90 c

FAQ <0.001 c <0.001 c 0.34 c 0.93 c

Neuropsychological assessment:
ADAS11 <0.001 c <0.001 c 0.95 c 0.93 c

ADAS13 <0.001 c <0.001 c 0.97 c 0.78 c

ADASQ4 <0.001 c <0.001 c 0.67 c 0.94 c

MMSE 0.01 c 0.03 c 0.82 c 0.76 c

RAVLT_immediate <0.001 c <0.001 c 0.87 c 0.92 c

RAVLT_learning <0.001 c 0.03 c 0.88 c 0.46 c

RAVLT_forgetting 0.24 c 0.3 c 0.82 c 0.64 c

RAVLT_perc_forgetting <0.001 c 0.003 c 0.41 c 0.76 c

LDELTOTAL <0.001 c 0.004 c 0.28 c 0.28 c

DIGITSCOR 0.001 c 0.06 c 0.31 c 0.93 c

TRABSCOR 0.001 c 0.06 c 0.43 c 0.81 c

mPACCdigit 0.94 c 0.97 c 0.86 c 0.98 c

mPACCtrailsB 0.89 c 0.21 c 0.89 c 0.35 c

GDTOTAL 0.77 c 0.98 c 0.85 c 0.87 c

COPYSCOR 0.03 c 0.76 c 0.72 c 0.07 c

BNTTOTAL 0.09 c 0.33 c 0.22 c 0.07 c

CSF:
ABETA42 <0.001 c 0.003 c 0.015 c 0.43 c

TAU 0.41 c 0.17 c 0.97 c 0.25 c

PTAU 0.29 c 0.32 c 0.67 c 0.29 c

Neuroimaging:
Ventricles 0.067 d 0.11 d 0.50 d 0.33 d

Hippocampus <0.001 d 0.01 d 0.053 d 0.27 d

WholeBrain 0.02 c 0.10 c 0.38 c 0.32 c

Entorhinal <0.001 d <0.001 d 0.75 d 0.91 d

Fusiform <0.001 d 0.005 0.71 d 0.96 d

MidTemp <0.001 d 0.001 d 0.54 d 0.47 d

ICV 0.70 c 0.45 c 0.063 c 0.22 c

FDG <0.001 c <0.001 c 0.66 c 0.94 c

HCI <0.001 c <0.001 c 0.96 c 0.34 c

In bold: significant result at p < 0.05. a One-way ANOVA; b Chi-square test; c ANCOVA with age in covariates;
d ANCOVA with age and ICV in covariates. For abbreviations, see Appendix A.

Table 3 reports the results of hyperparameter tuning obtained through a randomized
search. Optimal hyperparameter values provided a c-index (mean of 3-fold cv with 50 rep-
etitions) of 0.839 for M-RSF and 0.804 for the F-RSF. Regarding the performance of best
models, M-RSF reached high values of the c-index both on the test set and on the training
set (0.873, 5-fold cv: 0.823 ± 0.04), while F-RSF had lower performance (0.791, 5-fold cv:
0.803 ± 0.04). The IBS score was 0.10 for M-RSF and 0.12 for F-RSF.
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Table 3. Hyperparameters of Random Survival Forests (RSF) trained on male MCI (M-RSF) and female
MCI (F-RSF) patients. Optimal values of hyperparameters were obtained through a randomized
search with 3-fold cross-validation and 50 repetitions.

Optimal Value

Hyperparameter Parameter Distribution M-RSF F-RSF

max_depth integer from a reciprocal continuous
random distribution in range (5, 50) 26 42

min_node_size integer from a reciprocal continuous
random distribution in range (1, 40) 34 19

max_features [‘all’, ‘sqrt’, ‘log2’] ‘sqrt’ ‘sqrt’
sample_size_pct [0.60, 0.70, 0.80, 0.90] 0.70 0.60

Figure 1 depicts the plots comparing the KM and predicted survival curves of test
subjects (Figure 1a, male MCI patients; and Figure 1b, female MCI patients). M-RSF and
F-RSF models showed a large overlap with the KM as demonstrated by low values of RMSE
and median and mean absolute error, although a slight decrease in accuracy occurred as
time progressed. The bottom plots in Figure 1a,b represent the IBS prediction error per
timepoint, where both M-RSF and F-RSF models showed a global maximum at the 24th
month but never exceeded the IBS cut-off (dotted red line).
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Figure 1. Performance per timepoint on the test set by RSF trained on (a) male MCI patients; (b) female
MCI patients. Upper: plot over time of expected number of MCI patients at risk of conversion to AD,
estimated survival curve by Kaplan-Meier in gray. Bottom: Integrated Brier error curve (IBS, critical
cut-off limit of 0.25 in red). C-index on the test set, cross-validated (cv) c-index on the training set
(mean ± standard deviation), Root Mean Square Error (RMSE), and median and mean absolute error
are also reported.

Global explanations on the male MCI training set and the female MCI training set
are reported in Figures 2a and 2b, respectively. The rankings of features ordered by their
prediction importance are—from the left to the right—RSF feature importance, permutation
importance (mean value), and SHAP importance (mean absolute value). Regarding the
M-RSF model (Figure 2a), the top three features in the three rankings were FDG, ABETA42,
and HCI, while the top three of the F-RSF model were FDG, HCI, and FAQ. Figure 2c
depicts the RBO curves of similarity between male and female rankings by increasing
depth d (RSF M vs. F in plum, Perm M vs. F in violet, SHAP M vs. F in purple). All three
pairwise comparisons had low overlap, with a maximum RBO value of 71.1% within the
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top 12 variables for RSF M vs. F, 60.3% within the top 13 variables for Perm M vs. F, and
67.3% within the top 14 variables for SHAP M vs. F.
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Figure 2. Random Survival Forests (RSF) global explanations trained on (a) male MCI (M-RSF) and
(b) female MCI (F-RSF) patients. From left to right: RSF feature importance (VIMP), permutation
importance (mean value), and SHAP importance (mean |SHAP| value). (c) Rank-Biased Overlap
(RBO) curves assessing the overlap between male and female (M vs. F) variable rankings at different
numbers of the important features considered (depth d): RSF feature importance (in plum), mean
permutation importance (in violet), and mean |SHAP| importance (in purple).

Local explanations with SHAP on the test sets are reported in Figure 3. Similarly to
global explanations, FDG and HCI were the top features in common between the M-RSF
(Figure 3a) and F-RSF models (Figure 3b). The most evident differences in local explanations
are the contributions of the hippocampus in M-RSF (+0.09) and RAVLT_perc_forgetting
(+0.05), which were absent in F-RSF among the first features. On the contrary, the contri-
bution of LDELTOTAL (+0.09) in the F-RSF model had a low impact on the M-RSF model
(+0.03), and the TRABSCOR contribution (+0.08) in the F-RSF model was not among the
most contributing variables in the M-RSF model.

The distributions of the risk score in progressing to AD predicted by the M-RSF on
test MCI patients are reported as histograms in Figure 4a. Male pMCI test subjects were
manually stratified into three risk grades: low range [1.39, 2] (in green), medium range
[2, 2.6] (in orange), and high range [2.6, 3.47] (in red). The RSF survival functions of three
randomly selected male pMCI subjects per risk grade are shown in Figure 4b. High-risk
patient M-pMCI#1 had a risk score of 3.262, converted to AD at the 12th month, and the
predicted survival probabilities at each timepoint were [0.89, 0.71, 0.57, 0.43, and 0.28].
Medium-risk patient M-pMCI#2 had a risk score of 1.962, converted to AD at the 24th
month, and the predicted survival probabilities at each timepoint were [0.95, 0.83, 0.72, 0.63,
and 0.50]. Low-risk patient M-pMCI#3 had a risk score of 1.395, converted to AD at the
36th month, and the predicted survival probabilities at each timepoint were [0.96, 0.87, 0.79,
0.73, and 0.62]. The M-sMCI subject—who does not convert to AD within 36 months—had
a risk score of 0.459 and very high predicted survival probabilities per timepoint [0.98, 0.94,
0.92, 0.90, and 0.84].
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Figure 4. Random Survival Forests (RSF) local explanations trained on male MCI patients. (a) His-
tograms of male sMCI and pMCI patients’ risk distribution predicted by M-RSF. Patients were
stratified by risk grade: low (in green, range 1.39–2), medium (in orange, range 2–2.6), high (in red,
range 2.6–3.47). (b) RSF survival functions of male pMCI patients per risk score: M-pMCI#1 high risk
(score 3.262, converted to AD after 12 months), M-pMCI#2 medium risk (score 1.962, converted to AD
after 24 months), M-pMCI#3 low risk (score 1.395, converted to AD after 36 months). SHAP waterfall
plot of (c) patient M-pMCI#1, (d) patient M-pMCI#2, (e) patient M-pMCI#3, and (f) stable MCI patient
who does not convert to AD within 36 months (M-sMCI, risk score 0.459). Features that decrease the
risk are in blue, while those that increase it are in red. Average predicted risk E[f (x)] = 1.769. Actual
value of the feature is in gray.
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The distributions of the risk score in progressing to AD predicted by M-RSF on test
patients are reported as histograms in Figure 4a. Male pMCI test subjects were manually
stratified into three risk grades: low range [1.39, 2] (in green), medium range [2, 2.6] (in
orange), and high range [2.6, 3.47] (in red). RSF survival functions of three randomly
selected male pMCI subjects per risk grade are in Figure 4b. High-risk patient M-pMCI#1
had a risk score of 3.262, converted to AD at the 12th month, and the predicted survival
probabilities at each timepoint were [0.89, 0.71, 0.57, 0.43, and 0.28]. Medium-risk patient
M-pMCI#2 had a risk score of 1.962, converted to AD at the 24th month, and the predicted
survival probabilities at each timepoint were [0.95, 0.83, 0.72, 0.63, and 0.50]. Low-risk
patient M-pMCI#3 had a risk score of 1.395, converted to AD at the 36th month, and the
predicted survival probabilities at each timepoint were [0.96, 0.87, 0.79, 0.73, and 0.62].
The M-sMCI subject—who does not convert to AD within 36 months—had a risk score of
0.459 and very high predicted survival probabilities per timepoint [0.98, 0.94, 0.92, 0.90,
and 0.84].

In SHAP waterfall plots, a red arrow indicates that the feature increases the risk of
conversion from MCI to AD, while a blue arrow indicates that the feature decreases it. The
sum of all variable contributions provides the final SHAP value, which corresponds to the
prediction risk score. SHAP waterfall plots of M-pMCI#1, M-pMCI#2, M-pMCI#3, and
M-sMCI patients are reported in Figure 4c–f, where the actual value of each feature is also
reported (in gray). Variables with the highest influence on risk prediction of M-pMCI#1,
M-pMCI#2, M-pMCI#3, and M-sMCI subjects were FDG, ABETA42, and HCI (Figure 4c–f),
as also found in global and local explanations (Figures 2a and 3a).

Regarding the risk prediction by the F-RSF on female MCI patients, histograms of its
distributions are reported in Figure 5a. The stratification per risk grade of female pMCI
test was as follows: low range [1.51, 2.3] (in green), medium range [2.3, 3.7] (in orange),
and high range [3.7, 5.05] (in red). RSF survival functions of three randomly selected
female pMCI subjects per risk grade are depicted in Figure 5b. High-risk patient F-pMCI#1
had a risk score of 4.683, converted to AD at the 6th month, and the predicted survival
probabilities at each timepoint were [0.89, 0.62, 0.43, 0.30, and 0.22]. Medium-risk patient
F-pMCI#2 had a risk score of 2.799, converted to AD at the 12th month, and the predicted
survival probabilities at each timepoint were [0.95, 0.79, 0.67, 0.50, and 0.42].

Low-risk patient F-pMCI#3 had a risk score of 1.51, converted to AD at the 24th month,
and the predicted survival probabilities at each timepoint were [0.98, 0.89, 0.84, 0.67, and
0.59]. F-sMCI subject—who does not convert to AD within 36 months—had a risk score
of 0.528 and very high predicted survival probabilities per timepoint [0.99, 0.96, 0.94, 0.86,
and 0.83].

From Figure 5c–f, which show the SHAP waterfall plots of F-pMCI#1, F-pMCI#2,
F-pMCI#3, and F-sMCI patients, it can be noted that variables with the highest influence
on risk prediction, such as FDG, HCI, and FAQ, similarly to global and local explanations
(Figures 2b and 3b), as well as LDELTOTAL, have a particularly evident contribution in
high- and medium-risk patients (Figure 5c,d).

It is worth noting that the average predicted risk by SHAP for male MCI patients
(E[f (x)] = 1.769) was lower than the average predicted risk for female MCI patients
(E[f (x)] = 2.534).
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Figure 5. Random Survival Forests (RSF) local explanations trained on female MCI patients. (a) His-
tograms of female sMCI and pMCI patients’ risk distribution predicted by F-RSF. Patients were
stratified by risk grade: low (in green, range 1.51–2.3), medium (in orange, range 2.3–3.7), high (in red,
range 3.7–5.05). (b) RSF survival functions of female pMCI patients per risk score: F-pMCI#1 high risk
(score 4.683, converted to AD after 6 months), F-pMCI#2 medium risk (score 2.799, converted to AD
after 12 months), F-pMCI#3 low risk (score 1.51, converted to AD after 24 months). SHAP waterfall
plot of (c) patient F-pMCI#1, (d) patient F-pMCI#2, (e) patient F-pMCI#3, and (f) stable MCI patient
who does not convert to AD within 36 months (F-sMCI, risk score 0.528). Features that decrease the
risk are in blue, while those that increase it are in red. Average predicted risk E[f (x)] = 2.534. Actual
value of the feature is in gray.

4. Discussion

The present study explored sex-specific differences in predicting the conversion risk
from Mild Cognitive Impairment (MCI) to Alzheimer’s Disease (AD) within 3 years using
Random Survival Forests (RSF) and SHAP, a model-agnostic approach to boost explain-
ability. The model trained only on male MCI patients (M-RSF) demonstrated optimal
performance on both test and training sets, with an accuracy of 0.873 on the test set, while
the female model (F-RSF) exhibited slightly lower performance (c-index of 0.791 on the
test set), probably due to the lower sample size. Both models displayed low Integrated
Brier Scores (IBS), indicating a precise prediction per timepoint. The comparison between
Kaplan–Meier and RSF predicted survival curves revealed robust model performance, with
high overlap. Despite some common influential features, differences in global and local
explanations suggested sex-specific variations in the feature contribution to conversion-to-
AD risk prediction. Of note, the average predicted risk for male MCI patients was observed
to be lower than that for female MCI patients, underscoring potential sex-specific variations
in the risk of conversion from MCI to AD.

Global and local explanations revealed four main common features as influential
in both male and female models: FDG, HCI, ABETA42, and FAQ. Very few works have
explored the differences between male and female brain glucose metabolism, and findings
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about gender effect on FDG hypometabolism in normal aging as well as in AD progression
are controversial [46]. Overall, a correlation between age and education and brain glucose
metabolism was found in temporal and medial frontal regions in healthy adult subjects, but
without any significant changes across sexes [46]. This correlation has also been confirmed
in AD patients, although males and females exhibited different degrees of association
involving different anatomical regions [46]. In our study, feature FDG is calculated as the
mean average counting of angular, temporal, and posterior cingulate regions and HCI is a
single measurement of FDG-PET hypometabolism (Appendix A), which cannot catch the
specific anatomical regional differences between male and female cohorts, as in the past
literature [46]. This could explain why FDG and HCI had the same influence in M-RSF and
F-RSF models (Figures 2 and 3).

Beta-amyloid (1–42) (feature ABETA42) is a protein that decreases in both the plasma
and cerebrospinal fluid (CSF) of dementia patients, which generally does not differ between
the sexes [2], in cognitively unimpaired subjects, MCI, or AD patients. Our ML findings
confirmed this absence of sex-driven changes in CSF biomarkers, where ABETA42 was
among the first four features in the M-RSF and F-RSF, and PTAU and TAU were within the
fifteen variables in global and local explanations (Figures 2 and 3).

Feature FAQ provides an assessment of daily living instrumental activities [47] and it
is usually administered to the caregiver. In Berezuk et al. [4], FAQ resulted as a significant
risk factor for both sexes, although in women it had a stronger effect, which was similarly
evident in our results in local explanations (Figure 3). The slightly higher SHAP value of
FAQ in the female model (+0.15) than in the male model (+0.08) to the increase in conversion
risk score could be associated, as reported by Berezuk et al. [4], with different cognitive
reserves across sexes.

In the neural network of learning and memory, the hippocampus plays the role of the
central hub, thus its pathological changes contribute to memory impairment [48] resulting
in dementia [5]. Differences in hippocampal volume between biological sexes were found
in a study that explored amnestic MCI patients, where men had a larger hippocampal
volume [49]. Burke et al. investigated the progression from normal cognition to MCI and to
probable AD, and they showed that higher hippocampal volumes, or in other words, less
hippocampal atrophy, decreased the risk of conversion to AD in women, but it had a more
significant role in men [5]. In contrast to the previous studies that highlight hippocampus
volume as an important risk factor in the progression from MCI to AD for both sexes [4],
we found the hippocampus to have high SHAP values in the male model, while it was
completely absent within the first fifteen most important variables in the female model
(Figures 2 and 3).

Our two models, M-RSF and F-RSF, also differ in the contribution of two cognitive
measures, LDELTOTAL and TRABSCOR, for which SHAP values were higher in the female
model than in the male one. LDELTOTAL assesses verbal memory [50], and a plethora of
works investigated sex differences in this cognitive domain in normal cognition as well as
in dementia [2]. In detail, women score better than men in verbal tasks at all ages, and two
studies [10,11] demonstrated that this sex-linked difference persists in the early stages of
AD, although other works found that superior female performance in verbal memory tasks
is lost in early stages [2]. However, the literature supports that women and men affected by
dementia had similar verbal memory scores [2,10,11].

From the local explanations of female MCI patients (Figure 5), it could be noticed how
low scores in LDELTOTAL were associated with higher SHAP values in the waterfall plot
of high- and medium-risk pMCI patients (Figure 5c,d), while in the low-risk female pMCI
and sMCI patient (Figure 5e,f), values of LDELTOTAL higher than 7 decreased the risk to
progress to AD within 3 years. Similarly to LDELTOTAL, TRABSCOR, which evaluates
executive functions [51], had a higher contribution in the female model than in the male
one, where higher scores increased the risk and lower scores decreased it, as depicted in
the explanation of female pMCI patients (Figure 5). These results regarding LDELTOTAL
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and TRABSCOR broadly support the evidence about a stronger decline in memory and
executive function in women who progress from MCI to AD compared with men [13].

Differences across sexes in the progression to AD have often been associated with
genetic risk factors, like APOE-ε4 allele [7,15]. For example, it has been found that the
odds ratio of AD in women with one copy of the APOE-ε4 allele is greater than that
in men, as reported in a review about sexual dimorphism in Alzheimer’s disease [15].
However, other studies did not support the role of APOE in differentiating men and
women when progressing to dementia [15]. In our study, the feature APOE4 did not have
high importance in the male or female model, resulting in a low ranking, as depicted in
the global explanations (Figure 2). This is in accordance with the work of Burke et al. [5],
who found that APOE-ε4 did not contribute differentially to the progression to MCI or AD
among men and women, and with Sohn et al. [3], who found no interaction effects between
sex and APOE-ε4.

Summarizing our findings, we find that, similarly to Berezuk et al. [4], the male RSF
model had a greater number of CSF and neuroimaging features contributing to the risk
prediction, and the female RSF model showed a greater number of neuropsychological
tests involved in the progression to AD.

4.1. Limitations

We must recognize several limitations in the current work. The study relies on data
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), and as such, the findings
may be specific to the characteristics of this particular cohort. Extrapolating the results
to broader populations may require caution, as demographic and clinical characteristics
can vary across different settings and populations. In detail, we must highlight that the
ADNI sample is highly educated, thus we cannot state that in a less educated sample, the
same variables would have the same influence. The study considers a fixed timeframe for
prediction (36 months). The progression of MCI to AD may exhibit temporal dynamics
that extend beyond this timeframe. The study includes a diverse set of biomarkers and
features, but the exclusion of certain relevant biological factors or the absence of specific
genetic markers might limit the comprehensiveness of the risk prediction models. Another
limitation is that this study is not longitudinal, and for this reason, we cannot make causal
inferences. Future research endeavors may benefit from collaborative efforts, standardized
methodologies, and the integration of diverse datasets to unravel the underlying complexi-
ties in this field. Furthermore, our results should be confirmed on independent cohorts of
men and women MCI patients to ensure reproducibility.

From a methodological point of view, disparities in the number of stable and progres-
sive MCI patients within the two male and female datasets may have introduced bias. If one
class is overrepresented or underrepresented, the model’s performance could be influenced,
potentially leading to feature importance rankings that are biased toward the majority
class. Efforts to balance the dataset or explore alternative techniques to handle imbalances
should be considered, including focusing on the distribution of event occurrences per
timepoint. Another methodological issue relies on the fact that the RSF algorithm assumes
proportional hazards over time, implying that the hazard ratios remain constant. However,
this assumption may not hold in all situations, and violations could impact the accuracy of
predictions. A more nuanced examination of time-dependent effects could provide addi-
tional insights, for example using model-agnostic methods tailored for survival analysis,
such as survLIME [52] or survSHAP [53].

4.2. Clinical Implications

Despite the above-described limitations, we believe that our work has important
clinical implications. Indeed, we proposed a novel ML approach to investigate sex-specific
patterns in AD progression, and as far as we know, it is the first work of this type. Given
our optimal performance and robust and stable explanations, we can state that the use of
RSF, together with SHAP, represents a valuable tool for personalized interventions and
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treatment strategies. The different features that SHAP revealed in the study reflect the mul-
tifactorial complexity of Alzheimer’s disease, highlighting the importance of considering
the interactions between genetic, environmental, and sex-related risk factors.

A detailed understanding of how these features differentially influence disease pro-
gression in men and women can aid in identifying individuals at high risk of progression
from Mild Cognitive Impairment to AD, significantly enhance therapeutic and diagnostic ap-
proaches, and enable the formulation of targeted and personalized preventive interventions.

A key element for both sexes has been identified as the FAQ, which can clinically
facilitate the identification of patients requiring support in daily living activities. Accord-
ing to Berezuk et al. [4], women tend to have more experience in these activities, thus
developing a greater functional reserve. In line with this theory, one could hypothesize
that a personalized medicine approach aimed at enhancing these capabilities and slowing
functional decline in both sexes.

For males, important features have emerged as the hippocampus and the RAVLT. The
critical role of the hippocampus in memory abilities is well-known, and the RAVLT also
assesses this specific cognitive function. Burke et al. [5] found that a reduced hippocampal
volume increases the risk of conversion and that stress can accelerate the process of atrophy.
Consequently, targeted interventions could be considered to provide tools for managing
stressful events in order to prevent atrophy and enhance mnemonic functions as protection
against the decline of this cognitive ability.

In women, various cognitive domains such as executive functions, processing speed,
and mental flexibility, assessed using the Trail Making Test (TRABSCOR), are relevant. In this
case too, it could be useful to enhance these faculties with specific cognitive rehabilitation.

Finally, in addition to genetic factors and biomarkers, various cognitive functions
appear to play a significant role; future efforts could aim at implementing targeted and
personalized interventions to strengthen those abilities that seem to play a role in the
conversion from MCI to AD, in order to prevent or slow cognitive decline.

5. Conclusions

In the present work, we applied Random Survival Forests, a Machine Learning tech-
nique for survival analysis, to shed light on how and whether feature contributions change
according to sex when predicting the risk of progressing to Alzheimer’s disease from Mild
Cognitive Impairment. Our results confirmed that women have a higher risk of progressing
to dementia; moreover, we highlighted peculiar sex-driven patterns of feature importance
with different contributions to the decrease/increase in conversion-to-AD risk. In conclu-
sion, the consistency of these findings with the existing literature underscores established
trends, while discrepancies highlight the intricate and multifactorial nature of sex-specific
differences in AD progression.
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Appendix A

List of demographics, clinical, neuropsychological, and neuroimaging features from ADNI:

• Demographic variables: Age, gender (PTGENDER), education levels (PTEDUCAT),
ethnicity (PTETHCAT) and race (PTRACCAT) [54], and marital status (PTMARRY) [55].

• Biomarker: APOE4 allele genotype, i.e., presence of APOE gene that makes the APOE4
protein, associated with late-stage AD [56].

• Clinical scales:

# Clinical Dementia Rating Sum of Boxes (CDRSB) is the sum score of the six
domains used to accurately stage the severity of Alzheimer’s disease, dementia,
and Mild Cognitive Impairment [57].

# Functional Activities Questionnaire (FAQ): an informant-based clinician-administered
questionnaire that assesses the functional daily living impairment in demen-
tia [47]. The total score ranges from a minimum of 0 to a maximum of 30. A
recommended cut-off of 9, indicating dependence on the caregiver in three or
more activities, is suggested to identify impaired function and potential cognitive
impairment [47].

• Neuropsychological assessment:

# Alzheimer’s Disease Assessment Scale (ADAS), items 11 and 13, and delayed
word recall (Q4) for assessing the memory, language, and praxis domains with
11 tasks, both subject-completed tests and observer-based assessments [58]. Total
scores can range from 0 to 70, and higher scores (≥18) suggest more significant
cognitive impairment [59].

# Mini-Mental State Examination (MMSE): 30 questions on orientation, short-term
memory retention, attention, short-term recall, and language to measure cognitive
impairment and stage of the severity level [60]. The MMSE scores range from 0 to
30, and lower scores suggest a greater level of cognitive impairment [61].

www.fnih.org
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# Rey Auditory Verbal Learning Test (RAVLT) [62] is a tool designed for assessing
various aspects of cognitive function, including episodic declarative memory, im-
mediate memory span, verbal learning, susceptibility to proactive and retroactive
interferences, retention of information, and abilities related to recall and memory
recognition. In detail, RAVLT_immediate evaluates immediate memory span (the
sum of scores from the first five trials, i.e., Trials 1 to 5), RAVLT_learning measures
learning ability and memorization of new information within a given time period
(the score of Trial 5 minus the score of Trial 1), RAVLT_forgetting (the score of Trial
5 minus the score of the delayed recall) and RAVLT_percent_forgetting (RAVLT
Forgetting divided by the score of Trial 5) estimate the amount of forgotten
information [48].

# The total delayed recall score of the Logic Memory subtest of the Wechsler Mem-
ory Scale-Revised (LDELTOTAL), which assesses verbal memory. The correct
responses to the items are summed, and the maximum score assigned is 25, for
both immediate and delayed recall. Higher scores reflect greater verbal memory
ability [50].

# Digit Symbol Substitution (DIGITSCOR) to evaluate attention, processing speed,
and executive function [63]. The score is given by the total number of correct
symbols executed within the allotted time.

# Trails B (TRABSCOR): time to complete part B of the Trail Making Test [64] that
assesses different cognitive domains such as processing speed, sequencing, mental
flexibility, and visual-motor skills. Higher scores indicate worse performance (i.e.,
longer completion times) [51].

# ADNI-modified Preclinical Alzheimer’s Cognitive Composite (PACC) with Digit
Symbol Substitution (mPACCdigit), and with Trails B (mPACCtrailsB) that mea-
sure the first signs of cognitive decline [65].

# Geriatric Depression Scale (GDTOTAL) to identify depression in elderly subjects [66].
A higher score on the GDS indicates a higher level of depressive symptoms.

# Total score of the Clock Test (COPYSCOR) [66]. The Clock Drawing test evaluates
various cognitive functions, including verbal understanding, memory, spatial
knowledge, abstract thinking, planning, concentration, and visuoconstructive
skills [67].

# Boston Naming Test (BNTTOTAL) assesses naming ability using 30 items [66].

• Cerebrospinal fluid (CSF) biomarker: Aβ1–42 (ABETA42), total tau (TAU), phospho-
rylated tau (PTAU) concentrations [68].

• Neuroimaging measures: MRI volumes of the ventricles, hippocampus, whole brain,
entorhinal cortex, fusiform, middle temporal gyrus (MidTemp), and total intracranial
volume (ICV), calculated with Freesurfer [69]; average fluorodeoxyglucose positron
emission tomography of angular, temporal, and posterior cingulate (FDG) [70]; hy-
pometabolic convergence index (HCI) [71], an FDG-PET index that provides a single
measurement of cerebral hypometabolism compared to the AD patients group.
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