In-depth AGE and ALE profiling of human albumin in Heart Failure: *ex vivo* studies

- Alessandra Altomare^{1+⊥,} Giovanna Baron^{1⊥,} Marta Balbinot¹, Alessandro Pedretti¹, Marina Carini¹, Beatrice Zoanni², Maura Brioschi², Piergiuseppe Agostoni^{1,3}, Cristina Banfi² and Giancarlo Aldini¹
- ¹ Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy; <u>alessandra.altomare@unimi.it</u>
- ² Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138, Milan, Italy; Banfi Cristina; cristina.banfi@cardiologicomonzino.it
- ³ Dipartimento di Scienze Cliniche e di Comunità, Sezione Cardiovascolare, Università di Milano, Italy. piergiuseppe.agostoni@cardiologicomonzino.it

 $^{\perp}$ These Authors equally contributed to the work

* Correspondence: <u>alessandra.altomare@unimi.it</u> (Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy) (A.A.)

Table S1. Clinical and demographical characteristics of the study population.

* current smokers

DM II, Diabetes mellitus type 2; BMI, body mass index; FE, ejection fraction; BNP, brain natriuretic peptide;

	control subjects		Heart failure patients		
Characteristics	mean	SD	mean	SD	pvalue
Age	53,6	2,1	58,1	6,1	n.s.
Gender (F/M)	2/6		1/9		
Hypertension (n)	0		3		
Dyslipidemia (n)	0		3		
Smoke* (n)	0		1		
DM II (n)	0		3		
BMI (Kg/m ²)	23,5	2,0	26,6	4,0	n.s.
FE (%)	-		30,6	7,5	
Glycemia (mg/dL)	100,6	10,3	118,0	42,2	n.s.

Hb (g/dL)	14,8	0,9	13,5	1,8	n.s
Uric acid (mg/dL)	5,0	0,7	8,1	2,4	0,003
BNP (pg/ml)	-		635,0	462,6	
total cholesterol (mg/dL)	207,6	29,7	183,2	25,4	n.s

Table S2. Known (literature based) covalent adducts induced by HNE, ONE, MDA, ACR, GO, MGO,RED_Sugar derivatives and Cys-oxidation derivatives set as variable modifications within the PD parametersfor the identification and localization of AGE/ALE-deriving adducts.

4-hydroxy-2-nonenal (HNE)				
РТМ	AA Res. Involved	ΔM (no NaBH4)	∆M (+ NaBH4)	
	Cys			
Michael adduct (LINE MA)	His		159 12067 Da	
	Lys	+ 150.110502 Da	+ 150.15007 Da	
	Arg			
Schiff Pace (UNE-SP)	Lys	128 01446 Da	+ 140.12011 Da	
	Arg	+ 130.01440 Da		
2-pentilnyrrole (DD)	Lys	+ 120 0939 Da	_	
	Arg	120.0555 Da	-	
	Cys			
Dehydronentylfuran (DHDE)	His	+ 138 10446 Da	-	
Denyalopentynaran (DHFF)	Lys	+ 130.10440 Da		
	Arg			
4	-oxo-2-nonenal (O	NE)		
PTM	AA Res. Involved	ΔM (no NaBH4)	∆M (+ NaBH4)	
	Cys			
Michael adduct (ONE-MA)	His		± 158 13067 Da	
	Lys	+ 154.05557 Da	+ 150.15007 Da	
	Arg			
	Lys			
Schiff Base (ONE-SB)	Ara	+ 136.08881 Da	+ 140.12011 Da	
	Alg			
	Cys			
	His	126 00001 5		
ONE-pentylfuran (O PF)	Lys	+ 136.08881 Da	-	
	Arg			
Malondialdehyde (MDA)				
РТМ	AA Res. Involved	∆M (no NaBH4)	ΔM (+ NaBH4)	

 $2 \ of \ 6$

N-propenal-Lysine (NPK)	Lys	+ 54.01056 Da	+ 56.02621 Da	
Di-dihydropyridine-lysine (DHPK)	Lys	+ 134.03678 Da	+ 138.06808 Da	
Malondialdehyde argpyrimidine(MDA-RP)	Arg	+ 36.0000 Da	-	
	Acrolein (ACR)			
РТМ	AA Res. Involved	ΔM (no NaBH4)	ΔM (+ NaBH4)	
	Cys			
MA	Lys	+ 56.02621 Da	+ 58.04186 Da	
IMA)	His			
Hydroxy-tetra-hydropyrimidine (Propane-	Ara	L 56 02621 Da		
arginine) (HTPR) (HTPR)	Arg	+ 50.02021 Da	-	
Double Michael Adduct (2ACR-KMA)	Lys	+ 112.05243 Da	+ 116.08373 Da	
Schiff Base (ACR-SB)	Lys	+ 38.01565 Da	+ 40.0313 Da	
Formyl-dehydro-piperidyl-lysine (FDPK)	Lys	+ 94.04186 Da	+ 96.05751 Da	
Methylpyridine-lysine (MPK)	Lys	+ 77.03912 Da	-	
	Glyoxal (GO)			
РТМ	AA Res. Involved	ΔM (no NaBH4)	⊿ <i>M (+ NaBH4)</i>	
	Lys	50 00F 170 D		
Carboxymetnii derivative (GO-CM)	Arg	+ 58.005479 Da	-	
Glyoxal Imidazolone (GO_IR)	Arg	+ 39.99492	-	
N	lethyl Glyoxal (MG	6O)		
РТМ	AA Res. Involved	∆M (no NaBH4)	∆M (+ NaBH4)	
	Cys			
Carboxyethil derivative (MGO-CE)	Lys	+ 72.02113 Da	-	
	Arg			
Methylglyoxal Methylimidazolone Derivative	A.r.g.			
(MGO-RMI)	Arg	+ 54.01056 Da	-	
Methylglyoxal Pirimidine Derivative (MGO-	Δra	+ 80.02622 Da	_	
RP)	, "9	- 00.02022 Du		
Methylglyoxal Tetra Hydro Pirimidine	Arg	+ 144.04226 Da	-	
Derivative (MGO-THPR)				
	Sugar Derivatives	5	F	
РТМ	AA Res. Involved	ΔM (no NaBH4)	⊿ <i>M (+ NaBH4)</i>	
Glucose Deoxy-fructosil Deirvative	Lys	+ 162.05282 Da	_	
(DFK/DFR)	Arg	102.03202 Du		
3-Deoxyglucosone-Imidazolone Derivative	Ara	+ 144.04226 Da	-	
(3DG-IR)	· " 9			
Glucose Pirraline derivative (PK)	Lys	+ 108.1723 Da	-	
Cy	steine-Oxo Derivat	tives	r	
DTN 4	AA Pec Involved	AM (no NaBH4)	$\Lambda M (+ N_2 R H \Lambda)$	

Cys

Sulfenic Acid-Cys (Sulfe_AC)

+ 15.99492 Da

-

Sulfinic Acid-Cys (Sulfi_AC)	Cys	+ 31.98983 Da	
Sulfonic Acid-Cys (Sulfo_AC)	Cys	+ 47.98474 Da	
Glutathione Disulfide Adduct (GSS-)	Cys	+ 305.681596 Da	-
S-Nitrosilation (S-Nicro_Cys)	Cys	+ 28.99016 Da	-

Figure S1. Example of the SIC extraction from the total chromatogram (HF 24 sample used for the semi-quantitative analysis of selected adducts. Peptide 287_SH*CIAEVENDEMPADLPSLAADFVESK_313 bearing an ACR-MA on the His 288 residue has been detected in the peptide mixture in two forms: one with oxidized methionine (m/z 1016.7929) and one without methionine oxidation (m/z 1011.4601), that were present also for the native peptide (Met_Ox m/z 997.45205; No_Ox m/z 992.12015); for the semi-quantitative analysis, all the species mentioned were considered. Other aspecific peaks were detected in the SIC chromatograms of the two modified species: however, only the peaks at 29.17 \pm 0.028 min were integrated to calculate the area values since the corresponding MS2 spectra confirmed the peptide sequence; the other peaks probably refer to isobaric species.

Table S3. Inclusion List. For each listed adduct are reported: (i) the peptide sequence); (ii) the modification bearing by the peptide; (iii) the aminoacidic site; (iv) the predominant charge state, and the corresponding (v) experimental m/z of the precursor and (vi) the theoretical one.

5	of	6
---	----	---

Peptide Sequence	AGE/ALE Adduct	AA	Charge	m/z Sp.	m/z th.
		residue			(Inclusion
		involved			list)
337_RHPDYSVVLLLR_348	1xGO_Carboxymethyl [R1]	Arg 337	3	509,6208	509,2861
337_RHPDYSVVLLLR_348	-	-	3	489,9513	489,95249
485_RPCFSALEVDETYVPK_500	1xCarbamidomethyl [C3]	Arg 485	3	657,3184	657,3184
	1xGO_Carboxymethyl [R1]				
485_RPCFSALEVDETYVPK_500	1xCarbamidomethyl [C3]	-	3	637,982	637,982
11_FKDLGEENFK_20	1xGO_Carboxymethyl [K2]	Lys 12	3	428,87495	428,87495
11_FKDLGEENFK_20	-	-	3	409,5388	409,5388
373_VFDEFKPLVEEPQNLIK_389	1xGO_Carboxymethyl [K6]	Lys 378	3	702,0385	702,0385
373_VFDEFKPLVEEPQNLIKQNCELFEQLGEYK_402	1xCarbamidomethyl [C20];	Lys 378	3	1247,5939	1247,95628
	1xGO_Carboxymethyl [K6]				
373_VFDEFKPLVEEPQNLIKQNCELFEQLGEYK_402	1xCarbamidomethyl [C20];	Lys 389	4	962,4763	962,4763
	1xGlu_deoxy-fructosil [K17]				
373_VFDEFKPLVEEPQNLIK_389	-	-	3	682,7026	682,37068
390_QNcELFEQLGEYkFQNALLVR_410	C3(Carbamidomethyl);	Lys 402	3	886,7759	886,44583
	1xGO_Carboxymethyl [K13]				
390_QNcELFEQLGEYKFQNALLVR_410	C3(Carbamidomethyl);	-	3	867,4366	867,10416
414_KVPQVSTPTLVEVSR_428	1xGO_Carboxymethyl [K1]	Lys 414	3	566,9925	566,65944
414_KVPQVSTPTLVEVSR_428	-	-	3	547,3155	547,31749

Figure S2. SDS-PAGE analysis of *in vitro* produced AGEs/ALEs adducts by incubating HSA with glyoxal (GO) at increasing molar ratios between protein and GO (1:10, 1:100, 1:1000); the time-dependence effect was also evaluated stopping the reaction at two time points: after 48 h (*panel a*) or 72 h (*panel b*). HSA modified by GO is characterized by a different migration pattern on the gel, with the appearance of oligomeric bands proportional to the increase of the HSA-GO molar ratio.

a) 48h of INCUBATION

b) 72h of INCUBATION

