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Abstract: High concentrations of copper (Cu2+) pose a great threat to aquatic animals. However, the
mechanisms underlying the response of crustaceans to Cu2+ exposure have not been well studied.
Therefore, we investigated the alterations of physiological and molecular parameters in Chinese mitten
crab (Eriocheir sinensis) after Cu2+ exposure. The crabs were exposed to 0 (control), 0.04, 0.18, and
0.70 mg/L of Cu2+ for 5 days, and the hemolymph, hepatopancreas, gills, and muscle were sampled.
The results showed that Cu2+ exposure decreased the antioxidative capacity and promoted lipid
peroxidation in different tissues. Apoptosis was induced by Cu2+ exposure, and this activation was
associated with the mitochondrial and ERK pathways in the hepatopancreas. ER stress-related genes
were upregulated in the hepatopancreas but downregulated in the gills at higher doses of Cu2+.
Autophagy was considerably influenced by Cu2+ exposure, as evidenced by the upregulation of
autophagy-related genes in the hepatopancreas and gills. Cu2+ exposure also caused an immune
response in different tissues, especially the hepatopancreas, where the TLR2-MyD88-NF-κB pathway
was initiated to mediate the inflammatory response. Overall, our results suggest that Cu2+ exposure
induces oxidative stress, ER stress, apoptosis, autophagy, and immune response in E. sinensis, and
the toxicity may be implicated following the activation of the ERK, AMPK, and TLR2-MyD88-NF-
κB pathways.

Keywords: copper; apoptosis; endoplasmic reticulum stress; oxidative stress; Eriocheir sinensis

1. Introduction

Copper (Cu) is an essential metal element for all living organisms and mainly exists in
Cu2+ and Cu+ states. It is involved in a variety of physiological functions, such as electron
transport, mitochondrial function, and free radical scavenging [1]. When present in excess,
however, Cu becomes toxic and causes damage to cellular components [2]. It is also classified
as a priority environmental pollutant [3]. Cu can accumulate in aquatic systems from both
natural (e.g., erosion of rocks and soils, geological deposition) and anthropogenic sources
(e.g., industrial, mining and agricultural activities, sewage discharge) [3,4]. In aquaculture,
copper sulfate (CuSO4) has been extensively used as a therapeutic agent to control skin
lesions and gill diseases caused by parasites and pathogenic bacteria [5]. It is further
used globally as an algicide to control harmful cyanobacterial blooms in freshwater [6].
The extensive use of Cu2+ may lead to its short-term and/or repeated accumulation in
aquatic environments. High concentrations of Cu2+ (up to 100 mg/L) have further been
detected in various aquatic ecosystems [7].
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High concentrations of copper have been reported to be potentially toxic to aquatic
animals in aquatic environment [8]. Liver and gills are the primary sites of Cu toxicity in
freshwater fish, where accumulated Cu2+ disrupts regular Cu homeostasis and branchial
ion regulation [9]. The tolerance to waterborne Cu2+ varies among aquatic animals, for
example, 48 h LD50 0.75 mg/L in Oncorhynchus mykiss [10] and 72 h LD50 40.6 mg/L in
Oreochromis niloticus [11]. In crustaceans, the safe concentration of Cu2+ is also variable, e.g.,
0.02 mg/L in juvenile Macrobrachium rosenbergii [12], 0.375 mg/L in juvenile procambarus
clarkia [13], and 0.008 mg/L in larval Penaeus vannamei [14]. Acute exposure (24–96 h) to
Cu2+ (0.1–84.9 µM) decreases the rate of oxygen consumption and alters the swimming
performance of fish [15,16]. Cu2+ also suppresses immune function by decreasing blood
leukocytes in fish [17,18]. The toxicity of Cu2+ to crustaceans has also garnered attention.
Long-term exposure to Cu2+ (0.1641 ppm, 30 days) suppresses the glutathione system in
Penaeus indicus [19]. Furthermore, sub-lethal Cu2+ exposure leads to necrosis and the loss of
regular structures in the gills and hepatopancreas of Litopenaeus vannamei [20]. However, the
underlying mechanisms of Cu toxicity in crustaceans are not yet well understood; therefore,
it is necessary to systematically examine the effects of Cu2+ exposure on crustaceans and its
potential ecological risks in aquatic environments.

The Chinese mitten crab (Eriocheir sinensis) is one of the most commercially cultured
aquatic species in China. When managing crab ponds, CuSO4 is commonly used to eradicate
filamentous algae and control parasites and pathogens, which may lead to Cu2+ accumulation
in the ponds. High ambient Cu2+ is a significant threat to the health of E. sinensis. After
24 h of Cu2+ exposure, the metabolism and osmotic regulation in the gills of E. sinensis are
altered [21], and after 96 h, its molting, growth, and survival are suppressed [22,23]. Although
Cu2+ toxicity in E. sinensis has garnered much attention in recent years, the knowledge of
its underlying molecular mechanisms remains limited. It is unclear whether endoplasmic
reticulum (ER) stress and autophagy are involved in Cu2+ toxicity in E. sinensis; the key
signaling pathways have rarely been evaluated in Cu2+-induced inflammatory responses
and apoptosis. In addition, it is important to determine whether there is tissue specificity
in the response to Cu2+ toxicity.

In this study, we investigated the physiological and molecular responses of E. sinensis to
Cu2+ and evaluated the potential molecular mechanisms. To this end, we exposed E. sinensis
to different concentrations of Cu2+ for 5 days [24] and observed the changes in the redox
state, apoptosis, ER stress, autophagy, immune response, and detoxification in different
tissues. We also analyzed multiple key signaling pathways, including the inositol-requiring
enzyme 1 (IRE1), mitogen-activated protein kinases (MAPKs), AMP-activated protein
kinase (AMPK), and Toll-like receptor (TLR) pathways. Our findings provide new insights
into the mechanisms underlying the toxicity of Cu2+ exposure in E. sinensis, which may
contribute to the risk assessments of Cu2+ in aquatic environments.

2. Materials and Methods
2.1. Crab Rearing, Experimental Design, and Sample Collection

Healthy E. sinensis (120 ± 1.2 g) were obtained from the Freshwater Fisheries Research
Center (Wuxi, China). The crabs were kept in indoor glass tanks (100 × 60 × 40 cm) for
7 days to acclimatize to the laboratory conditions (temperature, 25 ± 1 ◦C; dissolved oxygen
> 5.0 mg/L; ammonia nitrogen < 0.1 mg/L; pH 8.0 ± 0.5). After acclimatizing, the crabs
were randomly distributed into four groups and exposed to 0 (control), 0.04, 0.18, and
0.70 mg/L of copper for 5 days. Each group contained 36 crabs (pooled male and female,
1:1), and the experiment was performed in triplicate. The sub-lethal copper concentrations
were chosen according to our previous study, where the 96 h LC50 of Cu2+ was 5.63 mg/L [24].
The Cu2+ concentrations were prepared and adjusted by adding CuSO4 (Aladdin, Shanghai,
China). During the experiment, the water was renewed every day, and the crabs were fed a
commercial diet (crude protein 42.6%, crude lipid 8.0%, crude ash 16.2%; HIPORE Feed Co.,
Ltd., Taizhou, China) at 1% of their body weight daily to avoid the adverse effects caused
by hunger.
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After 5 days of exposure, eight crabs from each tank were sampled randomly, and
the hemolymph, hepatopancreas, gills, and muscle were immediately collected after anes-
thetization with an ice bath. Tissues from four crabs were mixed into one sample (six
samples in total). The hemolymph was centrifuged (4000× g for 10 min at 4 ◦C) to obtain
the supernatant. All samples were stored at −80 ◦C for gene expression and biochemistry
analyses. The use of the crabs in the experiment was approved by the Freshwater Fisheries
Research Center, and all experimental procedures were performed according to the Animal
Care Guidelines.

2.2. Biochemical Assay

The hepatopancreas, gills, and muscle were homogenized nine times (v/w) with ice-
cold normal saline (0.86% NaCl). The homogenized mixture was centrifuged at 3600 rpm
at 4 ◦C for 10 min to collect the supernatant, which was used for biochemical assays. The
levels of glutathione (GSH), glutathione S-transferase (GST), superoxide dismutase (SOD),
total antioxidant capacity (T-AOC), malondialdehyde (MDA), and total protein (TP) in
the hemolymph, hepatopancreas, gills, and muscle were measured as described by Jia,
et al. [25]. Commercial kits for GSH, GST, SOD, T-AOC, MDA, and TP were purchased from
Nanjing Jiancheng Bioengineering Institute (Nanjing, China) and Beyotime Biotechnology
(Nantong, China).

2.3. Quantitative Real-Time PCR Analysis

Total RNA from the hepatopancreas, gills, and muscle was isolated using the RNAiso
Plus reagent (TaKaRa, Beijing, China) according to the manufacturer’s instructions. The
quality and quantity of total RNA were evaluated using OD260, the ratio of OD260/OD280,
and agarose gel electrophoresis. The isolated RNA was used to synthesize cDNA via reverse
transcription PCR using the PrimeScript™ RT reagent (TaKaRa, No. RR047). In brief, the
RNA (1 µg) was mixed with gDNA Eraser at 42 ◦C for 2 min to remove the genomic DNA.
The mixture was then reacted with PrimeScript RT Enzyme Mix I (1 µL), RT Primer Mix
(1 µL), 5× PrimeScript Buffer 2 (4 µL), and RNase-Free dH2O (4 µL) for 15 min at 37 ◦C
and 5 s at 85 ◦C.

The mRNA levels of the target genes were measured by quantitative real-time PCR
(qPCR) on a CFX96 Real-Time PCR instrument (Bio-Rad, Hercules, CA, USA). During the
qPCR amplification process, cDNA (2 µL), TB Green Premix Ex Taq II (TaKaRa; 12.5 µL),
forward and reverse specific primers (1 µL), and RNase-free water (8.5 µL) were mixed.
The mixture was incubated for 30 s at 95 ◦C and subjected to 40 cycles at 95 ◦C for 5 s and
59–61 ◦C for 1 min. The expression of the target genes was analyzed using the 2−∆∆Cq

method [26]. The primers used are listed in Table S1. The ubiquitin-conjugating enzyme E2b
(UBE) and β-actin genes were used as internal references to normalize the quantification
cycle (Cq) values [27].

2.4. Integrated Biomarker Response Analysis

The integrated biomarker response (IBR) analysis for the oxidative stress parameters
of different tissues was conducted using the method described by Sanchez, et al. [28]. The
control group (without Cu2+) was used as the reference condition. The IBRv2 value per
concentration is the sum of the absolute values of the biomarker deviation index (A). The
reference deviation of each biomarker is represented by the A value. In the star plot, the values
above and below zero reflect the induction and reduction of the biomarker, respectively.

2.5. Statistical Analysis

All statistical analyses were performed using SPSS 24.0 (SPSS, Chicago, IL, USA).
The results are expressed as the mean ± standard error of the mean (SEM). The normal
distribution and heterogeneity of variance were evaluated using the Shapiro–Wilk and
Bartlett tests, respectively. For comparisons among different groups, a one-way analysis of
variance (ANOVA) was performed, followed by an LSD post hoc test in cases of equal variance
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or the Kruskal–Wallis test for unequal variance. Differences were considered statistically
significant at p < 0.05 among the different groups.

3. Results
3.1. Alterations in the Redox State

There was a linear decrease in the levels of T-AOC, SOD, and GST and an increase in
MDA after treatment with different concentrations of Cu2+ in the hemolymph (Figure 1A–E).
Compared to the control group, the decreases in T-AOC, SOD, and GST were statistically
significant in the 0.70 mg/L Cu2+-exposed group (p < 0.05; Figure 1A–C), while the in-
crease in MDA was statistically significant in the 0.18 and 0.70 mg/L Cu2+-exposed groups
(p < 0.05; Figure 1D). GSH was not influenced by Cu2+ exposure in the hemolymph (p > 0.05;
Figure 1E).
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Figure 1. Changes in the oxidative stress parameters in different tissues of E. sinensis exposed to
copper for 5 days. (A–E) hemolymph; (F–I) hepatopancreas; (J–M) gills; (N–R) muscle. The values
are expressed the mean ± SEM (n = 6). Different letters denote significant differences among different
groups (p < 0.05).
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In the hepatopancreas, the level of T-AOC decreased with increasing Cu2+ concentra-
tions, and the lowest value was observed after exposure to 0.70 mg/L of Cu2+ (p < 0.05;
Figure 1G). Similarly, the level of GSH underwent a dose-dependent decrease, which was
statistically significant in the 0.70 mg/L Cu2+-exposed group (p < 0.05; Figure 1H). SOD
activity and MDA content did not exhibit significant alterations in the hepatopancreas
among the different Cu2+-exposed groups (p > 0.05; Figure 1F,I).

In the gills, SOD activity showed a downward trend after Cu2+ exposure and was
strongly decreased in crabs exposed to 0.70 mg/L of Cu2+ (p < 0.05; Figure 1J). Conversely,
the MDA content exhibited a rising tendency and was enhanced in crabs exposed to
0.70 mg/L of Cu2+ (p < 0.05; Figure 1M). The levels of T-AOC and GSH showed a slight but
non-significant alteration in the gills among the different groups (p > 0.05; Figure 1K,L).

In the muscle, exposure to 0.70 mg/L of Cu2+ markedly decreased SOD activity and
enhanced MDA formation (p < 0.05; Figure 1N,R) but did not influence other parameters
(p > 0.05; Figure 1O,P).

To compare the differences among the tissues and groups exposed to different concen-
trations of Cu2+, four biomarkers related to the redox state were standardized and depicted
in a star plot (Figure 2). The IBRv2 index increased with increasing Cu2+ concentrations
and exhibited dose-dependent toxicity. Among the different tissues, the following order
of average IBRv2 values was observed: hemolymph (5.64) > hepatopancreas (4.87) > gills
(4.77) > muscle (4.53). In addition, after exposure to 0.70 mg/L of Cu2+, the highest IBRv2
value was observed in the hepatopancreas (9.26).
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Figure 2. IBR index of the oxidative stress response to different concentrations of copper in the
hemolymph, hepatopancreas, gills, and muscle. Biomarker values are represented in relation to the
control group. The areas above zero reflect an increase in the biomarker, and the areas below zero
reflect a decrease in the biomarker.
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3.2. Alterations in the Expression of Apoptosis-Related Genes

To evaluate whether Cu2+ exposure could induce apoptosis, we measured the mRNA
levels of apoptosis-related genes, including caspase-3, caspase-8, B-cell lymphoma 2 (Bcl-2),
Bcl2 X protein (Bax), p53, and cytochrome c (cytc1) in the hepatopancreas, gills, and muscle
(Figure 3). In the hepatopancreas, the mRNA levels of caspase-3, caspase-8, Bax, and p53
showed an increasing tendency, and the highest value of the expression levels of the genes
was observed in the group treated with 0.70 mg/L of Cu2+ (p < 0.05; Figure 3A).
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Figure 3. Expression of apoptosis-related genes in different tissues of E. sinensis exposed to copper
for 5 days. (A) Hepatopancreas; (B) gills; (C) muscle. The values are expressed as the mean ± SEM
(n = 6). Different letters denote significant differences among different groups (p < 0.05).

In the gills, the mRNA levels of caspase-3, Bax, p53, and cytc1 increased in treatments
with 0.04 and/or 0.18 mg/L of Cu2+ and then decreased to near normal values in treatment
with 0.70 mg/L of Cu2+ (Figure 3B). The caspase-3 and cytc1 were markedly upregulated
under exposure to 0.04 and 0.18 mg/L of Cu2+ (p < 0.05; Figure 3B) and gradually decreased
under exposure to 0.70 mg/L of Cu2+. Similarly, Bax and p53 were upregulated after
exposure to 0.04 mg/L of copper (p < 0.05) and gradually decreased with increasing Cu2+

concentrations (Figure 3B).
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In the muscle, caspase-3 and caspase-8 transcription were significantly upregulated
compared to the control group after 5 days of Cu2+ exposure (p < 0.05; Figure 3C). However,
the mRNA levels of Bax, p53, and cytc1 were not significantly altered after copper exposure.

3.3. Alterations in the Expression of MAPK Pathway-Related Genes

After Cu2+ exposure, the genes associated with the MAPK signaling pathway showed
various degrees of change (Figure 4). In the hepatopancreas, the transcription of extra-
cellular signal-regulated protein kinase (erk) was elevated in the groups exposed to 0.18
and 0.70 mg/L of Cu2+, and jun (an AP-1 subunit) was elevated in the group exposed to
0.70 mg/L of Cu2+, both compared to that in the control group (p < 0.05; Figure 4A).
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Figure 4. Expression of MAPK pathway-related genes in different tissues of E. sinensis exposed to copper
for 5 days. (A) Hepatopancreas; (B) gills; (C) muscle. The values are expressed as the mean ± SEM
(n = 6). Different letters denote significant differences among different groups (p < 0.05).

In the gills, erk expression was distinctly downregulated in the group exposed to
0.70 mg/L of Cu2+ compared to that in the control group (p < 0.05; Figure 4B), while p38
expression was upregulated in the group exposed to 0.04 mg/L of Cu2+ and gradually
downregulated under exposure to 0.18 and 0.70 mg/L of Cu2+ (p < 0.05; Figure 4B).
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In the muscle, c-Jun N-terminal kinase (jnk) mRNA was downregulated in the groups
exposed to 0.18 and 0.70 mg/L of Cu2+, and jun mRNA was downregulated in the groups
exposed to 0.04, 0.18, and 0.70 mg/L of Cu2+, compared to those in the control group
(p < 0.05; Figure 4C).

3.4. Alterations in the Expression of ER Stress-Related Genes

The mRNA levels of the ER stress-related genes showed irregular variations after Cu2+

exposure in the hepatopancreas, gills, and muscle (Figure 5). In the hepatopancreas, the
mRNA levels of activating transcription factor 6 (atf6) and atf4 exhibited a linear rising
trend with increasing Cu2+ concentrations and were upregulated in the group treated with
0.70 mg/L of Cu2+ (p < 0.05; Figure 5A). Compared to those in the control group, exposure
to 0.18 and 0.70 mg/L of Cu2+ upregulated the transcription of eukaryotic translation
initiation factor 2 α (eif2α), and 0.70 mg/L of Cu2+ upregulated inositol-requiring enzyme 1
(ire1) transcription (p < 0.05; Figure 5A).
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Figure 5. Expression of ER stress-related genes in different tissues of E. sinensis exposed to copper for
5 days. (A) Hepatopancreas; (B) gills; (C) muscle. The values are the mean ± SEM (n = 6). Different
letters denote significant differences among different groups (p < 0.05).

In the gills, the mRNA levels of atf6 exhibited an initial upregulation followed by a
decreasing tendency, and a peak value was observed in the crabs exposed to 0.04 mg/L of
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Cu2+ (p < 0.05; Figure 5B). The expression of atf6 was downregulated under exposure to
0.70 mg/L of Cu2+ relative to that in the control group (p < 0.05; Figure 5B). In addition,
exposure to 0.70 mg/L of Cu2+ decreased grp78 transcription (p < 0.05; Figure 5B).

In the muscle, the mRNA level of atf6 was significantly enhanced in the 0.18 and
0.70 mg/L Cu2+-exposed groups compared to that in the control group (p < 0.05), but other
genes were not significantly changed (Figure 5B).

3.5. Alterations in the Expression of Autophagy-Related Genes

Eight autophagy-related genes, including 5-AMP-activated protein kinase β (ampkβ),
beclin, p62, microtubule-associated proteins 1A/1B light chain 3a (lc3a), lc3c, autophagy-
related gene 7 (atg7), transcription factor EB (tfeb), and lysosome-associated membrane
protein 1 (lamp1), were used to evaluate the autophagic response to Cu2+ exposure in the
hepatopancreas, gills, and muscle (Figure 6). In the hepatopancreas, the mRNA levels
of atg7, tfeb, ampkβ, beclin, p62, and lc3a increased with Cu2+ concentrations in a linear or
non-linear manner, and they were significantly upregulated in the 0.70 mg/L Cu2+-exposed
group compared to the control group (p < 0.05; Figure 6A). A significant upregulation
was also observed in atg7 under exposure to 0.18 mg/L of Cu2+ and in tfeb and p62 under
exposure to 0.04 and 0.18 mg/L Cu2+ (p < 0.05; Figure 6A).
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Figure 6. Expression of autophagy-related genes in different tissues of E. sinensis exposed to copper
for 5 days. (A) Hepatopancreas; (B) gills; (C) muscle. The values are expressed as the mean ± SEM
(n = 6). Different letters denote significant differences among different groups (p < 0.05).
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In the gills, Cu2+ exposure caused a significant increase in the atg7 mRNA level in the
0.04 mg/L Cu2+-exposed group, tfeb in the 0.18 and 0.70 mg/L Cu2+-exposed groups, and
p62 in the 0.04 and 0.18 mg/L Cu2+-exposed groups compared with those in the control
group (p < 0.05; Figure 6B). In contrast, Cu2+ exposure caused a significant decrease in lc3c
mRNA in the 0.70 mg/L Cu2+-exposed group (p < 0.05; Figure 6B).

In the muscle, only the transcription of tfeb and lc3a was significantly changed by Cu2+

exposure (Figure 6C). The transcription of tfeb was lower in the 0.18 and 0.70 mg/L Cu2+-
exposed groups than in the 0 mg/L Cu2+-exposed group (p < 0.05; Figure 6C). Furthermore,
the transcription of lc3a was lower in the 0.70 mg/L Cu2+-exposed group than in the 0 mg/L
Cu2+-exposed group (p < 0.05; Figure 6C).

3.6. Alterations in the Expression of Immune Response-Related Genes

The immune response to Cu2+ exposure was assessed by determining the immune
response-related genes in the hepatopancreas, gills, and muscle (Figure 7). In the hep-
atopancreas, the mRNA levels of Toll-like receptor 2 (tlr2), myeloid differentiation protein-
88 (myd88), relish, interleukin-16 (il-16), lipopolysaccharide-induced TNF-α factor (litaf ),
and pelle were higher in the 0.70 mg/L Cu2+-exposed group than in the control group
(p < 0.05; Figure 7A). Higher mRNA levels of tlr2 and myd88 were also observed in the
0.18 mg/L Cu2+-exposed group (p < 0.05; Figure 7A).
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Figure 7. Expression of immune response-related genes in different tissues of E. sinensis exposed to
copper for 5 days. (A) Hepatopancreas; (B) gills; (C) muscle. The values are expressed as the mean ± SEM
(n = 6). Different letters denote significant differences among different groups (p < 0.05).
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In the gills, the mRNA level of tlr2 was strongly upregulated in the 0.70 mg/L Cu2+-
treated group compared to that in the control group (p < 0.05; Figure 7B). The litaf in the
three Cu2+-treated groups and lysozyme (lzm) in the 0.04 and 0.18 mg/L Cu2+-treated
groups were highly expressed (p < 0.05; Figure 7B).

In the muscle, the transcription of tlr2 was upregulated in the three Cu2+-treated
groups compared to that in the control group (p < 0.05; Figure 7C). Likewise, the expres-
sion of myd88 and lzm was upregulated in the 0.70 mg/L Cu2+-treated group (p < 0.05;
Figure 7C).

3.7. Alterations in the Expression of Stress- and Detoxification-Related Genes

In the hepatopancreas, the mRNA levels of shock protein 90 (hsp90), cytochrome P450
(cyp) 2b, and cyp4 exhibited a linear rising trend with increasing Cu2+ concentrations, and
upregulation was observed in the 0.70 mg/L Cu2+-treated group (p < 0.05; Figure 8A). The
mRNA levels of hsp70 and metallothioneins (mt) were first upregulated and then downreg-
ulated with increasing Cu2+ concentrations, as evidenced by higher hsp70 expression under
exposure to 0.04 mg/L of Cu2+ and higher mt and cyp2a expression under exposure to 0.04
and 0.18 mg/L of Cu2+ (p < 0.05; Figure 8A).
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Figure 8. Expression of stress- and detoxification-related genes in different tissues of E. sinensis
exposed to copper for 5 days. (A) Hepatopancreas; (B) gills; (C) muscle. The values are expressed
as the mean ± SEM (n = 6). Different letters denote significant differences among different groups
(p < 0.05).
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In the gills, the mRNA levels of hsp60 and hsp70 were significantly upregulated under
0.04 mg/L Cu2+ exposure (p < 0.05; Figure 8B) but gradually reduced to the same level
as that in the control group. Similarly, hsp90 expression was upregulated in the group
exposed to 0.18 mg/L of Cu2+ but downregulated in the group exposed to 0.70 mg/L of
Cu2+ (p < 0.05; Figure 8B). Other genes were not markedly affected by Cu2+ exposure.

In the muscle, only hsp90 expression was significantly reduced in the 0.70 mg/L
Cu2+-exposed group compared to that in the control group (p < 0.05; Figure 8C).

4. Discussion

Excess copper has been widely confirmed to be toxic to crustaceans, and the toxic
effect is linked not only to concentration but also to exposure time. The median lethal
concentration (24–96 h LC50) of Cu2+ decreased with the extension of exposure time in
crustaceans [12,13]. Exposure to 0.75 mg/L Cu2+ for 7 days resulted in abnormal gill
tip structure of M. rosenbergii [29]. The stress biomarkers showed an increased tendency
in a time-dependent manner (1–7 days) in Macrobrachium scabriculum exposed to Cu2+

at doses of 0.032–0.352 mg/L [30]. A study of 3–48 h of exposure showed that Cu2+

treatments (5–20 mg/L) began to negatively influence the immune ability of L. vannamei
after 12 h [31]. Similar to previous studies, our data also exhibited that exposure to
Cu2+ (0.04–0.70 mg/L) for 5 days had adverse effects on antioxidative status, apoptosis,
ER stress, and immune response in E. sinensis. It is worth noting that the Cu2+ toxicity
showed tissue-specificity, and hepatopancreas was more sensitive to Cu2+ exposure in
E. sinensis. In invertebrates, metals, including copper, are commonly taken in via gills and
accumulate in the hepatopancreas [32]. Yang et al. reported that the accumulation of copper
in the hepatopancreas was higher than in other tissues in E. sinensis after Cu2+ exposure [33].
Meanwhile, the hepatopancreas is considered a primary organ of excretion and detoxification
for metals in crustaceans [34]. Thus, it may be more susceptible to copper exposure.

4.1. Effects of Copper Exposure on Antioxidative Status

Oxidative stress is a physiological imbalance state in which the production of reactive
oxygen species (ROS) overwhelms the cellular antioxidant defense capacity, eventually
resulting in damage to cellular macromolecules, such as DNA, proteins, and lipids. Copper
is known to participate in the formation of ROS, and its overload may result from repetitive
radical formation via redox cycling [35,36]. Excessive ROS can induce oxidative stress and
impair the antioxidant defense system. Indeed, strong evidence exists that acute or chronic
Cu2+ exposure induces oxidative stress in different aquatic animals. For example, Cu2+

exposure enhances the activities of antioxidative enzymes such as SOD and glutathione
peroxidase (Gpx) in hepatopancreas of L. vannamei [37] and Callinectes sapidus [38], and
gills of O. niloticus [39], reflecting an occurrence of oxidative stress. In contrast, exposure
to high levels of waterborne Cu2+ decreases enzymatic and non-enzymatic antioxidants
and induces oxidative damage in the gills of P. clarkia [40], the hepatopancreas of Minuca
rapax [41], and the brain of Cyprinus carpio [42]. Our study further showed that the antioxi-
dant capacity in different tissues of E. sinensis decreased following exposure to 0.70 mg/L
of Cu2+, indicating that a higher level of Cu2+ exposure induces oxidative damage. In addi-
tion, our data showed a variable intensity of oxidative stress in different tissues after Cu2+

exposure, which was supported by a previous study in Carassius auratus [43], indicating
the tissue specificity of Cu2+ toxicity.

Peroxidative damage to membrane lipids is another common consequence of excess
Cu2+. Lipid peroxy radicals formed during lipid peroxidation may change the fluidity
and permeability of the cell membrane in injured cells [44]. MDA, a lipid peroxidation
product, is a typical indicator used to evaluate lipid peroxidation. It is increased in multiple
fish tissues after Cu2+ exposure [45–47]. Similarly, Cu2+-overloaded Procambarus clarkii
has a significantly increased MDA concentration in the hemolymph, hepatopancreas, and
gills [40,48,49]. Our data also exhibited enhanced MDA content in the hemolymph, gills,
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and muscle of E. sinensis after exposure to 0.70 mg/L of Cu2+, indicating that high levels of
Cu2+ exposure induce lipid peroxidation and augment oxidative damage.

It has been reported that the toxic effect of copper on redox state was related to
cultured conditions, such as salinity, temperature, and pH, in aquatic animals. Moderate
salinity levels increased GST activity to alleviate the lethal toxicity of Cu2+, but high salinity
levels worsen the Cu2+-induced oxidative damage in Danio rerio embryos [50]. In M. rapax,
the higher temperature (35 ◦C) significantly increased Cu2+-induced oxidative stress [41].
Carvalho et al. (2015) suggested that the effect of Cu2+ on the response of antioxidant
defense systems was determined by water pH in Prochilodus lineatus [51]. The evidence
revealed that copper combined with other factors causes more significant toxicity in aquatic
animals than copper alone. Thus, interactive effects between copper exposure and cultured
conditions will be examined in future research.

4.2. Effects of Copper Exposure on Apoptosis

Apoptosis is considered a sensitive parameter for assessing the toxicity of environmen-
tal pollutants [52]. It has been reported that Cu, a common environmental pollutant, can
induce apoptosis in aquatic animals. High concentrations of Cu2+ increase the incidence
of TUNEL-positive cells (apoptosis) in the gills of D. rerio and C. auratus [53,54]. Acute
exposure to Cu2+ increases the apoptotic hemocyte ratio and caspase-3 gene expression
in L. vannamei [55]. In our study, apoptosis-related genes such as caspase-3, caspase-8, Bax,
p53, and cytc were upregulated in the hepatopancreas, gills, and/or muscle of E. sinensis,
indicating that mitochondria-mediated apoptosis was activated by Cu2+ exposure. Cu2+-
induced apoptosis is likely elicited by the induction of ROS [56]. Our data support this
view, given the strong oxidative stress that was found after Cu2+ exposure. Additionally, in
D. rerio, the central nervous system and liver show higher sensitivity to apoptosis induced
by Cu2+ exposure [57]. Similarly, Cu2+-exposed E. sinensis exhibits stronger apoptosis in
the hepatopancreas and gills. In the hepatopancreas, the activation of apoptosis was mainly
observed under exposure to 0.7 mg/L of Cu2+, while in the gills, it was mainly observed
under exposure to 0.04 and 0.18 mg/L of Cu2+. Thus, Cu-triggered apoptosis may occur in
a tissue-specific manner.

MAPK signaling pathways, including ERK, JNK, and p38, play critical roles in apopto-
sis [58]. The ERK-AP-1 and JNK-AP-1 pathways have been reported to regulate oxidative
stress-induced apoptosis [59]. A previous study reported that Cu2+ exposure causes apop-
tosis via the activation of ERK and p38 in the hepatocytes of O. mykiss [60]. Mitochondrial
apoptosis induced by copper nanoparticles has been associated with the activation of the
ERK signaling pathway in female mice [61]. In our study, the mRNA levels of erk and
jun (a AP-1 subunit) were upregulated in the hepatopancreas after Cu2+ exposure and
significantly associated with apoptosis, indicating that the ERK-AP-1 pathway may be
involved in Cu2+-induced apoptosis. In the gills, p38 gene expression was upregulated in
the 0.04 mg/L copper-exposed group, which implies that the p38 pathway may be acti-
vated to regulate apoptosis after exposure to lower dose of Cu2+. In the muscle, however,
the mRNA levels of jnk and jun were downregulated after Cu2+ exposure, although the
underlying mechanisms remain unclear. We hypothesize that the downregulation may be
related to tissue damage caused by Cu2+ exposure.

4.3. Effects of Copper Exposure on ER Stress

The ER is a pivotal organelle that is responsible for protein assembly, folding, and
transportation. Protein misfolding and ER stress trigger a complex signaling process,
known as the unfolded protein response (UPR), to restore ER homeostasis [62]. A triggered
UPR is a protective mechanism to reinstate ER homeostasis, but persistent or severe ER
stress can initiate cell death via mitochondrial pathways [63]. Environmental pollutants,
such as Cu2+, activate ER stress and impair mitochondrial function in aquatic animals [64].
Cu2+ exposure for 30 days leads to upregulated ER stress-related genes, such as grp78, perk,
eif2a, ire-1α, and atf6 in the liver of Synechogobius hasta and Pelteobagrus fulvidraco [65,66].
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We also observed a marked upregulation of eif2a, atf4, atf6, and ire1 in the hepatopancreas
of E. sinensis, indicating that exposure to 0.7 mg/L of Cu2+ induced ER stress. In the gills,
exposure to 0.04 mg/L of Cu2+ upregulated atf6, while 0.7 mg/L of Cu2+ downregulated
atf6 and grp78. We hypothesize that the downregulation of these genes was related to ER
damage under exposure to higher concentrations of Cu2+. Similar data have also been
found in the liver of S. hasta exposed to a higher level (0.055 mg/L) of Cu2+ for 60 days [65].
In addition, increased ROS production under Cu2+ exposure can induce ER stress and
activate the ATF6 and IRE1 signaling pathways, leading to apoptosis [67].

4.4. Effects of Copper Exposure on Autophagy

Autophagy is a crucial cell-clearing process that regulates the degradation of damaged
organelles and unfolded proteins by fusion with lysosomes in cells. LC3 and p62 are widely
used as markers of autophagy. In the later stages of autophagy, TFEB coordinates lysosomal
activation and autophagosome–lysosome fusion [68]. A recent study reported that excess
dietary copper induces oxidative stress and autophagy, as evidenced by the upregulated
expression of beclin1, lc3B, and p62 in P. fulvidraco, which then protected against copper-
induced lipid accumulation [69]. Activated autophagy has also been reported in GC-1
cells [70], pig testes [71], and the hypothalamus of broilers [72] following Cu2+ exposure
due to oxidative stress. In contrast, Cu2+ exposure has been found to downregulate the
mRNA levels of lc3 in D. rerio gills, indicating the impairment of macroautophagy [73].
Furthermore, the AMPK signaling pathway has been shown to regulate Cu2+-induced
autophagy [74,75]. In our study, the mRNA levels of autophagy-related genes, including
ampkβ, beclin, lc3a, tfeb, p62, and atg7, were upregulated in the hepatopancreas, suggesting
that Cu2+ exposure may activate autophagy via the AMPK-Beclin pathway. Unlike those
in the hepatopancreas, the mRNA levels of atg7 and p62 in the gills were upregulated
following exposure to lower doses of Cu2+ (0.04 and/or 0.18 mg/L) but returned to similar
levels as those in the control group after being exposed to a higher dose of Cu2+ (0.7 mg/L).
The expression of lc3c was even downregulated in the 0.7 mg/L Cu2+-exposed gills. The
findings suggest that a low dose of Cu2+ may initiate autophagy, but a high dose can impair
the autophagic process in the gills. The detailed mechanisms require further study. The
activation of autophagy may be linked to oxidative stress and ER stress induced by Cu2+

exposure [76].

4.5. Effects of Copper Exposure on the Immune Response

The immune response is a key mechanism following pollutant toxicity in aquatic
organisms. TLRs, widely existing pattern-recognition receptors, are considered major regu-
lators of the immune response [77]. Numerous studies have suggested that environmental
pollutants, including heavy metals, can activate the TLRs to regulate immune response in
animals. For example, Cr(VI) exposure upregulated tlr2 and myd88 expression in Geloina
erosa gills [78], and microbiota-dependent TLR2 signaling reduced silver nanoparticle tox-
icity to D. rerio larvae [79]. Relish, an NF-κB transcription factor, also plays a key role
in the innate immunity of crustaceans [80]. In crustaceans, the TLR2-MyD88 pathway
regulates the immune response to pathogenic bacterial infections [81,82]. A transcriptomic
analysis revealed that Cu2+ exposure significantly affects the TLR pathway in Mizuhopecten
yessoensis [83]. In L. vannamei, the gene expression of TLRs was significantly increased in
the 0.05 mg/L Cu2+-treated group, but returned to the control level following treatments
with higher doses of Cu2+ [37]. Aksakal and Ciltas [84] also reported that a low expres-
sion of immune-related genes such as tlr4 and tlr22 resulted in immunosuppression in
D. rerio after exposure to copper oxide nanoparticles. In our study, the immune response
to Cu2+ exposure was tissue-specific. In the hepatopancreas, a significant inflammatory
response occurred via the TLR2-MyD88-NF-κB pathway after Cu2+ exposure. Despite the
upregulation of tlr2 and/or myd88 in the gills and muscle, relish and il-16 (an important
pro-inflammatory cytokine in crabs) were not altered, which may indicate no obvious
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inflammatory response in the two tissues, especially the muscle. In addition, the ERK
pathway may also be involved in Cu2+-induced inflammation in the hepatopancreas [85].

In addition to NF-κB, LITAF is a pivotal transcription factor in the inflammatory
response and regulates the transcription of TNF-α and other cytokines [86]. Tang et al. [87]
suggested that LITAF is a mediator from the NF-κB pathway in the lipopolysaccharide-
induced inflammatory response. It has been reported that litaf is upregulated and involved
in the immune response in E. sinensis after Edwardsiella tarda and Vibrio anguillarum infec-
tions [86]. Similarly, our data show that Cu2+ exposure upregulated the expression of litaf
in the hepatopancreas, suggesting that the TLR2-MyD88-LITAF pathway may be triggered
in response to Cu2+ toxicity.

4.6. Effects of Copper Exposure on the Stress Response and Detoxification

HSPs are molecular chaperones that play well-established roles in protein folding and
transport. HSP60, HSP70, and HSP90 are well-studied HSPs that are abundantly induced
under a variety of chemical exposures [88], which is a protective response to stressors [89].
A previous study reported that Cu2+ exposure upregulated the mRNA levels of hsp60,
hsp70, and hsp90 in the liver of C. carpio [90]. A study on freshwater prawns (Macrobrachium
malcolmsonii) further showed that the synthesis of HSP70 appeared from the 1st to 24th hour in
the gills under Cu2+ exposure but was not recorded after the 24-h mark [91]. We also observed
that the mRNA levels of hsp60, hsp70, and hsp90 exhibited an initial upregulation followed
by a decreasing tendency in the gills. We therefore conjectured that Cu2+ exposure at lower
doses triggered an HSP-mediated protective mechanism. In addition, the downregulation
of hsp90 may be interpreted as a result of the strong oxidative stress induced by higher
doses of Cu2+ [92].

MT, a metal-binding protein with a high affinity for metals, is involved in the reg-
ulation of essential metal ion homeostasis and the detoxification of non-essential metal
ions [93]. After 4 days of Cu2+ exposure, the MT level was found to increase in Gasterosteus
aculeatus [94]. An increased MT level has also been reported after Cu2+ exposure in Pacifas-
tacus leniusculus [95] and constitutes a protective response to Cu2+ accumulation. Similarly,
our data show upregulated mt expression in the hepatopancreas after exposure to 0.04
and 0.18 mg/L of Cu2+, indicating that a lower concentration of Cu2+ induces a positive
response, but a higher concentration inhibits the response.

CYP enzymes have been implicated in the detoxification and metabolism of environ-
mental pollutants, including heavy metals, in aquatic animals. The CYP 1–4 families are
considered reliable biomarkers for monitoring environmental toxicants [96]. The induction
of CYP enzymes may be an adaptive response to metal exposure, whereas their decrease
inhibits detoxification [97]. In Cu2+-exposed Diaphanosoma celebensis, CYP-related genes,
including cyp2 and cyp4, were found to be upregulated at an earlier exposure time (6 h) but
downregulated at a later exposure time (24h) [98]. In C. auratus, Cu2+ exposure upregulated
the expression of cyp1a and cyp3a, but combined treatment with Cu2+ and diclofenac de-
creased their expression [99]. In our study, the mRNA levels of cyp2A, cyp2B, and cyp4 were
markedly increased in the hepatopancreas, implying that CYP enzymes may be involved in
the phase I detoxification of Cu2+ toxicity. In addition, our data revealed that detoxification
predominantly occurred in the hepatopancreas but not in the gills or muscle.

Apart from acute toxicity, long-term Cu2+ exposure also causes its accumulation in
different tissues of crustaceans. In E. sinensis, the copper accumulation was positively
related to its level in water, and the hepatopancreas was the primary target organ [33]. The
accumulation presents potential for bio-magnification through the food chain [100], which
may pose a health risk to humans, since humans are the primary consumers of E. sinensis
and other aquatic animals. In order to maintain cellular homeostasis, many organisms
possess a purification ability of toxic elements. Boada et al. [101] reported that Mugil curema
eliminated enriched copper for14 days after Cu2+ exposure. Similarly, the purification
process in juvenile Petenia kraussii exposed to Cu2+ was achieved after 14 days [102].
In P. clarkii, enrichment of copper in hepatopancreas was completely eliminated after
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7 days [103]. However, the depuration time of E. sinensis for excessive copper has not been
reported until now, and will be further evaluated in our future research. Furthermore,
the potential health risks of copper accumulation from aquatic food consumption should
be investigated.

5. Conclusions

In this study, we examined the adverse effects of Cu2+ exposure on different tissues
of E. sinensis. Cu2+ exposure suppressed antioxidative parameters and promoted lipid
peroxidation in different tissues, resulting in oxidative damage. After Cu2+ exposure,
apoptosis-related genes were upregulated, implying that apoptosis was activated, and the
activation may be related to the upregulation of the MAPK pathway and ER stress. In the
hepatopancreas and gills, the regulation of autophagy-related genes indicated that the
autophagic response was involved in Cu2+ toxicity. In addition, Cu2+ exposure increased
immune-related gene expression in different tissues, especially the hepatopancreas, where
the TLR2-MyD88-NF-κB pathway may be initiated to mediate the inflammatory response.
Furthermore, the upregulation of anti-stress and detoxification genes revealed that an
adaptive mechanism was activated in different tissues following Cu2+ exposure. Overall,
the toxicity response of Cu2+ in E. sinensis was associated with oxidative stress, apoptosis,
ER stress, autophagy, and immune response. This study enriches our understanding of the
potential toxicity response of Cu2+ in crustaceans, which may provide more reference data
for the environmental risk assessments of Cu2+.
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