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Abstract: The nucleus accumbens (NA) and the cingulate gyrus (CG) are two vital limbic brain
structures. They have attracted attention as deep brain stimulation (DBS) targets in the treatment
of common refractory psychiatric illness. The primary purpose of this article was to review the
current knowledge regarding the way that NA DBS affects the CG and vice versa. Methodologically,
a thorough literature review was performed. According to the current literature, NA DBS modulates
the function of several brain areas including the CG cortex. It specifically causes activation in the
ipsilateral CG cortex and voltage-dependent reduction of its blood oxygenation. It also reverses
anterior mid-CG cortex dysfunction and decreases metabolism in the subgenual CG. Moreover,
NA DBS that induces mirth inhibits the function of the anterior CG cortex and enhances effective
connectivity from anterior CG to the ventral striatum. On the other hand, although it is highly
probable that CG DBS affects the NA, the exact nature of its effects remains unclear. Despite the
increasing interest in psychiatric DBS, the available data on how NA DBS affects the CG and vice
versa are restricted. This conclusion probably reflects the high complexity of the limbic circuits and
necessitates further research.

Keywords: anatomy; cingulate gyrus; deep brain stimulation; limbic circuits; neuropsychiatric
disorders; nucleus accumbens

1. Introduction

The nucleus accumbens (NA) is a major pleasure center of the brain and acts as a limbic-motor
interface. It constitutes the major part of the ventral striatum and consists of two chemically distinct
parts in humans (identified by immunostaining against specific dopamine and opioid receptors), a
shell laterally and a core medially. The first is mainly connected to the limbic and the second to the
extrapyramidal motor system [1–4]. The cingulate gyrus (CG), especially its anterior part, constitutes a
bidirectional connection of the NA. More specifically, the NA core receives glutamatergic projections
from the anterior CG cortex and the CG cortex is a direct and indirect (the subgenual CG cortex via the
thalamus) efferent connection of the NA [1,5].

Additionally, both the NA and the CG cortex (its full extent) have connections with the subcallosal
CG white matter [6], and both the anterior CG cortex and the NA send outputs to the medial tip of
the subthalamic nucleus, which represents its limbic part [7]. The subgenual CG shows a wide range
of connections with limbic, prefrontal, and mesiotemporal areas including the NA [8,9]. Moreover,
the pregenual region of the anterior CG cortex is strongly connected to medial prefrontal and also
to the anterior mid-CG cortex [10]. Interestingly, the CG cortex is probably the thickest cortical area
connected to the NA [1,5].

Deep brain stimulation (DBS) has proven efficacy in neurobehavioral disorders, works by
modulation of cortico–striato–pallido–thalamo–cortical circuits implicated in these disorders [10], and

Brain Sci. 2019, 9, 5; doi:10.3390/brainsci9010005 www.mdpi.com/journal/brainsci

http://www.mdpi.com/journal/brainsci
http://www.mdpi.com
http://www.mdpi.com/2076-3425/9/1/5?type=check_update&version=1
http://dx.doi.org/10.3390/brainsci9010005
http://www.mdpi.com/journal/brainsci


Brain Sci. 2019, 9, 5 2 of 8

is emerging as a promising powerful tool for the alleviation of targeted symptoms in treatment-resistant
neuropsychiatric disorders. The major targets of neuropsychiatric DBS, for treating disorders such
as treatment-resistant depression (TRD) and obsessive-compulsive disorder (OCD), include the NA
and the CG cortex (especially the subcallosal/subgenual CG/Brodmann area 25 [8,11–13]) or CG
subgenual white matter [8,10–18]. These targets seem to be safe [13], with positive influence on mood
and anxiety disorders and sometimes complete remission of the symptoms [15,16], although in a small
number of cases [13].

Abnormal activity in cortico-striato-thalamo-cortical (fronto-striatal) circuits including the anterior
CG cortex and ventral striatum has been implicated in the neuropathogenesis of compulsive disorders,
such as OCD and anorexia nervosa [19,20]. DBS, e.g., of the NA, used for the treatment of
OCD was initially thought to create a functional lesion as in ablative procedures. However, it is
more probable that it may induce clinical benefit through activation of axonal fibers spanning the
cortico-striato-thalamo-cortical circuits, alteration of oscillatory activity within this network, and/or
release of critical neurotransmitters [20]. Furthermore, given the overlap in symptomatology and
neurocircuitry between reward-related disorders such as such as major depression [21], OCD, and
anorexia nervosa [19], and the established efficacy of NA DBS in OCD, it has been hypothesized
that DBS of the NA and other areas associated with reward, e.g., the anterior CG cortex, might be
an effective treatment for patients with chronic, treatment refractory anorexia nervosa [19]. Finally,
Brodmann area 24a of the CG cortex [13] has been also reported as a potential DBS target for TRD [13],
and the NA is also a promising target for the treatment of alcohol and heroin dependence [22].

As the subcallosal CG and NA are interconnected, one hypothesis is that by stimulating these
targets one would just be influencing different relays in the same circuitry [15]. However, the issue
arises as to whether NA DBS really affects the CG, and how. Conversely, could CG DBS have an impact
on the NA? Searching for answers to these questions, the primary purpose of this article was to review
the current knowledge regarding the way that NA DBS affects the CG and vice versa.

2. Materials and Methods

Methodologically a PubMed search for the terms “nucleus accumbens”, “deep brain stimulation”
and “cingulate cortex” was performed and retrieved 42 results (1995–2018). The resulting relevant
articles (only 24) formed the core of the materials used for this review. The criterion of relevance was
the description of either accumbens DBS effect on CG or cingulate DBS effect on the NA. Consequently
the resulting review is narrative in nature. No language limitations were noted. Additional data from
experimental and clinical studies of the NA were also used and the functional role of the NA-CG
connection was explored.

3. Results

3.1. Stimulation of the Nucleus Accumbens

Gibson et al. (2017) [23] studied OCD patients who underwent DBS of the ventral internal
capsule/ventral striatum (affecting the NA) with intraoperative identification of localizations according
to mirth-inducing and non-mirth-inducing stimulation. They found that only mirth-inducing DBS
caused functional inhibition of the anterior CG cortex and that mirth-inducing DBS enhanced effective
connectivity from this cortex to ventral striatum, while attenuating connectivity from thalamus to
ventral striatum compared to non-mirth-inducing stimulation [23].

Knight et al. (2013) [17] utilized 3 Tesla functional magnetic resonance imaging (fMRI) and
studied changes in a blood oxygenation level-dependent (BOLD) signal to test if NA/internal
capsule DBS could result in global activation of brain networks in an animal model. They observed
stimulation-evoked activation in the ipsilateral CG cortex among other cortical areas. Furthermore,
as the stimulation voltage increased from 3 to 5 volts, the BOLD signal was decreased in the CG
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and prefrontal cortex. These results suggest that NA/internal capsule DBS causes modulation of
psychiatrically important brain areas including the CG (as well as the prefrontal and insular) cortex [17].

Kuhn et al. (2011) [24] reported a patient with severe alcohol addiction who underwent NA
DBS which resulted in normalization of craving and addictive behavior. They noticed that an
electrophysiological marker of error processing (based on electroencephalographic recordings), linked
to the anterior mid-CG cortex functioning, was altered through DBS, an effect that could be reversed
in periods without stimulation. Thus, their case suggests that NA DBS may have a positive effect on
addiction via normalization of craving associated with anterior mid-CG cortex dysfunction [24].

Bewernick et al. (2010) [25] reported 10 patients suffering from TRD (not responding to other
treatments including electroconvulsive therapy) who were implanted with DBS electrodes bilaterally
in the NA. Twelve months after the beginning of DBS treatment, five patients reached a 50% reduction
of the Hamilton Depression Rating Scale. A significant increase was observed in the number of
hedonic activities. Interestingly, ratings of anxiety (Hamilton Anxiety Scale) were reduced in the
whole group but more boldly in the responders. Their [18F]-2-fluoro-2-deoxy-D-glucose positron
emission tomography data revealed that NA DBS decreased metabolism in the subgenual CG among
other (prefrontal) regions (including the orbital prefrontal cortex). Thus, NA DBS appeared to have
antianxiety, antidepressant, and antianhedonic effects, which are correlated with localized metabolic
brain changes [25].

Casquero-Veiga et al. [26] examined changes in brain glucose metabolism, weight gain and food
intake after NA DBS in a rat model of obesity. They found that it caused increased metabolism in the
CG cortex among other changes [26]. Pinhal et al. [27] applied DBS of the dorsal part of the ventral
striatum in mice and found that it induced c-Fos expression around the electrode tip and in different
regions of the prefrontal cortex, including the anterior CG cortex. However, this prefronto-cortical
activation was more extensive when they targeted the internal capsule [27]. Additionally, Figee et
al. [28] found that NA DBS normalized NA activity, reduced excessive connectivity between prefrontal
cortex and NA, and decreased frontal low-frequency oscillations during symptom provocation in OCD
patients [28].

Finally, it is worth mentioning that Dougherty et al. [29] reported a randomized controlled trial of
DBS at the ventral capsule/ventral striatum (affecting the NA) for TRD, which did not demonstrate a
significant difference in response rates between the active and control groups. In this case it seems
that NA DBS did not work as expected and it remains unanswered if these results could be potentially
affected by the connections between the NA and CG.

3.2. Stimulation of the Cingulate Gyrus

Chronic DBS of the subgenual CG white matter has led to remarkable remission of symptoms
in some patients suffering from TRD [9]. The anatomical connectivity of the subgenual CG region,
targeted stereotactically for electrode implantation in the treatment of depression, supports the theory
that treatment efficacy is mediated by effects on a wide network of limbic, frontal, and visceromotor
brain areas, including the NA [9]. However data regarding the nature of the effects of CG DBS on the
NA are missing.

Real-time fMRI feedback in smokers has shown that modulation of the anterior CG cortex can
decrease smokers’ craving for nicotine. Furthermore, decreased craving has been found in alcoholics
after transcranial direct current stimulation or transcranial magnetic stimulation of the anterior CG
cortex [22]. These results are similar to those from NA stimulation but the extent to which the NA
contributes to the effects of the CG stimulation remains unclear.

Interesting experimental results by Vassoler et al. (2013) [30] showed that pharmacological
inactivation of three medial prefrontal cortical areas including the anterior CG (the other two being
the infralimbic and prelimbic cortices) weakened the reinstatement of cocaine seeking in a rat model.
These results are similar with DBS of the NA shell attenuating cocaine reinstatement via local activation
and/or activation of GABAergic interneurons in the medial prefrontal cortex through antidromic
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stimulation of afferent cortico-NA fibers [30]. Whether anterior CG inactivation through DBS could
have similar effects remains an unanswered question.

3.3. Other Data

Metabolic depressions in the NA bilaterally and CG cortex, among other areas, have been elicited
in rats by a unilateral electrolytic lesion of the centrolateral nucleus of the thalamus [31]. In addition,
an extended and significant activation in the bilateral CG, as well as the NA, has been observed in
patients with psychogenic erectile dysfunction who were treated with apomorphine [32]. Finally,
prominent decreases of fMRI signals in regions including the NA and the anterior CG (Brodmann area
24) have been produced by acupuncture, with the opposite effect on the latter area when the subjects
experienced pain [33].

4. Discussion

The CG is involved in regulation of emotional life, reactivity to painful stimuli, memory processing,
and attention to sensory stimuli. Anatomically the CG cortex (as studied in monkeys) is composed of
two distinct areas numbered 24 and 23 in Brodmann’s classification [34]. These two cingulate areas are
interconnected and share several connections with deep gray matter and cortical areas. The anterior
CG (Brodmann area 24) is particularly related to the intralaminar, mediodorsal, and ventral anterior
thalamic nuclei, the amygdala, and of course the NA. [34]. The latter is implicated in a variety of
forms of reward-related learning, reflecting its anatomical connections with limbic cortical structures
including, as already mentioned, the CG [35].

The NA core, the anterior CG cortex, and the central nucleus of the amygdala are required
for normal acquisition of tasks based on stimulus-reward associations [36]. Interesting and crucial
functional anatomy information regarding these areas has been provided by experimental lesioning
studies. Lesions of the anterior CG cortex, lesions of the NA core (and not NA shell) and also
disconnection of the anterior CG cortex and NA core have been found to impair the acquisition of
appetitive Pavlovian conditioning in an autoshaping procedure in rats. These findings show that
the NA core and anterior CG cortex are “nodes” of a corticostriatal circuit involved in the learning
process of reward stimuli [35]. On the other hand, lesions of the central nucleus of the amygdala do
not impair animal performance in such stimulus-reward associated tasks. Interestingly a functional
outcome difference between anterior CG cortex lesions and NA core lesions is that the first do not
entirely abolish stimulus discrimination [36].

Both the anterior CG cortex and NA have been implicated in allowing animals to overcome effort
constraints in order to obtain greater benefits [37]. Walton et al. [37] (2009), in their interesting rat
experiments found that only lesions to the anterior CG cortex, and not 6-hydroxydopamine NA lesions,
can cause a bias away from spending effort for greater reward when choosing between options of
different competency [37]. Cardinal et al. [38] (2001) showed in rats that selective lesions of the NA core
induce persistent impulsive choice (choosing a small or poor reward that is available immediately, in
preference to a larger but delayed reward). Contrary to this finding, damage to the anterior CG cortex
and medial prefrontal cortex (both being NA afferents), had no effect on this capacity. Remarkably,
impulsive choice contributes to drug addiction, attention-deficit/hyperactivity disorder, mania, and
personality disorders [38].

Regarding human research, Wacker et al. (2009) [39] used resting electroencephalography, fMRI,
and volumetric analyses and found that anhedonia, but not other symptoms of depression or anxiety,
was correlated with reduced NA responses to reward, reduced NA volume, and decreased resting
activity (increased resting delta current density) in the rostral anterior CG cortex (an area implicated in
positive subjective experience). Moreover, NA reward responses were inversely associated with rostral
anterior CG cortex resting delta activity [39].

According to the current literature, NA DBS modulates the function of several brain (primarily
cortical) areas including the CG cortex (Figure 1). It specifically causes activation in the ipsilateral CG
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cortex, and voltage-depended reduction of its blood oxygenation [16]. It also reverses anterior mid-CG
cortex dysfunction [23] and decreases metabolism in the subgenual CG [24]. Moreover, NA DBS that
induces mirth inhibits the function of the anterior CG cortex and enhances effective connectivity from
anterior CG to the ventral striatum [22]. On the other hand, although it is highly probable that the CG
DBS affects the NA, the exact nature of its effects remains unclear.Brain Sci. 2019, 9, x FOR PEER REVIEW 5 of 7 
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Figure 1. A simplified summary of the currently known effects of nucleus accumbens (NA) deep brain
stimulation (DBS) on the cingulate gyrus (CG). The investigating method used to identify these effects
appears in parentheses. EEG, electroencephalogram; fMRI, functional magnetic resonance imaging;
PET, positron emission tomography.

Despite the increasing interest in psychiatric DBS and especially the role of the NA and CG as
potential targets, the available data on how NA DBS affects the CG and vice versa are restricted. This
observation depicts the high complexity of the limbic brain circuits and makes further research on this
subject a modern necessity. Future studies are mandatory to determine the parameters of NA DBS that
cause different CG parts to activate or deactivate, as well as how CG DBS could affect the NA and
other vital limbic regions. The clinical significance of targeting different CG subregions for treating
neuropsychiatric patients is also a field that needs further investigation.

5. Conclusions

The NA and CG are vital structures of the limbic brain circuits. They have attracted attention as
potential DBS targets in the treatment of common refractory psychiatric illness. NA DBS may activate
the CG cortex, reverse dysfunction of its middle part, and decrease metabolism in its subgenual part.
It may also inhibit the function of its anterior part while enhancing its effective connectivity to the NA.
In contrast, the exact effects of CG DBS on the NA remain unknown.
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