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Abstract: A 12-week feeding trial was performed to evaluate the effects of high-carbohydrate diet on ox-
idative stress, inflammation and apoptosis induced by silver nanoparticles (Ag-NPs) in M. amblycephala.
Fish (20.12± 0.85 g) were randomly fed four diets (one control diet (C, 30% carbohydrate), one control diet
supplemented with 100 mg kg−1 Ag-NPs (CS), one high-carbohydrate diet (HC, 45% carbohydrate)
and one HC diet supplemented with 100 mg kg−1 Ag-NPs (HCS)). The results indicated that weight
gain rate (WGR), specific growth rate (SGR), antioxidant enzyme (SOD and CAT) activities and
expression of Trx, Cu/Zn-SOD, Mn-SOD, CAT and GPx1 of fish fed CS diet were all remarkably
lower than those of other groups, whereas the opposite was true for plasma IL 1β and IL 6 levels,
liver ROS contents, hepatocytes apoptotic rate, AMP/ATP ratio, AMPKα, P 53 and caspase 3 protein
contents and mRNA levels of AMPKα 1, AMPKα 2, TXNIP, NF-κB, TNFα, IL 1β, IL 6, P 53, Bax and
caspase 3. However, high-carbohydrate diet remarkably increased WGR, SGR, liver SOD and CAT
activities, AMPKα protein content and mRNA levels of antioxidant genes (Cu/Zn-SOD, Mn-SOD,
CAT and GPx1), anti-inflammatory cytokines (IL 10) and anti-apoptotic genes (Bcl 2) of fish facing
Ag-NPs compared with the CS group, while the opposite was true for liver ROS contents, hepatocytes
apoptotic rate, P 53 and caspase 3 protein contents, as well as mRNA levels of TXNIP, NF-κB, TNFα,
IL 1β, IL 6, P 53, Bax and caspase 3. Overall, high-carbohydrate diet could attenuate Ag-NPs-induced
hepatic oxidative stress, inflammation and apoptosis of M. amblycephala through AMPK activation.

Keywords: silver nanoparticles; apoptosis; inflammation; daily component; Megalobrama amblycephala

1. Introduction

At present, silver nanoparticles (Ag-NPs) are regarded as the most commercialized
nanomaterial worldwide. Due to their strong antimicrobial properties, Ag-NPs have
been commonly applied in many consumer products including plastics, metals, textiles,
cosmetics and cleaning products, as well as medical and veterinary devices [1]. However,
increasing applications of Ag-NPs have led to their enhanced accumulation in aquatic
environment through water run-off. Once in the aquatic environment, the residues of
Ag-NPs can cause several adverse effects, thereby threatening fish health. Reports on the
effects of Ag-Nps have shown that they cause oxidative stress and inflammation of tissues
in medaka (Oryzias latipes) following 2-week exposure [2], and they have been shown to
lead to a reduction in membrane integrity and cellular metabolic activity in rainbow trout
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(Onchorhyncus mykiss) [3]. In addition, high mortality rate and growth retardation were
also observed in zebrafish (Danio rerio) who encountered high concentrations of Ag-Nps [4].
Considering culturing profit, it is necessary to find effective approaches to alleviate the
side effects induced by Ag-Nps in fish.

An accumulating body of evidence suggests that Ag-Nps have the ability to interact
with biological tissues and generate reactive oxygen species (ROS) that are considered
to be a potential mechanism of toxicity [1]. In fact, ROS over-production can induce
the generation of multiple pro-inflammatory cytokines (such as tumor necrosis factor
α (TNF α), interleukin 1β (IL 1β) and interleukin 6 (IL 6)) by activating some major
pro-inflammatory transcription factors, such as nuclear factor kappa B (NF-κB), thereby re-
sulting in inflammation [5–8]. Meanwhile, pro-inflammatory cytokines, such as TNF α and
IL 6, can trigger apoptosis by up-regulating transcriptions of pro-apoptotic genes, such as
Bcl 2 family member Bax, resulting in programmed cell death [9,10]. Regarding these pro-
cesses, AMP-activated protein kinase (AMPK) has attracted considerable attention due to
its potent effects on the regulation of intracellular oxidative stress, as well as its ability to
protect cells from damage [11]. Generally, activated AMPK can regulate multiple biological
processes, including oxidative responses, inflammation and apoptosis, such as (a) a de-
crease in reactive oxygen species (ROS) production by accelerating thioredoxin-interacting
protein (TXNIP) degradation [12]; (b) suppression of the NF-κB pro-inflammatory path-
way [13]; and (c) inhibition of the P 53 pro-apoptotic pathway [14]. However, the above
findings were mainly derived from mammals. At present, evidence has indicated that fish
exposed to Ag-NPs could cause acute oxidative stress accompanied by high concentrations
of ROS [15,16]. In addition, the high mRNA levels of pro-inflammatory cytokines in tissues
were also observed during Ag-NPs exposure [17]. However, the relevant physiological
basis in fish is still barely understood, and it warrants further studies.

Dietary factors play pivotal roles in modulating the health of fish. As a macronutrient,
carbohydrates can provide energy for the normal growth, development and health main-
tenance of fish. In addition, toxicological studies have demonstrated that dietary starch
could reduce the toxicity of chemical drugs, including oxytetracycline, in organisms by
changing the conjugation of drug and metabolites formation [18]. These findings high-
light that, in the evaluation of chemical toxicity, dietary carbohydrates play important
roles in the modulation of toxic effects. However, currently, no study has explored the
potential use of dietary carbohydrates in modulating metal nanoparticles-induced side
effects in fish. In view of this, we adopted blunt snout bream (Megalobrama amblycephala)
(an economically important fish cultured in China) as an experimental animal to explore
the effects of dietary carbohydrate levels on the growth, oxidative stress, inflammation
and apoptosis of fish following dietary exposure to Ag-NPs. To the best of our knowledge,
this is the first study to investigate the influence of dietary carbohydrate on adverse effects
of metal nanoparticles in fish. The findings obtained here will benefit our understanding
of the physiological mechanisms used by dietary carbohydrates to modulate fish facing
Ag-NPs-induced side effects, and they are therefore helpful in relation to the healthy
development of the aquaculture industry.

2. Materials and Methods
2.1. Ethics Statement

All procedures were performed in accordance with the National Institute of Health
guide for the care and use of laboratory animals (NIH Publications No. 8023, revised 1978)
and approved by the Institutional Animal Care and Use Committee of South China
Agricultural University.

2.2. Silver Nanoparticles Preparation

Silver nanopowder (cat. no 576832) with purity of 99.5% was supplied by Sigma
Aldrich Company (Cambridge, UK), and its particle size was <100 nm. Ag-NPs of 50 mg L−1

were dispersed by sonication in Milli-Q water for 1 h (sonicator, 250 W, 40 kHz, 30 ◦C;
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Elma TI-H-20, Bandelin, Berlin, Germany). After sonication, all buffers were further filtered
by a 0.2 µm nylon membrane filter. The distribution and size of Ag-NPs were determined by
transmission electron microscopy (TEM) using a JEOL JEM-1220 EX microscope (JEOL Ltd.,
Tokyo, Japan). Zeta potential of Ag-NPs was analyzed by a Zetasizer Nano-ZS90 (Malvern,
Worcestershire, UK) using an electrophoretic light-scattering method. All measurements
were taken in triplicate.

2.3. The Experimental Diets and Feeding Trial

First, two experimental diets were formulated to contain two dietary carbohydrate
(namely nitrogen-free extract) levels: 30% and 45% (Table 1). According to our previous
studies, the optimal dietary carbohydrate level for juvenile M. amblycephala is 29–32% [19].
Therefore, a diet containing 30% carbohydrate was adopted as the control, while a diet of
45% was designated as the high-carbohydrate (HC) diet. Then, some food pellets were
supplemented with a stock dispersion of silver nanopowder, according to the method
by Clark et al. (2019) [20]. Briefly, the dosing dispersions for mixing with the diets were
prepared by sonicating (UC-5000 ultrasonic bath, Langee, Shenzhen, China) 100 mL of
a nominal stock concentration of 1 g L−1 of Ag-NPs prepared in ultrapure water for 1 h.
Nanoparticle tracking analysis (NTA) was carried out to confirm Ag-NPs material could
be dispersed adequately in these stocks. The mean (±SEM) hydrodynamic diameter was
24 ± 2 nm for 1 mg L−1 Ag-NPs. This was slowly added to 900 g of the diet, and then
gently mixed with a food mixer (1101049, Xiaomi, Foshan, China). A solution of 10 g of
porcine gelatine (>98% purity, Sigma, Billerica, MA, USA) in 100 mL of ultrapure water was
prepared by gentle heating to 40 ◦C, allowed to cool for 20 min, and then gently poured
over the diet and mixed in for 20 min. The unexposed diet was prepared in exactly the
same way but dosed with ultrapure water without Ag-NPs. All diets were dried in a
ventilated oven at 30 ◦C and stored at −20 ◦C in plastic-lined bags until use. Herein, four
experimental diets (namely C diet (30% carbohydrate), CS diet (C diet supplemented with
100 mg kg−1 Ag-NPs), HC diet (45% carbohydrate) and HCS diet (HC diet supplemented
with 100 mg kg−1 Ag-NPs) were produced for a 12-week feeding trial. The actual Ag-NPs
contents of the experimental diets were measured using the method of inductively coupled
plasma mass spectrometry.

Juvenile M. amblycephala were bought from a local fish hatchery (Yangzhou, China).
After acclimating to experimental facilities, a total of 320 M. amblycephala (initial weight
20.12 ± 0.85 g) was allocated to 16 indoor tanks (300 L volume) at a rate of 20 fish per tank.
Fish in each tank were randomly assigned to one of four experimental diets. Each diet was
tested in four tanks. Daily feeding time was 08:30, 12:30 and 17:30. Water temperature var-
ied from 27 to 29 ◦C; dissolved oxygen was maintained above 5.0 mg L−1; pH ranged from
7.3 to 7.6; total ammonia nitrogen and nitrite were kept <0.4 and 0.01 mg L−1, respectively;
and the photoperiod was 12 h:12 h (dark:light).

2.4. Sample Collection

After 12 weeks, following a 24 h fast, all the fish in each tank were counted and
weighed. In total, four fish per tank were immediately euthanized by MS-222 at 100 mg L−1.
Blood was rapidly sampled from the caudal vein, centrifuged (3000× g, 10 min, 4 ◦C) and
kept at −80 ◦C until analysis. Then, liver samples from four fish per tank were collected,
and then fixed in 4% paraformaldehyde for histological analysis. In addition, liver from
another four fish per tank was sampled, and then snap frozen in liquid nitrogen and stored
at −80 ◦C.
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Table 1. Formulation and proximate composition of the experimental diets.

Control Diet High-Carbohydrate Diet

Formulation(%)

Fish meal 5.00 5.00
Soybean meal 30.00 30.00
Rapeseed meal 18.40 18.40

Cottonseed meal 15.00 15.00
Soybean oil 3.60 3.60
Corn starch 12.00 25.00

Microcrystalline cellulose 13.00 0.00
Calcium biphosphate 1.80 1.80

Premix * 1.20 1.20

Proximate composition(% air-dry basis)

Moisture 8.79 8.96
Crude lipid 4.97 5.25

Ash 7.00 6.96
Crude protein 31.71 31.94

Crude fiber 15.76 3.00
Nitrogen-free extract † 31.77 43.89

Energy (MJ/kg) 18.89 18.82
* Premix supplied the following minerals and/or vitamins (per kg of premix): CuSO4·5H2O, 2.0 g; FeSO4·7H2O, 25 g;
ZnSO4·7H2O, 22 g; MnSO4·4H2O, 7 g; Na2SeO3, 0.04g; KI, 0.026 g; CoCl2·6H2O, 0.1 g; vitamin A, 900,000 IU;
vitamin D, 200,000 IU; vitamin E, 4500 mg; vitamin K3, 220 mg; vitamin B1, 320 mg; vitamin B2, 1090 mg;
vitamin B5, 2000 mg; itamin B6, 500 mg; vitamin B12, 1.6 mg; vitamin C, 5000 mg; pantothenate, 1000 mg; folic acid,
165 mg; choline, 60,000 mg.† Calculated by difference (100-moisture-crude protein-crude lipid-ash-crude fiber).

2.5. Analysis of Proximate Composition and Plasma and Liver Biochemical Indices

Moisture, crude lipid, crude protein, ash, gross energy and crude fiber contents
of diets were assayed by AOAC (1990) [21]. Moisture was measured by an oven at
105 ◦C until at a constant weight; crude protein (nitrogen × 6.25) was determined by the
micro-Kjeldahl method using an Auto Kjeldahl System (FOSS KT260, Zurich, Switzerland);
crude lipid was determined by solvent extraction using a Soxtec System (Soxtec System
HT6, Tecator, Höganäs, Sweden); ash was determined by combustion at 550 ◦C for 4 h;
gross energy was determined using a bomb calorimeter (PARR 1281, Parr Instrument
Company, Moline, IL, USA); nitrogen-free extract was determined by fritted glass crucible
method using an automatic analyzer (ANKOM A2000i, New York, NY, USA).

Plasma activities of aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) were assayed according to Habte-Tsion et al. (2016) [22]. Plasma levels of interleukin
1β (IL 1β) and interleukin 6 (IL 6) were measured by cytokine-specific enzyme-linked
immunosorbent assay (ELISA) kits according to the manufacturer’s instructions (R and D
Systems, Minneapolis, MN, USA, no. MTA00B, D6050 and DCP00).

Liver ROS levels were determined by measuring the oxidative conversion of cell per-
meable 2′, 7′dichlorofluorescein diacetate (DCF-DA) [23]. Briefly, 20 µL of liver homogenate
was pipetted into each well of a 96-well plate and allowed to warm to room temperature
for 5 min. At that time, 100 µL physiological saline and 5 µL of 2,7-dichlorofluorescin
diacetate (DCFH-DA, dissolved in DMSO, 10 µmoL/L final concentration) were added to
every well and the plate was incubated at 37 ◦C for 30 min. The conversion of DCFH to the
fluorescent product DCF was measured using a TECAN spectrofluorometer with excita-
tion/emission at 485/530 nm (Tecan, Mannedorf, Switzerland). Background fluorescence
(conversion of DCFH to DCF in the absence of homogenate) was corrected by the inclusion
of parallel blanks.

The liver tissues were rinsed and homogenized in 50 mM ice-cold potassium phos-
phate buffer (1:8, w/v, pH 7.0). Then, the homogenate was centrifuged for 10 min at
10,000 rpm and 4 ◦C. The supernatant was used to measure the protein and malondi-
aldehyde (MDA) contents, total antioxidant capacity (T-AOC), as well as total superoxide
dismutase (SOD) and catalase (CAT) activities. Protein contents were measured by the
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method used by Bradford (1976) [24] using bovine serum albumin as a standard. Hepatic
T-AOC, SOD and CAT were evaluated using commercial kits (Jiancheng Bioengineering
Institute, Nanjing, China) according to the manufacturer’s instructions. MDA contents
were detected according to Zhao et al. (2016) [25] with thiobarbituric acid. A mixture of
100 µL of homogenate, 0.37% SDS, 6.8% acetic acid (pH 3.5) and 1% TBA was incubated at
80–90 ◦C for 1 h and then centrifuged at 3000× g for 15 min. The absorbance at 532 nm
was measured when the mixture approached room temperature.

2.6. Analysis of Liver Histology and ATP and AMP Contents

For the detection of apoptosis in the liver, TUNE (terminal-deoxynucleotidyl trans-
ferase mediated nick end labeling) staining was executed by an in situ cell death de-
tection kit, POD (Roche Applied Science, Mannheim, Germany). Cells with blue nu-
clei were considered TUNEL-negative and counted as normal cells. The apoptosis rate
(%) = 100% × the number of positive cells/total cells.

The liver from four fish per tank was homogenized in perchloric acid buffer and
the homogenate was centrifuged at 10,000× g for 10 min. Then, the supernatant was
separated, and neutralized with 0.5 volumes of 2 mol L−1 potassium hydroxide cocktail.
Liver ATP contents were determined enzymatically using a Varian Cary UV/Vis spec-
trophotometer [26]. The generation of NADPH was in direct proportion to the amount of
ATP in the extract, once glucose-6-phosphate was depleted. The assay conditions were:
100 mM triethanolamine HCl adjusted to pH 7.6 with NaOH, 4 mM MgCl2, 2 mM glucose,
2 mM NADP, 2.8 units mL−1 glucose-6-phosphate dehydrogenase and 1.8 units mL−1

hexokinase. Hexokinase was omitted initially to deplete glucose-6-phosphate in the extract.
After the addition of hexokinase, the reaction was followed to completion at 340 nm to
assess ATP contents. Liver AMP contents were measured following NADH utilization by
lactate dehydrogenase (LDH) in proportion to pyruvate production by pyruvate kinase
(PK) according to Adam (1965) [27]. The assay conditions were: 100 mM triethanolamine
HCl adjusted to pH 7.6 with NaOH, 1 mM PEP, 33.4 mM MgSO4, 0.12 M KCl, 0.36 mM
NADH, 24 units mL−1 lactate dehydrogenase, 18 units mL−1 PK. AMP contents were
determined according to the difference in optical density before and after the addition of
PK and myokinase.

2.7. Analysis of Western Blot (WB) and RT-PCR

WB analysis (20 µg of liver protein) was performed using anti-AMPKα (#2532,
Cell Signaling Technology, Danvers, MA, USA), P 53 (A0263, ABclonal, Wuhan, China),
caspase 3 (13847, Abcam, Cambridge, MA, USA) and anti-β-tubulin (10094-1-AP, Proteintech,
Rosemont, IL, USA) antibodies. These antibodies have all been shown to successfully cross-
react with M. amblycephala proteins. The signals of WB were quantitatively assayed by
ImageJ 1.44 image analysis software.

Total RNA was extracted from the liver using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA), and its RNA concentration was detected by a NanoDrop spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA). Then, cDNA was synthesized using
PrimeScript Ist strand cDNA synthesis kit (Takara, Tokyo, Japan). Finally, the expression
levels of target genes were detected by real-time PCR with specific primers (Table 2) under
the SYBGREEN-based Light Cycle 96 system (Roche, LC96). EF1α (elongation factor
1 alpha) gene was used as an endogenous control because of the non-significant changes in
the Ct value between the treatments. The expression levels of target genes were normalized
by the expression of EF1α, and the relative expression levels were calculated by 2−∆∆Ct

method [28].
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Table 2. Nucleotide sequences of the primers used to assay gene expressions by real-time PCR.

Target Gene Forward (5′-3) Reverse (5′-3) Accession
Numbers or References

AMPKα 1 AGTTGGACGAGAAGGAG AGGGCATACAAAATCAC ARF07712.1
AMPKα 2 ACAGCCCTAAGGCACGATG TGGGTCGGGTAGTGTTGAG KX061841

TXNIP CAGACTTGCTGTCCCCTAC CTCCAGAACCAACTTATCG MW582526
Trx TCACAATCGCCTTCAATC CTCCCTTCTTACCCACAA [29]

CAT CAGTGCTCCTGATACCCAGC TTCTGACACAGACGCTCTCG [29]
Cu/Zn-SOD AGTTGCCATGTGCACTTTTCT AGGTGCTAGTCGAGTGTTAGG KF479046.1

Mn-SOD AGCTGCACCACAGCAAGCAC TCCTCCACCATTCGGTGACA KF195932.1
GPx1 GAACGCCCACCCTCTGTTTG GAACGCCCACCCTCTGTTTG KF378713.1

NF-κB GAAGAAGGATGTGGGAGATG TGTTGTCGTAGATGGGCTGAG [30]
TNFα TGGAGAGTGAACCAGGACCA AGAGACCTGGCTGTAGACGA KU976426.1
IL 1β ACGATAAGACCAGCACGACC CTGTTTCCGTCTCTCAGCGT [30]
IL 6 CAGCAGAATGGGGGAGTTATC CTCGCAGAGTCTTGACATCCTT KJ755058.1
IL 8 CAGAGAGTCGACGCATTGGT ATTCACGGTGCTTTGTTGGC [31]

IL 10 GTGTTTTCGGGTGCAAGTGG ATGAACGAGATCCTGCGCTT [31]
P 53 CAGCAGGAGCCAATCCATCA ACGTACTCCCCAGACCTGAA [31]
Bcl 2 CCAACTCATCAGGAAACAA GGGTGCTGCGGGTAAC EU490408.1
Bax ATCCAGCCAGCATCGT CACTATCCCCAAGACCC AF231015.1

Caspase 3 TCGTTCGTCTGTGTCCTGTTGAG GCTGTGGAGAAGGCGTAGAGG KY006115.1
Caspase 9 AATAAAGCACCGAGCG GGGAGGAGGCCGATGAGCACTATCT KM604705.1

EF1α CTTCTCAGGCTGACTGTGC CCGCTAGCATTACCCTCC X77689.1

AMPKα 1, AMP-activated protein kinase α 1; AMPKα 2, AMP-activated protein kinase α 2; TXNIP, thioredoxin-interacting protein;
Trx, thioredoxin; CAT, catalase; Cu/Zn-SOD, copper/zinc superoxide dismutase; Mn-SOD, manganese superoxide dismutase; GPx1, glutathione
peroxidase 1; NF-κB, nuclear factor kappa B; TNF α, tumor necrosis factor α; IL 1β, interleukin 1β; IL 6, interleukin 6; IL 8, interleukin 8;
IL 10, interleukin 10; EF1α, elongation factor 1α.

2.8. Statistical Analyses

Data were analyzed using one-way analysis of variance (ANOVA) by SPSS 22.0
statistical software. Tukey’s HSD multiple comparison test was adopted to rank the means.
All data are presented as means ± S.E.M (standard error of the mean) of four replicates.
Statistical significance was set at p < 0.05.

3. Results
3.1. Characterization of the Ag-NPs

The size of Ag-NPs measured with TEM ranged from 11 to 21 nm (average value
17.32 ± 4.09 nm) (Figure 1). The zeta potential for Ag-NPs was −55.6 ± 2.0 mV.
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Figure 1. TEM image of AgNPs and its particle size distribution histogram.

3.2. Growth Performance and Feed Utilization

Growth performance and feed utilization of blunt snout bream subjected to different
treatments are shown in Table 3. No mortality was observed during the 12-week feeding
trial. Initial weight, relative feed intake (RFI) and feed conversion ratio (FCR) showed no
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significant differences (p > 0.05) among all the treatments. Final weight, weight gain rate
(WGR) and specific growth rate (SGR) of fish fed the CS diet were all lower than those of
other groups. However, their values in the HCS group were significantly (p < 0.05) higher
than those of the CS and HC groups.

Table 3. Growth performance and feed utilization of blunt snout bream subjected to different treatments.

Parameters
Groups

p-Value
C CS HC HCS

Initial weight (g) 20.12 ± 0.07 20.42 ± 0.23 20.41 ± 0.21 20.22 ± 0.12 >0.05
Final weight (g) 124.57 ± 5.18 a 65.69 ± 8.41 d 101.24 ± 4.11 b 88.84 ± 4.31 c <0.05

WGR † (%) 462.98 ± 10.20 a 225.12 ± 9.57 d 394.19 ± 8.31 b 336.12 ± 5.61 c <0.05
SGR§(% day−1) 3.12 ± 0.02 a 1.95 ± 0.01 d 2.81 ± 0.04 b 2.64 ± 0.01 c <0.05

RFI || (% body weight d−1) 3.35 ± 0.01 2.94 ± 0.03 3.12 ± 0.01 2.81 ± 0.03 >0.05
FCR 1.35 ± 0.02 1.58 ± 0.01 1.30 ± 0.02 1.27 ± 0.02 >0.05

C, control diet; CS, control diet supplemented with 100 mg kg−1 silver nanoparticles (Ag-NPs); HC, high-carbohydrate (HC) diet; HCS, HC
diet supplemented with 100 mg kg−1 Ag-NPs (the same below).† Weight gain rate (WGR, %) = (Wt −W0) × 100/W0.§Specific growth rate
(SGR)= (LnWt − LnW0) × 100/T, where W0 and Wt are the initial and final body weights, and T is the culture period in days.|| Relative
feed intake (RFI) = Feed intake (g) × 100/[(initial fish weight (g) + final fish weight (g) + dead fish weight (g)) × days reared/2]. Feed
conversion ratio (FCR) = feed consumption (g)/fish weight gain (g). Values are means ± S.E.M. of four replications. Means in the same line
with different superscripts (a, b, c and d) are significantly different (p < 0.05).

3.3. Plasma and Liver Biochemistry Parameters

As can be seen from Table 4, plasma alanine transaminase (AST), aspartate amino-
transferase (ALT), interleukin 1β (IL 1β) and interleukin 6 (IL 6), as well as liver reactive
oxygen species (ROS) and malondialdehyde (MDA) contents of the CS group, were all
significantly (p < 0.05) higher than those of other groups, whereas the opposite was true
for liver values of total anti-oxidation capacity (T-AOC), superoxide dismutase (SOD) and
catalase (CAT). The values of AST, IL 6, ROS and MDA of the HCS group were significantly
(p < 0.05) higher than those of the C group, whereas the opposite was true for T-AOC, SOD
and CAT. In addition, the values of AST, IL 6, ROS, MDA, T-AOC, SOD and CAT showed
no significant differences (p > 0.05) between the HC and HCS groups.

Table 4. Plasma and liver parameters of blunt snout bream subjected to different treatments.

Parameters
Groups

p-Value
C CS HC HCS

Plasma parameters

AST (U/L) 23.47 ± 0.12 c 43.11 ± 0.11 a 33.10 ± 0.21 b 35.47 ± 0.35 b <0.05
ALT (U/L) 2.01 ± 0.01 d 6.24 ± 0.03 a 3.45 ± 0.01 c 4.85 ± 0.14 b <0.05

IL 1β (ng/L) 1.21 ± 0.01 d 7.11 ± 0.02 a 2.31 ± 0.01 c 5.34 ± 0.03 b <0.05
IL 6 (ng/L) 21.24 ± 0.31 c 45.72 ± 0.65 a 33.54 ± 1.04 b 34.78 ± 0.52 b <0.05

Liver parameters

ROS (% control) 1.02 ± 0.02 c 7.14 ± 0.01 a 4.25 ± 0.01 b 4.64 ± 0.03 b <0.05
T-AOC (U/mg protein) 1.45 ± 0.01 a 0.35 ± 0.01 c 0.54 ± 0.02 b 0.55 ± 0.01 b <0.05

SOD (U/mg protein) 12.36 ± 0.04 a 6.35 ± 0.04 c 10.19 ± 0.11 b 9.22 ± 0.05 b <0.05
CAT (U/mg protein) 20.21 ± 0.22 a 4.49 ± 0.03 c 11.34 ± 0.21 b 10.18 ± 0.02 b <0.05

MDA (nmol/mg protein) 2.34 ± 0.02 c 10.29 ± 0.12 a 8.21 ± 0.01 b 8.61 ± 0.05 b <0.05

AST, alanine transaminase; ALT, aspartate aminotransferase; IL 1β, interleukin 1β; IL 6, interleukin 6; ROS, reactive oxygen species; T-AOC,
total anti-oxidation capacity; SOD, superoxide dismutase; CAT, catalase; MDA, malondialdehyde. Values are means ± S.E.M. of four
replications. Means in the same line with different superscripts (a, b, c and d) are significantly different (p < 0.05).

3.4. Liver Histological Analysis

Hepatic apoptosis results of blunt snout bream subjected to different treatments are
presented in Figure 2. Apoptotic cells are dyed with brown. In Figure 2A–D, we can see
that there are more apoptotic cells (brown cells) in the CS group than in other groups.
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Apoptotic rates in the CS group were also significantly (p < 0.05) higher than those of other
groups. In addition, the values of apoptotic rates of the HCS group were significantly
(p < 0.05) higher than those of the C group, but there are no significant differences (p > 0.05)
with the HC group.
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Figure 2. TUNEL detection of hepatic apoptosis of M. amblycephala subjected to different treatments: (A) the C group;
(B) the CS group; (C) the HC group; (D) the HCS group. (E) is apoptotic rates. The brown fluorescence and white
arrows indicate apoptotic cells. Each data point represents the mean ± SEM of four replicates. Bars assigned different
superscripts (a, b and c) are significantly different (p < 0.05). C, control diet; CS, control diet supplemented with 100 mg kg−1

silver nanoparticles (Ag-NPs); HC, high-carbohydrate (HC) diet; HCS, HC diet supplemented with 100 mg kg−1 Ag-NPs
(the same below).

3.5. Liver ATP and AMP Contents

As can be seen from Figure 3, the lowest ATP and AMP contents were found in the CS
group, while the highest values of AMP contents and AMP/ATP ratio were found in the
HCS group. In addition, liver ATP and AMP contents of the HC group were significantly
(p < 0.05) higher than those of the C group.

3.6. Protein Contents and Transcriptions of AMPKα

AMPKα protein contents, as well as AMPKα 1 and AMPKα 2 mRNA levels of the
HCS group, were all significantly (p < 0.05) higher than those of other groups (Figure 4).
In addition, AMPKα protein content and AMPKα 2 mRNA levels of the CS group were
both significantly (p < 0.05) higher than those of the C group, but there were no significant
differences (p > 0.05) with the HC group.

3.7. Transcriptions of Antioxidant-Related Genes

As can be seen from Figure 5, the transcriptions of Trx, CAT, Cu/Zn-SOD and GPx1 of
the CS group were all significantly (p < 0.05) lower than those of other groups, while the
opposite was true for TXNIP transcription. The transcriptions of Trx, CAT, Mn-SOD and
GPx1 of the HCS group were all significantly (p < 0.05) lower than those of the C group,
whereas the opposite was true for TXNIP. In addition, the values of TXNIP, Trx, CAT,
Mn-SOD and GPx1 showed no significant differences (p > 0.05) between the HC and
HCS groups.
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Figure 3. Hepatic ATP (A) and AMP (B) contents and the AMP/ATP ratio (C) of M. amblycephala subjected to different
treatments. ATP, adenosine triphosphate; AMP, adenosine monophosphate. Each data point represents the mean ± SEM of
four replicates. Bars assigned different superscripts (a, b, c and d) are significantly different (p < 0.05).
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Figure 4. Hepatic content of T-AMPKα protein (A), transcriptions of AMPKα 1 (B), AMPKα 2 (C) M. amblycephala subjected
to different treatments. Gels were loaded with 20 mg total protein per lane. Each data point represents the means ± SEM of
four replicates. Bars assigned different superscripts (a, b, c and d) are significantly different (p < 0.05).
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Figure 5. Hepatic transcriptional levels of antioxidant-related genes (A: TXNIP; B: Trx; C: CAT; D: Cu/Zn-SOD; E: Mn-SOD
and F: GPx1) of M. amblycephala subjected to different treatments. Each data point represents the means ± SEM of four
replicates. Bars assigned different superscripts (a, b, c and d) are significantly different (p < 0.05).

3.8. Transcriptions of Inflammation-Related Genes

As can be seen from Figure 6, the transcriptions of NF-κB, TNF α and IL 6 of the CS
group were all significantly (p < 0.05) higher than those of other groups, while the opposite
was true for IL 10 transcription. The transcriptions of NF-κB, TNF α, IL 1β and IL 8 of the
HCS group were all significantly (p < 0.05) lower than those of the C group, whereas the
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opposite was true for IL 10. In addition, the values of NF-κB, TNF α, IL 1β, IL 8 and IL 10
showed no significant differences (p > 0.05) between the HC and HCS groups.
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Figure 6. Hepatic transcriptional levels of inflammation-related genes (A: NF-κB; B: TNF α; C: IL 1β; D: IL 6; E: IL 8 and
F: IL 10) of M. amblycephala subjected to different treatments. Each data point represents the means ± SEM of four replicates.
Bars assigned different superscripts (a, b, c and d) are significantly different (p < 0.05).
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3.9. Transcriptions of Apoptosis-Related Genes and Protein

As can be seen from Figure 7, P 53, Bax and caspase 3 mRNA levels, as well as P 53
and caspase 3 protein contents of the CS group, were all significantly (p < 0.05) higher than
those of other groups, while the opposite was true for Bcl 2 transcription. P 53, caspase 3
and caspase 9 mRNA levels, as well as P 53 and caspase 3 protein contents of the HCS
group, were all significantly (p < 0.05) higher than those of the C group, but there were
no significant differences (p > 0.05) with the HC group. In addition, the transcriptions of
Bcl 2 of the HCS group were significantly (p < 0.05) higher than those of other groups, but
there were no significant differences (p > 0.05) between the C and HC groups.
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Figure 7. Hepatic transcriptional levels of apoptosis-related genes (A: P 53; B: Bcl 2; C: Bax; D: Caspase 3 and E: Caspase 9)
and protein (F: P 53 and G: Caspase 3) of M. amblycephala subjected to different treatments. Gels were loaded with 20 mg
total protein per lane. Each data point represents the means ± SEM of four replicates. Bars assigned different superscripts
(a, b, c and d) are significantly different (p < 0.05).

4. Discussion

After the 12-week feeding trial, WGR, SGR, RFI and FCR of fish fed diets without
Ag-NPs all tended to decrease with increasing dietary carbohydrate levels. These results
might be due to the following facts: (a) carbohydrate-enriched diets can cause persistent
hyperglycemia of fish, which might result in metabolic disorders, thus negatively affecting
growth [31,32]; and (b) high-carbohydrate diets can reduce feed palatability and accelerate
fish satiety, thus reducing feed consumption [33]. In addition, WGR, SGR and RFI were
further remarkably decreased when fish were fed diets with Ag-NPs. Previous studies
have demonstrated that AgNPs exposure could lead to serious pathology problems in fish
tissues/organs, such as necrotic hepatocytes, hemocyte overfilling, hepatocyte enlargement
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and hepatocytes’ nuclear degeneration [2,34,35]. This may result in a decrease in growth
performance of M. amblycephala. However, compared with the CS group, the WGR and SGR
of the HCS group were remarkably higher, while the opposite was true for RFI and FCR.
The results suggested that high-carbohydrate diets could improve growth performance
of fish exposed to Ag-NPs. A reasonable explanation may be due to the increased ATP
production of fish due to high-carbohydrate feeding, since it can accelerate the self-renewal
of injured organisms [36], thereby alleviating Ag-NPs-induced negative effects on the
growth of fish.

In this study, high dietary carbohydrate levels increased plasma activities of AST and
ALT, levels of IL 1β and IL 6, liver contents of ROS and MDA, as well as the hepatocytes
apoptosis rate than those of the C group, while the opposite was true for T-AOC, SOD
and CAT. The results were in line with previous studies, in which the long-term intake of
carbohydrate-enriched diets led to inflammation, hepatocytes apoptosis and low antioxi-
dant ability in fish [37–39]. This was supported by the fact that: (a) pro-inflammatory cy-
tokines containing IL 1β and IL 6 are increased when a host experiences inflammation [40];
and (b) the protective effects against oxidative damages could be directly reflected by
the activities of some antioxidant enzymes, such as SOD and CAT, in fish, as they are in
mammals [41]. In addition, dietary Ag-NPs supplementation further increased the values
of AST, ALT, IL 1β, IL 6, ROS, MDA and hepatocyte apoptosis rate of fish fed C diets, but
the opposite trend was true for SOD and CAT, suggesting increased inflammation and
hepatocyte apoptosis, but decreased antioxidant capacity in the livers of M. amblycephala fed
C diets. According to previous studies, Ag-NPs can react with the thiol groups of enzymes,
including key components of the cell’s antioxidant defense mechanism, such as SOD and
CAT [42,43]. As a consequence, Ag-NPs depleted the cell antioxidant defense mechanism,
thereby resulting in a decrease in SOD and CAT activities and an increase in ROS levels.
Then, overproduction of ROS could induce intracellular inflammatory stresses character-
ized by increased plasma IL 1β and IL 6 levels [44]. Meanwhile, multiple pro-inflammatory
cytokines, such as IL 1β and IL 6, can trigger apoptosis, thereby stimulating programmed
cell death [9,10]. It should be stated here that this information was mainly derived from
mammals. The underlying mechanisms in fish still need further and more detailed studies.
However, the values of AST, ALT, IL 1β, IL 6, ROS, MDA and hepatocyte apoptosis rate of
the HCS group were all remarkably lower than those of the CS group, while the opposite
was true for T-AOC, SOD and CAT. The results suggested that carbohydrate-enriched diets
can enhance antioxidant capacity and inhibit inflammation and hepatocyte apoptosis of
M. amblycephala fed with Ag-NPs. In order to characterize the corresponding mechanisms,
molecular investigations were performed in a follow-up study.

AMPK is a stress-activated protein kinase that is activated in response to stresses that
change the cellular AMP/ATP ratio, e.g., glucose load. In this study, hepatic ATP and AMP
contents, AMPKα protein content and AMPKα 1 and AMPKα 2 mRNA levels all increased
with increasing dietary carbohydrate levels. The most plausible explanation would be
that high-carbohydrate diets could enhance glycolysis and glucose oxidation in the liver,
thereby increasing ATP production [45]. Then, the increased ATP was hydrolyzed, thus
leading to an increase in AMP content. In addition, the relatively high values of AMPKα

protein content and AMPKα 1 and AMPKα 2 mRNA levels in the HC group were also not
surprising; after an adaptation to carbohydrate-enhanced diets, AMPK may be activated to
regulate glucose and lipid metabolism to maintain energy homeostasis [46]. As for Ag-NPs
supplementation, it increased the values of the AMP/ATP ratio, AMPKα protein content
and AMPKα 1 and AMPKα 2 mRNA levels, whereas the opposite was true for ATP content.
This indicated that Ag-NPs could modify the intracellular energy state of fish. From these
results, it is reasonable to suggest that Ag-NPs could cause mitochondrial dysfunction by
inducing ROS generation, thereby resulting in a decrease in ATP content [47]. Meanwhile,
the increased AMP/ATP ratio is considered as a positive signal, since it can activate AMPK,
thereby enhancing the metabolism and immune function of fish [48].
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Generally, activated AMPK can inhibit ROS production by accelerating TXNIP protein
degradation [12], thereby regulating the antioxidant defense of organisms. However, such
information in aquatic animals is extremely rare. In this study, hepatic transcriptions of
Trx, CAT, Cu/Zn-SOD and GPx1 of fish fed HC diets were all significantly down-regulated
compared to those in the C group, whereas the opposite was true for TXNIP. These results
were in line with those related to antioxidant enzyme activities, suggesting that HC diets
can reduce the hepatic antioxidant capacity of fish. Previous studies have shown that
the activation of TXNIP by high glucose could inhibit Trx activity, thereby decreasing the
antioxidant capacity of organisms [49,50], as might be reflected by decreasing the activity
and expression of endogenous antioxidant enzymes such as SOD and GPx1. As for Ag-NPs
supplementation, hepatic transcriptions of Trx, CAT, Cu/Zn-SOD, Mn-SOD and GPx1 in
the CS group were all remarkably lower than those of other groups, whereas the opposite
was true for TXNIP. These results might be due to the fact that the overproduction of
ROS induced by Ag-NPs could activate TXNIP, thereby inhibiting the function of Trx
as a major cellular redox regulator [51]. This may decrease the activity and expression
of Cu/Zn-SOD, Mn-SOD and GPx1, thus resulting in an increase in oxidative stress of
fish. However, the aforementioned studies are mainly focused on mammals. The exact
mechanisms in fish still warrant further in-depth studies. In addition, the values of Trx,
CAT, Cu/Zn-SOD and GPx1 were increased in the HCS group, suggesting the intake of an
HC diet could enhance the antioxidant capacity of this fish when faced with Ag-NPs. This
was supported by the fact that the activation of AMPK could significantly up-regulate the
transcriptional activities of Trx by accelerating TXNIP protein degradation, thus promoting
cellular defense against oxidative stress [12,49].

In addition, activated AMPK can also suppress inflammation via the inhibition of
the NF-κB pathway [13]. In this study, hepatic NF-κB, TNF α, IL 1β and IL 6 expression
in fish fed diets without Ag-NPs were all significantly increased with increasing dietary
carbohydrate levels, whereas the opposite was true for IL 10 expression. This indicated
that high-carbohydrate diets caused inflammation in the liver of M. amblycephala. This
was supported by the fact that IL 1β and IL 6 are essential pro-inflammatory cytokines,
and their secretion can lead to a pro-inflammatory cascade, including production of TNFα,
thereby triggering inflammation [52]. Meanwhile, the decreased expression of IL 10 was
also considered to be a positive signal for inflammation, since IL 10 could inhibit the
synthesis of pro-inflammatory cytokines [53]. Furthermore, Ag-NPs supplementation
further significantly up-regulated expression of NF-κB, TNF α, IL 1β and IL 6 of fish
fed with C diets. Previous studies have demonstrated that Ag-NPs could stimulate ROS
generation, thereby activating NF-κB-mediated pathways, which lead to pro-inflammatory
genes (TNF α, IL 1β and IL 6) expression [54,55]. However, the expression of NF-κB and
pro-inflammatory genes of the HCS group were all remarkably lower than those of the
CS group, which was in line with plasma IL 1β and IL 6 levels. This may be due to the
fact that activated AMPK can deacetylate P 65 protein (an activator of NF-κB signaling),
thus inhibiting NF-κB mediated pro-inflammatory pathways [56,57]. Moreover, activated
AMPK can also increase the expression of anti-inflammatory cytokines (such as IL 10), thus
decreasing inflammatory stress of tissues [58]. However, this is also the case in mammals.
Whether fish show a similar mechanism is still uncertain, and this warrants further study.
In addition, the expressions of NF-κB, TNF α, IL 1β and IL 6 of the HCS group were all
generally higher than those of the HC group. This may be explained by the fact that growth
performance is decreased in the HCS group.

Furthermore, the underlying molecular mechanism of hepatocyte apoptosis has been
investigated in this study. Hepatic protein contents of P 53 and caspase 3, as well as
transcriptions of P 53, Bax and caspase 3, in fish fed HC diets were all significantly increased
than those of the C group, suggesting carbohydrate-enriched diets induce apoptosis in
the liver of M. amblycephala. According to previous studies, the activation of P 53 by
high glucose could up-regulate expression of its downstream pro-apoptotic genes such
as Bax and caspase 3 [10,59]. Then, activated caspase 3 can cleave cellular substrates,
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ultimately leading to cell apoptosis and death [60]. As for Ag-NPs supplementation,
hepatic transcriptions of P 53, Bax, caspase 3 and caspase 9 of the CS group were all higher
than in other groups. This might be due to the fact that Ag-NPs can activate P 53 by
increasing its phosphorylation at Ser-15, thereby accelerating P 53-mediated apoptosis [61].
However, the expressions of P 53 and pro-apoptotic genes of the HCS group were all
remarkably lower than those of the CS group, whereas the opposite was true for an anti-
apoptotic gene (Bcl 2). This indicated that HC diets could inhibit apoptosis in the liver of
M. amblycephala facing Ag-NPs, which correlates with the result of the hepatocyte apoptosis
rate. A previous study has shown that, under high glucose, AMPK activation deacetylates
P 53 protein to increase its degradation, thereby reducing cell apoptosis [62]. This may
also exist in fish as it does in mammals. Interestingly, in response to extreme glucose
deprivation, AMPK activation could induce phosphorylation of P 53 protein at Ser-15,
resulting in P 53 activation and stabilization [63,64]. This may further demonstrate that
high dietary carbohydrate levels are beneficial for M. amblycephala facing Ag-NPs. It should
be stated here that this information was mainly derived from mammals. The underlying
mechanisms in fish still require further and more detailed studies.

5. Conclusions

In summary, the results obtained in this study suggest that a high-carbohydrate
diet can attenuate Ag-NPs-induced hepatic oxidative stress, inflammation and apopto-
sis of M. amblycephala via the activation of AMPK and the enhancement of antioxidant
enzyme activities, coupled with the down-regulated transcriptions of NF-κB-mediated
pro-inflammatory cytokines and P 53-mediated pro-apoptotic genes.
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