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Abstract: Breast cancer expresses clinically heterogeneous characteristics and requires multipurpose
drug development for curing the different tumor subtypes. Many withanolides have been isolated
from Physalis species showing anticancer effects, but the anticancer function of physapruin A (PHA)
has rarely been investigated. In this study, the anticancer properties of PHA in breast cancer cells
were examined by concentration and time-course experiments. In terms of cellular ATP content,
PHA inhibited the proliferation of three kinds of breast cancer cells: MCF7 (estrogen receptor
(ER)+, progesterone receptor (PR)+/−, human epidermal growth factor receptor 2 (HER2)−), SKBR3
(ER−/PR−/HER2+), and MDA-MB-231 (triple-negative). Moreover, PHA induced G2/M arrest
in MCF7 and MDA-MB-231 cells. In terms of flow cytometry, PHA induced the generation of
reactive oxygen species (ROS), the generation of mitochondrial superoxide, mitochondrial membrane
potential depletion, and γH2AX-detected DNA damage in breast cancer MCF7 and MDA-MB-231
cells, which were suppressed by the ROS inhibitor N-acetylcysteine (NAC). In terms of flow cytometry
and Western blotting, PHA induced apoptotic expression (annexin V, and intrinsic and extrinsic
apoptotic signaling), which was suppressed by NAC and an apoptosis inhibitor (Z-VAD-FMK), in
breast cancer cells. Therefore, PHA is a potential anti-breast-cancer natural product that modulates
the oxidative-stress response, cell-cycle disturbance, apoptosis, and γH2AX-detected DNA damage.
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1. Introduction

Breast cancer was the top female cancer type for the recorded new cancer cases in Tai-
wan [1] and the United States [2] in 2020. Breast cancer expresses clinically heterogeneous
characteristics that show differential expression for estrogen receptor (ER), human epider-
mal growth factor receptor 2 (HER2), and progesterone receptor (PR) [3]. For breast cancer
treatments, targeted therapies for ER-positive [4], HER2-positive [5], and PR-positive [6]
subtypes have been well reviewed. However, the subtype triple-negative breast cancer
(TNBC) [3,7] is characterized by a lack of ER, HER2, and PR expression and, therefore,
shows no response during therapy targeted towards these receptors.

Chemotherapy provides an alternative strategy for curing all subtypes of breast cancer
cells. However, different subtypes have different therapeutic responses to chemotherapy,
which may partly be explained by the finding that different subtypes show different
combinations of negative and positive expression for ER, HER2, and PR [8]. Chemotherapy
for curing breast cancer is occasionally associated with side effects [9] or drug resistance [10].
Accordingly, drug development for breast cancer therapy remains a challenge.

Physalis peruviana L. belongs to the family Solanaceae, containing at least 120 species [11].
Many Physalis species are used for traditional medicinal applications in Asia and South
America [12] since they contain the bioactive compound class withanolides. Withanolides
include more than 300 natural C-28 steroidal lactones [12], and some exhibit anticancer
functions [13–20]. For example, withaferin A [17,19], 4β-hydroxywithanolide [18,19], and
withanone [13] have demonstrated anti-breast-cancer effects. However, the anticancer
effects of several kinds of withanolides have not been fully explored. The further identifica-
tion of the anticancer effects of withanolides is warranted.

Although several withanolides are reported in anticancer studies, this does not hold
for physapruin A (PHA), which was firstly isolated from Physalis peruviana [21] in 1993.
Recently, PHA was shown to demonstrate antiproliferative abilities for prostate (LNCaP)
and renal (ACHN) cancer cells [22]. However, anticancer functions for other types of
cancer cells have rarely been reported. Particularly, the detailed anticancer mechanisms
of PHA have not been investigated for breast cancer cells yet. Herein, we investigated its
antiproliferative effects and explored its mechanisms of action for the case of PHA-treated
breast cancer cells.

2. Materials and Methods
2.1. Plant Material, Extraction, and Compound Isolation

Specimens of Physalis peruviana and their roots were harvested in Chiayi county,
Taiwan, in July 2017. Prof. Yuan-Bin Cheng recognized the specimens (no. KMU-ppr1),
and the specimens were stored in the Department of Marine Biotechnology and Resources,
National Sun Yat-sen University, Kaohsiung.

The roots of P. peruviana (20.0 kg) were extracted by ethanol thrice. After removing
the organic solvent, a crude extract (361.9 g) was obtained. The crude extract was divided
into EtOAc-soluble and H2O-soluble portions (45.2 g). The EtOAc-soluble layer was then
divided into hexane-soluble and 75% EtOH-soluble portions. The 75% EtOH-soluble
portion (116.0 g) was separated by a silica gel flash column (hexane–EtOAc–MeOH, 2:1:0
to 0:0:1) to produce eight fractions (Fr.1–Fr.8). Fr.5 (20.4 g) was separated on a Si gel open
column, eluted with CH2Cl2–MeOH (40:1 to 0:1) to yield a triterpenoid-enriched fraction
F5A–F5F. F5C (4.1 g) was subjected to an RP-C18 column, eluted with H2O–MeOH to
provide subfractions F5C1–F5C8. F5C4 (3.4 g) was purified by a silica gel column, stepwise
eluted with hexane–acetone–MeOH (4:1:0 to 0:0:1), yielding subfractions F5C4A–F5C4E.
F5C4A (1.8 g) was re-separated by a silica gel column, stepwise eluted with hexane–acetone–
MeOH (4:1:0 to 0:0:1) to yield fractions F5C4A1–F5C4A8. Fraction F5C4A7 (587.3 mg) was
further isolated by a silica gel column, stepwise eluted with CH2Cl2–EtOAc–MeOH (3:1:0
to 0:0:1) to afford fractions F5C4A7A–F5C4A7F. F5C4A7D (287.1 mg) was purified by a
silica gel column, stepwise eluted with CH2Cl2–MeOH (35:1 to 0:1) to obtain fraction
F5C4A7D6 (83.8 mg). This fraction was finally purified by NP–HPLC (Phenomenex CN;
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10 × 250 mm; flow rate, 2.0 mL/min; n-hexane–EtOAc–MeOH, 15:10:1) to provide the
PHA compound (26.5 mg), which was further investigated here. The purity of each sample
(>99%) was verified by analytical HPLC before the bioassays.

2.2. PHA Chemical Profile

PHA was obtained as a white solid and identified based on its electrospray ionization
mass spectrometer (ESI MS) and NMR characteristics. The molecular formula of PHA was
determined to be C28H38O7 based on the ESIMS spectrum, which showed a parent ion peak
at m/z 509 [M+Na]+. The IR spectrum revealed the presence of hydroxy (3367 cm−1) and
carbonyl (1647 and 1719 cm−1) functionalities. The proton NMR spectrum of PHA revealed
five methyl singlets (δH 1.94, 1.87, 1.44, 1.41, and 1.12), three olefinic methines (δH 6.77 dd,
J = 10.0, 4.6 Hz; δH 5.94 m; δH 5.93 d, J = 10.0 Hz), and two oxymethines (δH 4.94 dd,
J = 10.8, 4.6 Hz and δH 4.62 d, J = 4.6 Hz). In the 13C-NMR and DEPT spectra, 28 carbon
signals were observed, consisting of one ketone (δC 204.2), one ester carbonyl (δC 166.8),
three olefinic methines (δC 146.1, 130.4, and 128.6), three olefinic nonprotonated carbons
(δC 150.8, 139.4, and 121.5), two oxymethines (δC 81.7 and 69.2), three oxygen-bearing
quaternary carbons (δC 88.5, 81.7, and 79.4), and five methyls (δC 22.6, 21.3, 20.2, 19.7, and
12.6). On the basis of the above data, the structure of PHA was confirmed.

2.3. Reagents and Antibody Information

Pretreatment with an oxidative-stress inhibitor, 10 mM N-acetylcysteine (NAC) (Sigma-
Aldrich; St. Louis, MO, USA), for 1 h [23,24] was applied to confirm the involvement of
oxidative stress in the PHA post-treatment experiments. For the drug treatments, PHA
stock (20 mM) was made in dimethyl sulfoxide (DMSO). An NAC stock (400 mM) was made
in double-distilled water. The apoptosis inhibitor Z-VAD-FMK (ZVAD) (Selleckchem.com;
Houston, TX, USA) was made in DMSO. In the Western blotting analysis, cleaved form
types of primary antibodies (1:1000) for poly (ADP-ribose) polymerase (c-PARP) and
caspases 3, 8, and 9 (c-Cas 3, 8, and 9) (Cell Signaling Technology; Danvers, MA, USA) as
well as a control primary antibody (1:5000) for β-actin (Sigma-Aldrich) were chosen [25]. A
p-Histone H2A.X (γH2AX) primary antibody (Santa Cruz Biotechnology; Santa Cruz, CA,
USA) and secondary antibody labeled with Alexa 488 (Cell Signaling Technology) were
used for the flow cytometry experiments.

2.4. Cell Culture and ATP Assay

Three ATCC (Manassas, VA, USA) human breast cancer cell lines (SKBR3, MCF7, and
MDA-MB-231) were chosen. These cells were grown with a mixed medium (Dulbecco’s
Modified Eagle Medium (DMEM) and F12) formulated in the ratio of 3:2 and supplemented
with 10% bovine serum and cell culture antibiotics (Gibco, Grand Island, NY, USA) for
common cell culture use (otherwise at 5% CO2 and 37 ◦C). The cell viability analysis was
performed using an ATP commercial kit (PerkinElmer Life Sciences, Boston, MA, USA) [26].

2.5. Cell-Cycle Assay

Cells were processed with 1 µg/mL of the DNA dye 7-aminoactinomycin D (7AAD)
(Biotium Inc., Hayward, CA, USA) for 30 min of treatment at 37 ◦C for the cell-cycle assay
as described previously [15]. The cell-cycle assay was performed using a flow cytometer
(Guava® easyCyteTM; Luminex, TX, USA). Each cell-cycle phase was analyzed using the
FlowJo tool (Becton-Dickinson; Franklin Lakes, NJ, USA).

2.6. Annexin V/7AAD Dual Staining for Apoptosis and Necrosis Detection

Cells were harvested, washed, and mixed with an annexin V/7AAD dual staining kit
(Strong Biotech Corp., Taipei, Taiwan) for the apoptosis assay as described previously [27]
using flow cytometry (Guava® easyCyteTM) and the FlowJo software (Becton-Dickinson).
The 7AAD (+/−)/annexin V (+) (%) ratio is regarded as the apoptosis (%), and the 7AAD
(+)/annexin V (−) (%) ratio is regarded as the necrosis (%) [28,29].
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2.7. ROS Detection

Cells were processed with 10 µM 2′,7′-dichlorodihydrofluorescein diacetate (H2DCF-
DA) dye (Sigma-Aldrich) for 30 min of treatment at 37 ◦C in the ROS assay as described
previously [16] using flow cytometry (Guava® easyCyteTM). The ROS intensity was ana-
lyzed using the FlowJo tool.

2.8. Mitochondrial Superoxide (MitoSOX) Detection

Cells were processed with 50 nM MitoSOX™ Red dye (Thermo Fisher Scientific,
Carlsbad, CA, USA) for 30 min of treatment at 37 ◦C for the MitoSOX assay as described
previously [30] using flow cytometry (Guava® easyCyteTM). The MitoSOX intensity was
analyzed using the FlowJo tool.

2.9. Mitochondrial Membrane Potential (MitoMP) Detection

Cells were processed with 5 nM MitoProbeTM DiOC2(3) (Thermo Fisher Scientific,
Carlsbad, CA, USA) for 20 min of treatment at 37 ◦C for the MitoMP assay as described previ-
ously [31] using flow cytometry (Guava® easyCyteTM) and the FlowJo tool (Becton-Dickinson).

2.10. Quantitative RT-PCR

The total RNA extraction, cDNA reverse transcription, and quantitative RT-PCR as
well as the primer information for the glutathione-disulfide reductase (GSR) and GAPDH
genes were described previously [32]. GSR mRNA expression is presented as fold activation
(log2 scale) relative to the control, GAPDH.

2.11. γ. H2AX DNA-Damage Detection

The γH2AX primary antibody (1:500; 1 h, 4 ◦C) and Alexa 488-modified secondary
antibody incubation (30 min, 37 ◦C), and 5 µg/mL of 7AAD staining (30 min, 37 ◦C) were
performed for the γH2AX assay as previously described [33] using flow cytometry (Guava®

easyCyteTM) and the FlowJo tool (Becton-Dickinson).

2.12. Statistical Analysis

Statistical analysis was performed by using the analysis of variance (ANOVA) associated
with the JMP®12-based HSD post-hoc test when the multiple comparisons were considered.

3. Results
3.1. PHA Provided Antiproliferative Effects for Breast Cancer Depending on ROS

In an ATP assay for 24 h, the cell viability of breast cancer (SKBR3, MCF7, and MDA-
MB-231) cells was inhibited by PHA (Figure 1A). Pretreatments with NAC or ZVAD could
mostly or moderately suppress the PHA-induced antiproliferative effects against the three
types of breast cancer cells (Figure 1B).

3.2. PHA Changed Cell-Cycle Progression of Breast Cancer Cells

The variations in the cell-cycle phases in the breast cancer cells following PHA treat-
ment were detected by flow cytometric analysis (Figure 2A). Different PHA concentrations
decreased the G1 population, decreased the S population, and increased G2/M arrest in
breast cancer cells, although the subG1 population was small (Figure 2B).
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Figure 1. Physapruin (PHA) decreased ATP- detected cell viabilities of breast cancer cells. (A) Concentration effect of PHA
in an ATP assay. As indicated, three breast cancer cell lines were incubated with 0 (0.05% DMSO as control), 0.5, 1, 2.5, 5,
and 10 µM PHA for 24 h. (B) NAC or ZVAD pretreatment responses in ATP changes in PHA-treated breast cancer cells.
Cells pretreated with either NAC (10 mM for 1 h) or ZVAD (100 µM for 2 h) and post-treated with 0 (control with 0.05%
DMSO) and 10 µM PHA for 24 h, i.e., NAC/PHA or ZVAD/PHA. Data, means ± SDs (n = 3 independent experiments).
Experiments without the same top-labeled letters indicate significant changes according to a multiple ANOVA comparison
(p < 0.05 to 0.0001).

Figure 2. PHA redistributed the cell-cycle phases of two breast cancer cell lines. (A,B) Cell-cycle phase patterns and
statistical analysis for concentration responses to PHA. Cells were incubated with PHA (0 (0.05% DMSO as control), 2.5,
5, and 10 µM) for 24 h, i.e., control, PHA 2.5, PHA 5, and PHA 10. Data, means ± SDs (n = 3 independent experiments).
Experiments without the same top-labeled letters indicate significant changes according to multiple ANOVA comparisons
(p < 0.05 to 0.0001).

3.3. PHA Triggered More Apoptosis Than Necrosis in Breast Cancer Cells

The changes in the annexin V/7AAD patterns at different concentrations and exposure
times of PHA-treated breast cancer cells were detected by flow cytometry (Figure 3A,C).
PHA induced concentration- and time-dependent increases in apoptosis (annexin V (+)) (%)
in the breast cancer cells (MCF7 and MDA-MB-231) (Figure 3B,D). For Western blotting, the
apoptosis expression was further examined at different time intervals. Apoptosis-signaling
proteins such as c-PAPR, c-Cas 9, c-Cas 8, and c-Cas 3 were mildly increased at 12 h and
dramatically increased at 24 h of PHA treatment in the breast cancer cells (Figure 3E).
Moreover, annexin V (−)/7AAD (+)-defined necrosis [28,29] in the breast cancer cells
was induced by PHA (Figure 3B). PHA induced more apoptosis than necrosis in breast
cancer cells.
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Figure 3. PHA triggers apoptosis and activates caspases in breast cancer cells. (A,B) Annexin V/7AAD patterns and
statistical analysis for concentration responses to PHA. Cells were treated with PHA (0 (0.05% DMSO as control), 2.5, 5,
and 10 µM) for 24 h. 7AAD (+/−)/annexin V (+) (%) ratio is regarded as the apoptosis (%), and 7AAD (+)/annexin V
(−) (%) ratio is regarded as the necrosis (%) [28,29]. (C,D) Pattern and statistical analysis for NAC or ZVAD pretreatment
responses in annexin V changes in PHA-post-treated breast cancer cells. Following pretreatment with either NAC (10 mM
for 1 h) or ZVAD (100 µM for 2 h), cells were post-treated with 0 (0.05% DMSO as control) and 10 µM PHA for 0, 12, and
24 h, i.e., NAC/PHA or ZVAD/PHA. Data, means ± SDs (n = 3 independent experiments). Experiments without the same
top-labeled letters indicate significant changes based on multiple comparisons (p < 0.05 to 0.0001). (E) Apoptosis-signaling
expression of PHA-treated breast cancer cells. Cleaved PARP (c-PARP) and cleaved caspase 3, 8, and 9 (c-Cas 3, 8, and 9)
expression is compared with reference to β-actin expression.

To validate the role of ROS in the apoptosis induction, NAC was used to pretreat the
PHA-treated breast cancer cells. The NAC pretreatment suppressed the PHA-induced
apoptosis (annexin V) in the breast cancer cells at 12 and 24 h (Figure 3D). The NAC
pretreatment suppressed the PHA-induced overexpression of apoptosis-signaling proteins
in the breast cancer cells (Figure 3E). Moreover, the PHA-induced apoptosis (annexin V)
was suppressed by the apoptosis inhibitor ZVAD at 24 h (Figure 3D). The PHA-induced
overexpression of apoptosis-signaling proteins was suppressed by ZVAD (Figure 3E),
confirming the apoptosis induction by PHA.

3.4. PHA Substantially Upregulated ROS Generation in Breast Cancer Cells

The changes in the ROS generation patterns with different concentrations and expo-
sure times of PHA-treated breast cancer cells were detected by flow cytometry (Figure 4A,C).
PHA induced concentration- and time-course-dependent increases in the ROS (+) (%) in
the breast cancer cells (Figure 4B,D).
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Figure 4. PHA triggered ROS generation in two breast cancer cell lines. (A,B) ROS patterns and statistical analysis for
concentration responses to PHA. Cells were incubated with PHA (0 (0.05% DMSO as control), 2.5, 5, and 10 µM) for 24 h. (+)
indicates ROS (+) (%). (C,D) Pattern and statistical analysis for NAC pretreatment responses in ROS intensity changes in
PHA-post-treated breast cancer cells. Following pretreatment with NAC, cells were processed with post-treatment with
0 (control with 0.05% DMSO) and 10 µM PHA for 0, 12, and 24 h, i.e., PHA and NAC/PHA. Data, means ± SDs (n = 3
independent experiments). Experiments without the same top-labeled letters indicate significant changes according to
multiple ANOVA comparison (p < 0.05 to 0.0001).

To validate the function of ROS, NAC was used to pretreat PHA-treated breast cancer
cells. The NAC pretreatment suppressed the PHA-induced ROS overexpression in the
breast cancer cells (Figure 4D).

3.5. PHA Substantially Upregulated MitoSOX in Breast Cancer Cells

The changes in the MitoSOX generation patterns with different concentrations and
exposure times of PHA-treated breast cancer cells were detected by flow cytometry
(Figure 5A,C). Following PHA treatment, the breast cancer cells exhibited concentration-
and time-course-dependent overexpression for MitoSOX (+) (%) (Figure 5B,D).

Figure 5. PHA triggered MitoSOX generation in two breast cancer cell lines. (A,B) MitoSOX patterns and statistical analysis
for concentration responses to PHA. Cells were incubated with PHA (0 (0.05% DMSO as control), 2.5, 5, and 10 µM) for
24 h. (+) indicates MitoSOX (+) (%). (C,D) Pattern and statistical analysis for NAC pretreatment responses in MitoSOX
intensity changes in PHA-post-treated breast cancer cells. Following pretreatment with NAC, cells were processed with
post-treatment for 0 (control with 0.05% DMSO) and 10 µM PHA for 0, 12, and 24 h, i.e., PHA and NAC/PHA. Data,
means ± SDs (n = 3 independent experiments). Experiments without the same top-labeled letters indicate significant
changes according to multiple ANOVA comparisons (p < 0.05 to 0.0001).
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To validate the role of ROS in the MitoSOX generation, NAC was used to pretreat
PHA-treated breast cancer cells. The pretreatments with NAC suppressed PHA-induced
MitoSOX overexpression in the breast cancer cells (Figure 5D).

3.6. PHA Triggered MitoMP Destruction in Breast Cancer Cells

The changes in the MitoMP patterns due to different concentrations and exposure
times of PHA-treated breast cancer cells were detected by flow cytometry (Figure 6A,C).
PHA induced concentration- and time-course-dependent increases for MitoMP (−) (%) in
the breast cancer cells (Figure 6B,D).

Figure 6. PHA triggered MitoMP depletion in two breast cancer cell lines. (A,B) MitoMP patterns and statistical analysis for
concentration responses to PHA. Cells were incubated with PHA (0 (0.05% DMSO as control), 2.5, 5, and 10 µM) for 24 h.
(−) indicates MitoMP (−) (%). (C,D) Patterns and statistical analysis of NAC pretreatment responses in MitoMP changes
in PHA-post-treated breast cancer cells. Following pretreatment with NAC, cells were processed with post-treatment for
0 (control with 0.05% DMSO) and 10 µM PHA for 0, 12, and 24 h, i.e., PHA and NAC/PHA. Data, means ± SDs (n = 3
independent experiments). Experiments without the same top-labeled letters indicate significant changes according to
multiple comparisons (p < 0.005 to 0.0001).

To validate the role of ROS in the MitoMP destruction, NAC was used to pretreat
PHA-treated breast cancer cells. The pretreatment with NAC suppressed the PHA-induced
MitoMP destruction in breast cancer cells (Figure 6D).

3.7. PHA Induced Antioxidant Signaling—GSR mRNA Expression—In Breast Cancer Cells

The GSR mRNA expression for two PHA-treated breast cancer cell lines was examined
by qRT-PCR analysis. Following PHA treatment, the GSR mRNA was overexpressed in the
breast cancer cells compared to control (Figure 7).

3.8. PHA Triggered γH2AX Expression in Breast Cancer Cells

The changes in the γH2AX expression patterns with different concentrations and
exposure times of PHA-treated breast cancer cells were detected by flow cytometry
(Figure 8A,C). PHA induced concentration- and time-course-dependent increases for
γH2AX (+) (%) in the breast cancer cells (Figure 8B,D).

To validate the role of ROS in the γH2AX expression, NAC was used to pretreat
PHA-treated breast cancer cells. The pretreatment with NAC suppressed the PHA-induced
γH2AX overexpression in the breast cancer cells (Figure 8D).
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Figure 7. PHA induced GSR mRNA expression in breast cancer cells. Cells were incubated with PHA
(0 (0.05% DMSO as control), 5 (PHA 5), and 10 (PHA 10) µM) for 24 h. Data, means ± SDs (n = 3
independent experiments). Experiments without the same top-labeled letters indicate significant
changes according to multiple comparisons (p < 0.005 to 0.0001).

Figure 8. PHA triggered γH2AX overexpression in two breast cancer cell lines. (A,B) γH2AX patterns and statistical
analysis for concentration responses of PHA. Cells were incubated with PHA (0 (0.05% DMSO as control), 2.5, 5, and 10 µM)
for 24 h. Small box indicates γH2AX (+) (%). (C,D) Patterns and statistical analysis for NAC pretreatment responses in
γH2AX intensity changes in PHA-post-treated breast cancer cells. Following pretreatment with NAC, cells were processed
with post-treatment for 0 (control with 0.05% DMSO) and 10 µM PHA for 0, 12, and 24 h, i.e., PHA and NAC/PHA. Data,
means ± SDs (n = 3 independent experiments). Experiments without the same top-labeled letters indicate significant
changes according to multiple comparisons (p < 0.05 to 0.0001).

4. Discussion

PHA, one of the P. peruviana-derived natural products, has rarely been investigated,
especially for its anticancer effect. In the current study, the antiproliferative, cell-cycle-
disturbing, oxidative-stress-inducing, and DNA-damaging effects of PHA were validated in
dose-dependence and time-course experiments with breast cancer cells. The detailed drug-
acting mechanisms of PHA-induced anti-breast-cancer effects are discussed as follows.

4.1. PHA Is a Potential Antiproliferative Natural Product for Breast Cancer Cells

Recently, PHA was reported to provide antiproliferative effects against prostate
(LNCaP) and renal (ACHN) cancer cells but induce less damage to human foreskin fi-



Antioxidants 2021, 10, 393 10 of 14

broblasts (HEF) [22], i.e., the IC50 concentrations at 72 h in an MTS assay were 0.11, 1.0, and
>2 µM, respectively. However, these studies focused on the structure–activity relationship
and reported the IC50 values of PHA without investigating the detailed mechanisms.

Breast cancer cells are reported to have several subtypes that respond differently to
chemotherapy [8]. In the current study, the IC50 concentrations for PHA at 24 h in the
ATP study for the three breast cancer cell lines ranged from 3.12 to 6.15 µM (Figure 1A),
suggesting that PHA has cell-killing effects against different kinds of breast cancer cells,
including those classified [3] as luminal A positive, HER2 positive, and Claudin-low
(TNBC). The examination of possible killing effects on other types of breast cancer cells such
as luminal B and basal are warranted in the future. Moreover, PHA may have the potential
for combinatorial treatment with radiation and immunologically active compounds in a
targeted therapy due to the immunoprofile characteristics of MCF7 (ER+, PR+/−, HER2−)
and SKBR3 (ER−, PR−, HER2+) cells.

To provide a comparison with the clinically used anticancer drug cisplatin, the IC50
value for cisplatin at 24 h in the MTS assay for SKBR3 cells was 49.8 µM [34]. The IC50
concentrations for 48 h cisplatin in the ATP assay were 4.9, 17.9, and 26.9 µM for SKBR3,
MCF7, and MDA-MB-231 cells, respectively [35]. For comparison, the IC50 concentrations
for 24 h PHA in the ATP assay were 4.18, 3.12, and 6.15 µM for SKBR3, MCF7, and MDA-
MB-231 cells, respectively (Figure 1A). Therefore, PHA has a higher potency to inhibit
the proliferation of breast cancer cells than cisplatin. Although PHA exhibits low cell
cytotoxicity to normal foreskin fibroblasts [22], it warrants a survival comparison of PHA
with cisplatin in relation to more normal cell lines. The potential therapeutic index of PHA
in terms of selectivity towards cancer cells needs to be examined in the future.

4.2. PHA Generates Oxidative Stress in Breast Cancer Cells

ROS-modulating strategies are commonly used for anticancer drug development [13,36,37].
ATP-production ability is proportional to mitochondrial function. When mitochondria
show dysfunction, MitoSOX generation may show substantial upregulation. For example,
manoalide induces ATP depletion, associated with MitoSOX generation and cell death in
oral cancer cells [38]. PHA induces ATP depletion (Figure 1) and triggers oxidative-stress
responses, including ROS and MitoSOX overexpression (Figures 4 and 5), as well as MitoMP
depolarization (Figure 6), in breast cancer cells. Accordingly, PHA is a ROS-modulating
natural product with a substantial anti-breast-cancer effect.

Cellular redox homeostasis is regulated by both oxidative stress and antioxidant ma-
chinery. Cellular antioxidant machinery shows either activation or inactivation responses
to oxidative-stress environments [39]. For example, a transient oxidative stress may in-
duce a ROS detoxification response by activating superoxide dismutase (SOD) or catalase
(CAT) [40]. By contrast, sustained oxidative stress may induce cancer cell death [40]. Cultur-
ing oocytes under a high-O2 condition induces GSR, glutathione peroxidase 1 (GPX1), CAT,
SOD1, and SOD2 mRNA overexpression [41]. Exogenous C8-ceramide induces ROS and
apoptosis in lung cancer H1299 cells by upregulating mitochondrion-located SOD2 [42].
Similarly, PHA treatments for two breast cancer cell lines induce the GSR mRNA expression
(Figure 7) associated with oxidative stress. It is possible that the GSR gene is activated
in response to PHA-induced oxidative stress, but its ROS-scavenging capacity fails to
counteract the high induction of oxidative stress in the end.

Some natural products generate ROS by themselves, such as naphthoquinones. For
example, β-lapachone, a naphthoquinone derived from the lapacho tree’s bark, is a redox
recycler [43] and a ROS-generating chemical [44]. β-lapachone can generate ROS by itself,
oxidizing catalytic cysteine’s thiol group to the sulfinic acid form [43]. Whether PHA
itself is a ROS-generating molecule remains unclear. This warrants the investigation of the
ROS-generating ability of PHA in the future.
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4.3. PHA Induces G2/M-Phase Arrest, Apoptotic Change, and γH2AX-Detected DNA Damage in
Breast Cancer Cells

By activating cell-cycle checkpoints, the proliferation of cancer cells can be inhib-
ited [45]. Several G2/M-arresting drugs have been developed to inhibit cancer cell prolifer-
ation, such as withaferin A in glioblastoma cells [46], sinularin in oral and breast cancer
cells [27,47], genistein in colon cancer cells [48], and pevonedistat in breast cancer cells [49].
Similarly, PHA induced oxidative stress and G2/M arrest and resulted in apoptosis (ac-
cording to flow cytometry and Western blotting) in breast cancer cells in spite of the low
population of subG1 cells (Figures 2 and 3).

SubG1 accumulation is not essential for apoptosis. Drugs may induce G2/M-phase
arrest and trigger apoptosis but induce no subG1 accumulation with 24 h treatments, such
as withametelin treatment for lung cancer A549 cells [50], (−)-anonaine treatment for lung
cancer H1299 cells, and sinularin treatment for oral cancer Ca9-22 cells [47]. When cells
arrested in G2/M phases become apoptotic, their DNA contents may degrade, and they
may shift from G2/M to S or G1 phases without subG1 movement. In some cases, drugs
with longer exposure may induce greater apoptosis compared to short exposure [47,51,52].
For example, subG1 accumulation was weak at 24 and 48 h of treatment but moderate at
72 h of treatment with the chalcone derivative Ch1 [52] and (−)-anonaine [47].

Several ROS-modulating drugs [30,38,53] were reported to activate both extrinsic
(Cas-8) and intrinsic (Cas-9) apoptotic pathways; both pathways trigger apoptosis through
the cleavage of downstream signaling molecules such as Cas-3. Similarly, PHA activates,
in a similar manner, Cas-9, -8, and -3 in breast cancer cells, suggesting that PHA induces
generic oxidative stress that activates apoptotic caspases.

After 24 h of treatment with 10 µM PHA, the various breast cancer cells showed
strong cytotoxicity (about 80%) (Figure 1A); however, about 40% apoptosis was detected
(Figure 3B). This suggests that PHA also induces another type of cell death, such as
necrosis, which was detectable for 20% in terms of annexin V (−)/7AAD (+) analysis [28,29]
(Figure 3B). Therefore, PHA induces more apoptosis than necrosis in breast cancer cells.
Knowing the amount of necrosis allows discriminating nonspecific anticancer effects. It
warrants a detailed investigation exploring the role of necrosis in PHA cytotoxicity to
breast cancer cells in the future.

Moreover, oxidative stress is also a DNA-damage-inducing factor [24,54,55]. This
was supported by our finding that PHA induced oxidative-stress responses such as
ROS/MitoSOX overproduction and MitoMP depletion. Therefore, it caused DNA damage
in breast cancer cells as detected by γH2AX (Figure 8).

4.4. NAC Suppresses PHA-Induced Antiproliferative Effects and ROS-Associated Changes in
Breast Cancer Cells

All the PHA-induced changes such as antiproliferative effects, oxidative-stress in-
duction, apoptosis, and DNA damage were recovered by NAC pretreatment. This held
for ATP depletion, ROS/MitoSOX overproduction, MitoMP depletion, annexin V- and
Western-blot-detected extrinsic and intrinsic apoptosis, and γH2AX-detected DNA damage.
Accordingly, the PHA-induced antiproliferative effects, apoptosis, and DNA damage were
mediated by oxidative-stress induction in the breast cancer cells.

5. Conclusions

Many bioactive compounds belonging to the withanolides isolated from several
Physalis species show anticancer effects, but the action mechanisms have rarely been
investigated. In the current study, we showed that PHA inhibits the proliferation of
three kinds of breast cancer cells: MCF7 (ER+, PR+/−, HER2−), SKBR3 (ER−, PR−,
HER2+), and MDA-MB-231 (TNBC). This antiproliferative effect of PHA against the breast
cancer cells was proven to be oxidative-stress-dependent by NAC pretreatment. The cell-
killing mechanisms of PHA include cell-cycle G2/M arrest, oxidative-stress induction,
and DNA damage. Both the apoptosis and DNA damage were proven to be oxidative-
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stress-dependent. Therefore, PHA represents a potential anti-breast-cancer natural product,
and its cell-killing mechanism is associated with the modulation of the oxidative-stress
response, cell-cycle disturbance, apoptosis, and DNA damage.
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