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Abstract: Constitutional copy number variants (CNVs) include inherited and de novo 

deviations from a diploid state at a defined genomic region. These variants contribute 

significantly to genetic variation and disease in humans, including breast cancer 

susceptibility. Identification of genetic risk factors for breast cancer in recent years has been 

dominated by the use of genome-wide technologies, such as single nucleotide polymorphism 

(SNP)-arrays, with a significant focus on single nucleotide variants. To date, these large 

datasets have been underutilised for generating genome-wide CNV profiles despite offering 

a massive resource for assessing the contribution of these structural variants to breast cancer 

risk. Technical challenges remain in determining the location and distribution of CNVs 

across the human genome due to the accuracy of computational prediction algorithms and 

resolution of the array data. Moreover, better methods are required for interpreting  

the functional effect of newly discovered CNVs. In this review, we explore current and future 

application of SNP array technology to assess rare and common CNVs in association with 

breast cancer risk in humans. 
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1. Introduction 

Over the past decade there have been a large number of studies that have explored the biological 

impact of constitutional (inherited and de novo) copy number variants (CNVs) in the human  

genome [1,2]. CNVs are structural rearrangements that increase or decrease DNA content at regions 

larger than 50 base pairs (bps) in size [1,2], accounting for a majority of genetic variation in humans 

based on bp coverage. These variants are estimated to cover 5%–10% [2] of the human genome which 

is at least an order of magnitude greater than the number of bps (~15 Mbps; dbSNP Human Build 142) 

encompassed by the more commonly studied single nucleotide polymorphisms (SNPs). 

Molecular technologies used to profile DNA copy number, such as microarrays (SNP-based arrays 

and comparative genomic hybridisation) and next-generation sequencing, have led to the identification 

of more than 300,000 CNVs, or 21,757 unique CNV loci in the human genome [3] . These technologies 

have also revealed the extent to which constitutional CNVs partially overlap or fully encompass genes 

and/or regulatory sequences. Concomitant gene expression analyses have shown a strong relationship 

between copy number dosage and mRNA levels with hundreds of genes [4,5]. This functional effect can 

play an important role in a variety of human diseases, including breast cancer [6–9]. 

2. Single Nucleotide Polymorphism (SNP)-Array Platforms to Assess Breast Cancer Risk 

A significant proportion of breast cancers arise in a subset of women who have multiple affected 

relatives as a result of inherited genetic factors that increase the risk of developing the disease. The relative 

risk (RR) of breast cancer in mothers and sisters of patients is increased, ranging from 1.8-fold to more 

than 5-fold [10,11]. In 5%–10% patients, inherited mutations in highly penetrant cancer susceptibility 

genes, such as BRCA1 and BRCA2, are known to confer a significantly elevated risk (>10-fold) of breast 

cancer and their carrier relatives [12]. A further 5% of cases carry deleterious variants in moderate-risk 

breast cancer susceptibility genes, such as CHEK2, ATM, BRIP1, and PALB2 [11–14]. However, these 

variants are too rare to be identified in most genome-wide association studies and do not increase risk 

sufficiently for capture by linkage analysis in family studies. 

Numerous genome-wide association studies for different population groups have successfully been 

performed to discover low-risk SNP variants that are associated with breast cancer [15–33]. Such studies 

have been underpinned by SNP array platforms from companies, such as Affymetrix, Illumina and 

Perlegen Sciences, ranging in genome coverage, spatial resolution and design. Probes used on SNP 

arrays for these studies have generally been selected to target SNPs with a minor allele frequency greater 

than 5%. Thus, genome-wide association studies are designed to detect causal variants that are relatively 

common in the population. As breast cancer studies have grown in size, less common variants are able 

to be assessed for risk association. A recent initiative as part of the Collaborative Oncological  

Gene-Environment Study (COGS) used a custom-designed array to assess almost 200,000 SNPs across 

the genome in approximately 50,000 breast cancer cases and 50,000 controls [28]. Studies of this size 

are statistically powered to evaluate variants with a minor allele frequency <5%. As a result of the large 

COGS initiative, more than 90 independent common susceptibility loci have now been identified, 

explaining a further 16% of the familial risk [27]. 

Currently known low-, moderate- and high-risk genetic factors explain up to half of the familial 

clustering in breast cancer [28]; thus, for a substantial fraction of women, the genetic changes 
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contributing to breast cancer remains undetermined, even if they have a family history [34]. Discovery 

of variants to explain this “missing heritability” is of clinical relevance, but will require different 

approaches that perhaps include other types of genetic variation, such as CNVs, using high  

throughput technology.  

3. Copy Number Variant (CNV) Prediction Algorithms for SNP Array Data 

The ability to study CNVs at a genome-wide level has been made possible by the development of 

high-throughput SNP array technologies. Moreover, the vast amount of SNP-genotyping data generated 

by numerous genome-wide association studies of breast cancer offers significant potential to explore the 

contribution of CNVs to this disease. SNP markers present on many early Affymetrix and Illumina arrays 

were also supplemented with thousands of intensity-only (non-polymorphic) probes that target known 

CNV regions, especially those regions unsuitable for SNP genotyping probes. 

A large number of CNV calling algorithms have been applied to SNP array and/or array  

comparative hybridisation data in published studies with variable success. A proportion of these 

algorithms have been utilised more frequently for a variety of reasons, including accuracy, availability 

and suitability to the array platform used in the studies and ease of implementation. Most algorithms are 

either proprietary and available commercially, or have coded implementations freely available for 

downloading. Table 1 lists those in common use by the citations of their principal publication in PubMed 

at the time of writing. A measure we acknowledge underestimates the popularity of commercial (and 

usually unpublished) solutions. 

ACCURACY of CNV Predictions from SNP Arrays 

A major limitation for the use of SNP arrays in CNV association studies is the accuracy of CNV 

calling algorithms. The current CNV algorithms vary in methodology and subsequently produce varied 

results (Table 1). The most numerous CNV calling methods use Hidden Markov Models (HMM) to 

estimate copy number at loci with transition probabilities estimated or supplied, as for example from 

gold standard datasets. Others methods use mixtures—particularly Gaussian—distributions, or Bayesian 

methods. Many implementations include heuristics to deal with or explicitly model features in the data 

such as loss of heterozygosity regions and GC waves, and set a minimum number of probes for which 

they will call a CNV. 

Methods have been proposed that might reduce false positives, including altering parameters within 

the algorithms (e.g. CNV size and number of probes included) and comparing multiple algorithms [35]. 

Validation of predicted structural variants is critical for the use in association studies. Table 2 provides 

a list of studies that explored the issue of algorithm accuracy. Three studies [36–38] assessed the 

accuracy of multiple CNV calling algorithms by comparing data they derived from samples previously 

used in “gold standard” studies [39,40]. These reports present different conclusions with respect to 

algorithm performance, although PennCNV was the only algorithm included in all three studies. 

Winchester and colleagues validated 49% of CNVs predicted by PennCNV in the Kidd et al. [40] study 

for the highest rate in their study. Zhang and colleagues used multiple permutations to obtain the greatest 

recovery of CNVs from gold standard studies using the same samples. For PennCNV with pedigree 

information included, a maximum recovery rate (number of CNVs in Conrad et al. [39] that were 
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predicted) was only 35% using >20 probes. Birdsuite was able to recover nearly half of the predicted 

CNVs (48%) under similar setting (no pedigree information). Zhang et al [38] found deletions were 

validated at a much higher rate with both Partek and Birdsuite correctly predicting deletions selected for 

validation (5/5). In comparison, predicted duplications showed a high false positive rate with PennCNV,  

the most accurate predicting 66.7% of CNVs validated (4/6) [38]. Similarly, Seiser and Innocenti 

assessed three samples previously characterised in Conrad et al. [39] to measure the performance of 

three HMM algorithms (GenoCN, PennCNV and QuantiSNP) [36]. PennCNV performed poorly with 

low sensitivity (14.46%, minimum of five probes) and high specificity (a common trait for HMM 

algorithms). With exception of Zhang et al. [38], many studies were limited by the reliance on CNVs 

from previously published reports as there was no attempt to experimentally validate predicted variants. 

Zhang and colleagues illustrate this vulnerability by highlighting disagreement with commonly used 

gold standards from Conrad et al. [39] and Kidd et al. [40]. Comparing CNVs calls in five samples used 

by each study showing strikingly poor agreement [38]. Other studies have used mass spectrometry, 

quantitative polymerase chain reaction (qPCR) and/or multiplex ligation-dependent probe amplification 

(MLPA) to attempt to validate CNVs [41,42]. Typically, these studies used methods to reduce false 

positives by creating strict criteria for inclusion. One study confirmed that sensitivity was a weakness of 

CNVPartition, PennCNV and QuantiSNP, with QuantiSNP showing the greatest MLPA-validated 

sensitivity (28%) [42]. This study also showed that, of the true positives, each algorithm tended to 

correctly predict the CNV class (homozygous deletion, heterozygous deletion and duplication) with 

sensitivity >92% and specificity >87%. An exception to these results was the ability of QuantiSNP to 

accurately call homozygous and heterozygous deletions, with call rates of 68% and 62%, respectively). 

Together, these studies highlight the lack of a consensus on CNV-calling methodologies used to assess 

SNP array data. Furthermore, results from publications reviewed in Table 1 support the necessity to 

experimentally validate any CNV loci that are predicted by SNP array data, and are to be included in 

breast cancer association studies
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Table 1. Commonly (>10 citations) applied CNV detection methods for SNP-array data. 

Software Algorithm Code Platform Year a Reference Citations b Software URL 

PennCNV HMM Perl Multiple 2007 [43] 300 http://penncnv.openbioinformatics.org 

Birdsuite 

(Birdseye, 

Canary) 

Mixture models Java/Python/R Affymetrix 2008 [44] 300 http://www.broadinstitute.org 

Nexus Copy 

Number 
Proprietary (Segmentation) windows executable Multiple - - 100 http://www.biodiscovery.com 

QuantiSNP HMM MATLAB Multiple 2007 [45] 100 http://sites.google.com/site/quantisnp 

CNVPartition Proprietary  windows executable Illumina 2006 - 100 http://support.illumina.com 

Partek Genomics 

Suite 

Proprietary (Segmentation 

or HMM) 
windows executable Multiple - - 30 http://www.partek.com/pgs 

CNVFinder Experimental variability perl Array CGH 2006 [46] 30 http://www.sanger.ac.uk/resources/software/cnvfinder/ 

CGHCall 
segmentation and mixture 

model 
R Array CGH 2007 [47] 30 http://www.few.vu.nl/~mavdwiel/CGHcall.html 

GenoCNV HMM R Multiple 2009 [48] 30 http://www.bios.unc.edu/~weisun/software/genoCN.htm 

SW-ARRAY Smith Waterman R Array CGH 2005 [49] 30 Not available 

HMMSeg HMM wavelet smoothing Java Multiple 2007 [50] 10 http://noble.gs.washington.edu/proj/hmmseg 

VanillaICE HMM R Affymetrix 2008 [51] 10 http://cran.r-project.org 

CNVHap HMM, Haplotype Java Multiple 2010 [52] 10 http://www.imperial.ac.uk/people/l.coin 

dChip Multiple R Multiple 2008 [53] 10 http://sites.google.com/site/dchipsoft 

GADA Bayesian R Multiple 2010 [54] 10 http://cran.r-project.org 

CNV Workshop Segmentation complete VM Multiple 2010 [55] 10 http://sourceforge.net/projects/cnv 

a Year reference when published. b At least this many citations in PubMed or company website at July 2015. Abbreviation: HMM, Hidden Markov Model.
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Table 2. Accuracy of CNV-calling algorithms. 

Algorithm(s) Platform Validation Method Accuracy Study Conclusion 
Referenc

e 

Adapted method on  

SW-ARRAY and GIM 
Affymetrix qPCR or Mass Spec Validation 2.5% false positives, ~90% singleton validation 

Developed a multistep algorithm to better 

call CNVs. 
[41] 

Birdsuite, CNAT, 

CNVPartition, GADA, 

Nexus, PennCNV and 

QuantiSNP 

Affymetrix, 

Illumina 

Comparison of HapMap 

samples to Kidd et al.,  

Korbel et al. and Redon et al., 

data [5,40,56] 

Assay sensitivity ranged 20%−49% with some 

algorithms predicting more events (i.e., GADA, 

546 predicted CNVs). 

PennCNV had the greatest sensitivity 

(49%). Little agreement between studies and 

within studies. 

[37] 

cnvHap, CNVPartition, 

PennCNV and 

QuantiSNP 

Aglient, 

Illumnina 

Compared samples either with 

previously characterized (by 

aCGH) CNVs or HapMap 

samples from Kidd et al. [40] 

cnvHap had very good sensitivity (68%) for 

larger CNVs (>10kb) in Kidd et al. This reduced 

to 31% for smaller CNVs (<5kb). 

cnvHap has increased sensitivity compared 

with other CNV algorithms. 
[52] 

PennCNV, 

Aroma.Affymetrix, APT 

and CRLMM 

Affymetrix 
Compared concordance 

between calling algorithms. 

Greater concordance in deletion (51.5%) than 

duplications (47.9%). The probable false 

positive rates for CRLMM and PennCNV were 

26% and 24%. 

PennCNV appeared to detect all the CNV 

and more than CRLMM predicted  
[57] 

CNVPartition, PennCNV 

and QuantiSNP 
Illumnina Agreement between algorithms 

Agreement varied from 59%−62% for deletions, 

to 43%−57% for duplications. 

Use of multiple algorithms increased the 

positive predictive value, as did the number 

of probes and the minimum size (kb). 

[35] 

CNVPartition, PennCNV 

and QuantiSNP 
Illumnina 

MLPA validation, measures 

were taken to reduce false 

positive calls. 

All algorithms show better specificity than 

sensitivity. QuantiSNP was the most sensitive, 

predicting 28% of CNVs. PennCNV was better 

at discriminating copy number state. 

Applying methods to reduce false positives 

results in low sensitivity. 
[42] 

ADM-2, Birdsuite, 

CNVfinder, 

CNVPartition, dCHIP, 

GTC, iPattern, Nexus, 

Partek, PennCNV, 

QuantiSNP 

CGH arrays 

and SNP 

arrays 

(Affymetrix 

and Illumina) 

Experiments were repeated in 

triplicate and CNV calls were 

compared. CNV calls were also 

compared to 5 references (‘gold 

standards’). 

Algorithm replication has <70% reproducibility. 

CNV calls between any two algorithms is 

typically low (25%–50%) within a platform. 

Overlap with DGV was high, whereas overlap 

with references [39,40] was low. 

Newer high resolution arrays outperform 

older arrays in both CNVs’ call and 

reproducibility. Algorithms developed for 

specific array platforms outperformed 

adapted and independent algorithms. 

[58] 
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Table 2. Cont. 

Algorithm(s) Platform Validation Method Accuracy Study Conclusion Reference 

Birdsuite, Partek, 

Genomics Suite, 

HelixTree and PennCNV 

Affymetrix 

Comparison with HapMap 

CNV in two studies [39,40]. 

Overlap ranged between 42% and 70% when 

including 20 probes for Kidd et al. [40] and 

26%−48% in Conrad et al. [39] 

Birdsuite outperformed the other  

3 algorithms over multiple permutation. 

[38] 
qPCR validation of rare CNVs 

(a single CNV event in >1000 

bipolar samples) 

For each algorithm between 10 or 11, CNVs 

were tested. Partek and Birdsuite both validated 

all (5/5) deletion events tested.  

Birduite and Partek had high positive 

predictive values, particularly with 

deletions. HelixTree performed poorly. 

CNVPartition, PennCNV 

and QuantiSNP 
Illumnina 

Comparison to a previous CGH 

study [59]. qPCR validation of 

3 candidate loci in 717 horses. 

50 CNVs were called by all 3 algorithms. 

QuantiSNP had the highest overlap with CNVs 

predicted from CGH arrays (25%). Validation 

rates were greater than 80% for the 3 loci. 

CNVPartition predicted the least CNVs, 

suggesting a high false negative rate. 
[60] 

GenoCN, PennCNV and 

QuantiSNP 
Illumnina 

Comparison of HapMap sample 

to Conrad et al.[39] Compared 

both CNVs (i.e. Gain or Loss) 

and normal calls. 

All algorithms show much better specificity 

than sensitivity. PennCNV had the worst 

sensitivity, predicting <15% of  

Conrad et al. [39] CNVs in 3 samples  

The three HMM algorithms all performed 

with varied results. They were all highly 

specific (>98%), but sensitivity remains to 

be an issue for all three algorithms. 

[36] 

cnvHap, COKGEN, 

GenoCNV, 

HaplotypeCN, PennCNV 

and QuantiSNP 

Affymetrix 

Compared 270 HapMap 

samples which have been 

previously described. 

Compared simulated data to 

test haplotype phasing between 

cnvHap and HaplotypeCNV. 

GenoCNV has the most sensitivity (28%) when 

using Kidd et al. [40]; however, the 

concordance rate in PennCNV was greater (36% 

and 9%, respectively). 

Algorithm performance varied with 

reference study. GenoCNV was the most 

sensitive but had the lowest concordance 

rate. HaplotypeCNV, cnvHap and 

PennCNV (under a specific permutation) 

were compared separately, with 

HaplotypeCN outperforming the other 

two.  

[61] 

Birdsuite, dCHIP, GTC 

and PennCNV 
Affymetrix 

Comparison to a previous CGH 

study [62]. 

GTC had the highest portion of CNV matching 

(50% overlap) to CGH, 66%. Larger CNVs 

were called with greater accuracy. 

Birdsuite called the most CNVs; however, 

PennCNV outperformed all algorithms 

with greater specificity and sensitivity. 

[63] 

Abbreviations: aCGH, array comparative genomic hybridisation; APT, Affymetrix Power Tools; CNV, copy number variant; CRLMM, corrected robust linear mixture 

model; DGV, Database of Genomic Variants (http://dgv.tcag.ca/dgv/app/home ); HMM, hidden Markov model; GTC, Genotyping Console; kb, kilobases; MLPA, Multiplex 

ligation-dependent probe amplification; qPCR, quantitative polymerase chain reaction. 
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4. Functional Annotation of CNVs 

The functional impact of CNVs in the human genome vary as a result of the variant size, copy number 

state, and location relative to genes or key regulatory regions. Homozygous deletions overlapping  

at least 85% of exons from approximately 100 protein-coding genes have been identified in genomes 

from seemingly healthy individuals [2], suggesting these genes are functionally redundant or are related 

to an unknown phenotype. Haploinsufficiency for genes disrupted by a hemizygous deletion is also  

an important mechanism for genetic disease, such as APOBEC3B and breast cancer risk [6,64]. Conversely, 

gene duplications resulting from overlapping CNVs can influence biology through triplosensitivity. 

There is an increasing number of CNVs of unknown clinical significance that are predicted to be 

involved in disease susceptibility due to potentially deleterious effects on overlapping or nearby gene(s). 

Despite the myriad of computational tools developed to detect CNVs for different array and sequencing 

platforms, a significant informatics challenge exists for interpreting both the functional and clinical role 

of these variants. Computational tools, such as SG-ADVISER CNV [65], CNV-WebStore [66] and 

CNVannotator [67], have been developed to derive functional effects from predicted variants. These 

tools are useful for assigning potential clinical implications of CNVs based on their location within 

known pathogenic regions. To assess variant pathogenicity, SG-ADVISER CNV utilises additional 

factors to generate a classification score, including 1) allele frequency information from repositories, 

such as the 1000 Genomes Project; and 2) clinical genetic information from databases, such as Online 

Mendelian Inheritance in Man [68], ClinVar [69]. However, a major limitation of annotating CNV 

regions derived using SNP arrays is the inability to precisely define their breakpoints. Thus, any overlap 

between predicted CNVs with clinically relevant regions along the genome remain putative without 

further validation using ancillary techniques, such as quantitative PCR or MLPA. 

5. Application of SNP Arrays for Profiling CNVs in Breast Cancer 

Structural variants, including CNVs, contribute to many complex diseases, and could account for 

some of the missing heritability of breast cancer. CNVs have been reported to encompass genes known 

to be involved in breast cancer susceptibility, including BRCA1 and BRCA2, and therefore may similarly 

affect other genes involved in breast cancer-related pathways [12]. 

5.1. Inherited Copy Number Polymorphisms and Breast Cancer Risk 

Analysis of large genome-wide association studies carried out by the Wellcome Trust Case Control 

Consortium suggested that common CNVs were unlikely to play a major role in breast cancer 

susceptibility [70]. This study used a 105K probe Agilent CGH array design containing probes tagging for 

copy number loci previously identified from (1) the Genome Structural Variation (GSV) Consortium [39]; 

(2) CNV studies using the SNP arrays Affymetrix 6.0, Illumina 1M, and Affymetrix 500k;  

(3) novel sequence absent from the reference sequence; 4) candidate genes; and 5) additional risk-associated 

loci. However, this study was not sufficiently powered to detect the effects of low-penetrant alleles with 

a minor allele frequency (MAF) less than 5%. Moreover, the genomic regions assessed by this study 

were limited by the design of the arrays used to generate genotype information across the genome. More 

recently, a genome-wide association study of common CNVs (MAF ≥ 5%) conducted among Chinese 
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women using high-resolution data from the Affymetrix SNP Array 6.0 identified a deletion in the 

APOBEC3 gene cluster associated with breast cancer risk. Within this population, the deletion was 

identified in 65% cases and 45% of controls, conferring odds ratios (ORs) of 1.3 and 1.8 for a hemizygous 

and homozygous deletion, respectively (p = 2.0 × 10−24) [6]. Subsequent investigations of women with 

European ancestry using quantitative-PCR also observed the deletion, albeit at a much lower population 

frequency [71]. Comparable to the study of Chinese women, a higher proportion of breast cancer affected 

European women (12.4% vs. 10.4%, respectively) because they carried the APOBEC3 allele, thereby 

conferring low to moderate risk of disease (ORs of 1.2 and 2.3 (p = 0.005) for a hemizygous and 

homozygous deletion, respectively). Interestingly, the same deletion (CNV ID: CNVR8164.1) was 

originally identified by the Wellcome Trust Case Control Consortium; however, replication experiments 

did not show a significant association with breast cancer. 

As mentioned above, there is now a wealth of array data available from SNP-based genome-wide 

association studies that can be utilised for assessing the contribution of CNVs to breast cancer risk. 

Furthermore, the huge number of cases and controls available for future CNV association studies will 

provide sufficient power to evaluate many CNVs that occur at low frequency. A major limitation with 

using these array data is the inability to genotype highly repetitive copy number-variable regions. More 

than 1000 regions across the human genome have been found overlapping CNVs with three or more 

segregating alleles [72]. Non-array-based technologies that can resolve multicopy integer states, such as 

qPCR, Nanostring and massively parallel sequencing, will therefore be necessary to determine the 

clinical significance of these multiallelic variants in breast cancer and other human diseases. 

5.2. Inherited and de novo Rare CNVs and Breast Cancer Risk 

At least seven array-based studies have reported lists of rare CNVs overlapping genes that may 

contribute towards the development breast cancer [8,73,74]. Despite a number of candidate susceptibility 

genes being proposed there has been a notable lack of concordance between these studies. More than 

120 genes overlapping rare genomic deletions or duplications have been found exclusively or at a greater 

frequency in familial breast cancer cases; however, none have been replicated between studies 

(Supplementary Table S1). Such a finding is not surprising as many individuals carry rare or private 

CNVs regardless of their disease status [2,75]. Furthermore, four of these studies used SNP-based arrays 

which are known to generate signal-to-noise ratios that are much lower than array-CGH platforms and 

are therefore more prone to false CNV calls [58]. It remains unclear whether future large-scale studies 

will provide the reproducible evidence needed to implicate these rare CNVs as breast cancer risk variants 

and to overcome the issue of false discovery. 

Growing evidence suggests that the frequency and size of constitutional CNVs are significantly 

increased in breast cancer-affected individuals [73,74,76]. Studies have assessed the global burden of 

deletions and duplications in cases and controls by measuring: (1) the number of CNVs per sample;  

(2) the number CNVs overlapping genes (and vice versa) per sample; (3) the average length of CNVs 

per sample; and (4) the total number of base pairs affected by CNVs per sample. Although studies have 

revealed a common trend of increased CNV burden in breast cancer cases, the trend appears to be 

strongest when assessing CNVs that overlap gene regions [73,74]. Evaluating such genes further by 

pathway analysis suggests two networks centred on factors known, TP53 and -estradial [73], may be 
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important in breast cancer risk and development; however, these findings are yet to be reproduced. The 

feature of “CNV burden” has also been observed in the genome of patients with other cancers, suggesting 

that an uncharacterised subset of these variants may be causal [77–80]. Further studies are needed to 

identify recurring variants at shared loci. 

5.3. Is There a Relationship between Germline CNVs and Breast Tumourigenesis 

A characteristic of sporadic and familial breast tumours is genomic instability, resulting from either 

inherited mutations in genes that control genome integrity, or mutations that are acquired in somatic 

cells during development. Breast tumour cells in carriers of the APOBEC3A-APOBEC3B germline 

deletion show a greater number of C>T transitions than in non-carriers [81], thereby highlighting the 

importance of this common CNV in breast cancer development. It has previously been proposed that 

germline CNVs may also contribute to somatically acquired chromosome changes in tumours. Previous 

studies of Li-Fraumeni Syndrome (LFS) tumours [80] and of colon cancer-affected individuals [82] 

suggested that constitutional CNVs may act as a foundation on which chromosome copy number 

aberrations develop in tumour cells. These findings suggested a direct relationship between 

constitutional genomic variation and tumour genome evolution. The notion that inherited CNVs may 

influence the occurrence of somatically acquired copy number changes during breast cancer progression 

has not only prognostic significance, but also important consequences for early decisions relating to 

clinical management. Subsequent analyses of constitutional and tumour-specific CNVs in matched 

breast tumour and normal tissue using data from the Illumina Human CNV370 duo beadarray provided 

evidence that the location of copy number aberrations in tumour cells do not associate with constitutional 

CNVs [83]. However, the SNP arrays used in these studies had a relatively low number of probes and 

therefore poor spatial resolution for detecting CNVs and defining the variant boundaries. To determine 

the relationship between inherited genomic variation and genome evolution in breast cancer,  

sequencing-based studies are necessary to ensure accurate mapping of CNV breakpoints. 

6. Conclusion 

Genotyping constitutional CNVs using low- and high-resolution SNP arrays has served as the primary 

screening method for identifying potential genetic markers associated with breast cancer risk. Despite 

the large amount of SNP array data available from breast cancer studies, the contribution of inherited 

copy number variation to breast cancer risk remains relatively understudied. A variety of algorithms 

have been generated and matched to these datasets for predicting copy number-affected regions 

throughout the genome. Applying such algorithms may reveal new common and rare variants that 

contribute to breast cancer risk. However, initial analyses suggest array-based CNV data may be 

unreliable without further validation using ancillary technologies, such as qPCR, Nanostring, and 

MLPA. Moreover, the current and future use of new higher resolution technologies, including  

next-generation sequencing, will be critical for characterising CNV breakpoints, to better interpret their 

potential impact on breast cancer risk. 
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