Supplementary Material

Effect–Directed Profiling of Powdered Tea Extracts for Catechins, Theaflavins, Flavonols and Caffeine

Gertrud E. Morlock ^{1,*}, Julia Heil ¹, Antonio M. Inarejos–Garcia ², and Jens Maeder ³

¹ Chair of Food Science, Institute of Nutritional Science, and TransMIT Center for Effect–Directed Analysis, Justus Liebig University Giessen, Heinrich Buff Ring 26–32, 35392 Giessen, Germany

² Department of Functional Extracts, ADM Wild Valencia, 46740 Carcaixent, Spain

³ Department of Science & Technology, ADM Wild Europe, 13597 Berlin, Germany

* Correspondence: Gertrud.Morlock@ernaehrung.uni-giessen.de; Tel.: +49-641-9939140

Dedicated to Joseph Sherma, John D. and Francis H. Larkin Professor of Chemistry Emeritus, Lafayette College, Easton, PA, USA

This pdf contains Tables S1 to S3 Figures S1 to S6 **Table S1** Compilation of the investigated 3 Camellia sinensis tea leaf samples and 17commerical powdered tea extracts on the market (claimed to be aqueous extracts)

Product category	ID	Specification	Color	
Black tea leaves	1	Reference	black	
Black tea extract powder		Not specified	ocre	
3		Theaflavins 10%	redish	
	4	Theaflavins 60%	dark red	
	5	Polyphenols 20%	light brown–khaki	
	6	Polyphenols 50%	brown	
	7	Polyphenols 70%,	red brown	
		Theaflavins 40%,		
		Caffeine 1%		
		Polyphenols 95%	brick red	
	9	Polyphenols 98%	brick red	
White tea extract powder	10	Reference	curry yellow	
Green tea extract powder 11		Polyphenols 15%	ocre	
	12	Polyphenols 50%	light-brown	
	13	Polyphenols 90%	dark orange	
	14	Catechins 15%	ocre	
	15	EGCg 45%	brick red	
	16	Catechins 60%	dark orange	
	17	Catechins 80%	light red-rose	
	18	Not specified	dark orange	
	19	Not specified	mustard–yellow	
Green tea leaves	20	Reference	ocre	

Table S2 Compilation of the 32 different mobile phase systems on different RP–18 HPTLC plates (all Merck) investigated for separation of the 11–bioactive–compound mixture (2 μL, 400 ng/band each) up to 6 cm (or 8 cm for No. >16), detected with anisaldehyde sulfuric acid reagent at Vis, or FLD 366 nm to additionally reveal the two flavonols Q and R as light blue fluorescent bands

No.	Solvent composition	Ratio (V/V/V)	Chromatogram	Remark			
RP-1	RP–18 W (normal phase separation mechanism)						
1	ethyl acetate – toluene – formic acid	5:5:0.3		not better than on silica gel			
2	pentyl acetate – toluene – formic acid	5:5:0.3		too weak			
3	toluene – ethyl acetate – pentyl acetate – formic acid	5:3:2:0.6		worse			
4	ethyl acetate – toluene – formic acid – water	5:1.5:0.6:0.4		too strong			
5	toluene – ethyl acetate – pentyl acetate – methanol – formic acid	10:5:5:1.4:0.6		worse			
6	toluene – pentyl acetate – acetonitrile – formic acid	5:2.5:2.5: 0.3		worse			

7	<i>t–</i> butyl methyl ether – methanol – water	7:3:1		diffuse, took 50 min		
	8–10: each with a focusing step up to 1.5 cm with 3	3 mL methanol to elu	te R			
8	toluene – pentyl acetate – ethyl acetate –formic acid – water	10:5:5:0.6:0.6		too weak		
9	toluene – pentyl acetate – ethyl acetate – formic acid	10:8:2:0.6		too weak		
10	toluene – pentyl acetate – ethyl acetate – formic acid	10:5:5:0.6		not better than on silica gel		
RP-1	RP-18 W (reversed phase separation mechanism)					
11	acetonitrile – water – formic acid	5:1:0.2		too strong		
12	acetonitrile – water – citric acid	2.4:8 + 30 mg		best on RP–18 W plate		
13	acetonitrile – water – formic acid	1.2:4:0.3		[48] spread over wide range		

RP–18 W F ₂₅₄ s (reversed phase separation mechanism)					
14	acetonitrile – water – citric acid	2.4:8 + 30 mg		best on RP–18 W F ₂₅₄ s plate	
15	acetonitrile – water – formic acid	1.2:4:0.3		[48]	
16	same as 15, but plate prewashed			no effect of prewashing	
LiChrospher RP–18 W F ₂₅₄ s (normal phase separation mechanism)					
17	pentyl acetate – ethyl acetate – toluene – formic acid – water	2.5:2.5:5:0.3:0.3		too weak	
18	toluene – pentyl acetate – ethyl acetate – formic acid	10:5:8:0.6		5 compounds too weak	

LiChrospher RP–18 W F ₂₅₄ s (reversed phase separation mechanism)					
19	acetonitrile – water	1.4:4		7 compounds diffuse	
20	acetonitrile – water – formic acid	1.2:4:0.5		8 compounds	
21	acetonitrile – water – formic acid	1.4:4:0.3		8–9 compounds	
22	acetonitrile – water – formic acid	1:4:0.3		9 compounds	
23	acetonitrile – water – formic acid	1.2:4:0.3		[48] 9 compounds	
24	acetonitrile – water – citric acid	2.4:8 + 30 mg		all 8 flavan–3–ols separated; different color, as reagent sequence was used	

Machery & Nagel W UV ₂₅₄					
25	acetonitrile – water – formic acid (saturated with + 150 μL toluene)	1.2:4:0.15		9 compounds	
26	acetonitrile – water – formic acid – dimethyl formamide	1.2:4:0.15:0.15		9 compounds background non-homogenously	
27	acetonitrile – water – citric acid	2.4:8 + 100 mg		8 compounds	
28	acetonitrile – water – citric acid	2.4:8 + 30 mg		8 compounds	
29	acetonitrile – water – formic acid – acetic acid	1.2:4:0.15:0.15		8 compounds	
30	acetonitrile – water – formic acid	1.2:4:0.3		[48] 8–9 compounds	
31	acetonitrile – water – formic acid	1.2:4:0.15		best on Machery & Nagel plate 9 compounds	
32	acetonitrile – water – trifluoroacetic acid	1.2:4:0.1		9 compounds Q still on start zone	

Table S3 Comparison of different wettable RP–18 HPTLC plate types using the same mobile phase system of acetonitrile – water – formic acid 1.2:4:0.3, V/V/V [48], up to 8 cm, investigated for separation of the 11–bioactive–compound mixture (3 µL, 600 ng/band each) after derivatization with the anisaldehyde sulfuric acid reagent detected at FLD 366 nm to reveal the two flavonols Q and R as light blue fluorescent bands

Merck			Machery & Nagel		
W		7 compounds	W UV ₂₅₄		9 compounds
W F ₂₅₄ s		9–10 compounds			
Aluminum foil		diffuse 3 compounds	Aluminum foil		9 compounds
LiChrospher W F ₂₅₄ s		10 compounds Batch HX42224046			
		10 compounds Batch HX602331			

Fig. S1 Images of the investigated 20 *Camellia sinensis* samples for effect–directed profiling: 3 tea leaves (No. 1: black tea, 10: white tea and 20: green tea, all sieved to 500 μ m particles, as exemplarily shown) and 17 aqueus tea extract powders.

Fig. S2 HPTLC–UV/FLD chromatograms of the amount–dependent separation of the 11– bioactive–compound mixture (0.2–8 μ L, 40–1600 ng/band) on the HPTLC plate silica gel 60 RP– 18 W F₂₅₄ s (batch HX60386224) using acetonitrile – water – citric acid (1.8 mL + 6 mL + 23 mg) after development (**a**), natural product reagent (**b**), PEG 400 (**c**) and Fast Blue B salt reagents (**d**); the green fluorescent band at hR_F 8 was considered to be an impurity, breakdown product or contaminant.

Fig. S3 Assignment of the 10 flavonoids in the 11–bioactive–compound mixture (1 μ L, 200 ng/band each): HPTLC–Vis/FLD chromatograms of the separation of the 8 flavan–3–ols and 2 flavonols on the HPTLC plate silica gel 60 RP–18 W F₂₅₄s (batch HX60386224) using acetonitrile – water – citric acid (1.8 mL + 6 mL + 23 mg), detected after derivatization via a reagent sequence, *i.e.* first applying the Fast Blue B salt reagent (**a**; Vis; only a faint band for Q and none for R), and then, the natural product reagent (**b**; FLD, Q as yellow and R as orange fluorescent band) on the same plate.

Fig. S4 Response enhancement in the images of the 5–point calibration and quantification of 5 tea samples (TC1–TC5) at UV 254 nm and FLD 366 nm before (**a**) and after the application of the buffer solution (**b**). After development (before application of the assay), the dried chromatogram was neutralized with 2.8 mL sodium hydrogen carbonate buffer (2.5 g/100 mL, pH 8) by piezoelectric spraying (yellow nozzle, level 6) and dried for 4 min.

Fig. S5 Overlaid densitometrically measured responses at UV 275 nm, exemplarily shown for the tea sample TC4, obtained directly, after 1 h, 2 h and 3 h on the buffered RP plate proved the stability of the UV signal.

Fig. S6 Observations during the development of the *Bacillus subtilis* bioassay on the LiChrospher[®] HPTLC plate silica gel 60 RP–18 WF₂₅₄S: the bioassay was more sensitive to the acidic plate pH of 3.1 after the acidic development and did not lead to the usual background color (a); the use of different plate prewashing protocols (not shown) was not successful as well as a two times plate neutralization with the sodium hydrogen carbonate buffer of pH 8 (b) or a stonger buffer of pH 12 on a twice prewashed plate (c) or on a non–prewashed plate but using overnight incubation (d), all with intermediate plate drying (5 min).