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Abstract: Selenoprotein K (SELENOK) is an endoplasmic reticulum stress (ERS)-regulated protein
required for the calcium (Ca2+) flux-mediated migration of T cells and neutrophils, and the migration
and phagocytosis of macrophages and microglia. However, the effect of SELENOK on the regulation
of the immune function of dendritic cells (DCs), including immature DCs (imDCs) and mature
DCs (mDCs), is still unclear. In this study, imDCs prepared from SELENOK knockout mice were
used to evaluate the effect of SELENOK on the migration and phagocytosis of imDCs. The results
showed that ERS-induced downregulation of imDCs phenotypic markers led to a reduction in Ras
homolog gene family member A (RhoA)-dependent migration and enhanced Ca2+/CD205-mediated
phagocytosis. SELENOK deficiency-induced upregulation of selenoprotein S (SELENOS) attenuated
ERS levels in imDCs. An increase in Ca2+ levels resulted in increased migration and decreased
phagocytosis with or without ERS conditions. The migration was RhoA-dependent, and Ca2+ or
CD205 was associated with regulating phagocytosis in imDCs. Our study found that SELENOK is
required for imDC migration and phagocytosis.

Keywords: selenoprotein K; dendritic cells; endoplasmic reticulum stress

1. Introduction

Dendritic cells (DCs) are proficient antigen-presenting cells that play an essential role
in connecting innate and adaptive immune responses. In accordance with the levels of
co-stimulatory molecules, such as the cluster of differentiation (CD)40 and CD80, DCs are
divided into immature DCs (imDCs) and mature DCs (mDCs), which play an essential role
in antigen phagocytosis and presentation, respectively [1]. Several previous studies have
demonstrated that the immune function of chicken DCs was regulated by selenium [2,3].
Our recent studies have also illustrated that selenium can regulate the differentiation and
maturation of human DCs [4,5], and its deficiency and excess impaired the DCs’ immune
function [6] and reduced the number of splenic DCs in mice [7]. It is well known that
selenium exerts its biological effect through selenoprotein, and the effect of selenium on
the DCs’ immune function in chickens [2,3], humans [5] and mice [6,7] was related to
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changes in the levels of selenoprotein. It was found that selenium regulated the mRNA
levels of selenoprotein K (SELENOK) in human imDCs and mDCs [5], and the protein
levels involved in the regulation of DCs in mice [6]. We hypothesise that SELENOK may
be involved in regulating the DCs’ immune function.

SELENOK is widely distributed in human and mouse tissues, with high expression
levels in the immune system, and it is an endoplasmic reticulum (ER) transmembrane
protein that regulates endoplasmic reticulum stress (ERS) and calcium (Ca2+) signalling [8].
Previous studies have shown that SELENOK deficiency reduces the proliferation and
migration of T cells and neutrophils [9]. Furthermore, SELENOK is essential for Toll-like
receptor-mediated activation [10] and FcγR-mediated phagocytosis [11] in macrophages.
Recently, SELENOK was shown to be involved in the apoptosis of mouse neuronal cells [12]
and the recovery of synaptic defects in Alzheimer’s disease model mice [13] through ERS
or Ca2+ signalling. However, the role of SELENOK in ERS-induced alterations in the DCs’
immune function is still unclear. Numerous studies have shown that ERS can regulate
the immune function of DCs, including cytokine production, DC maturation, antigen
presentation and tumour immune response, by using an inositol-requiring enzyme 1 α/X-
box-binding protein 1 (IRE1α/XBP1) signalling axis and PKR-like ER kinase (PERK) [14–17].
However, the role of activating transcription factor 4 (ATF4) and ATF6 in DCs is unclear.
Therefore, we hypothesised that SELENOK could regulate ERS and, thus, affect the DCs’
immune function.

In this study, we evaluated the effect of SELENOK on the immune function of imDCs
prepared from wild-type (WT) and SELENOK knockout (KO) mice. The effect of the ERS
inducer, tunicamycin (Tm), on the migration, phagocytosis and phenotypic markers in
WT imDCs was examined. Furthermore, ERS-induced migration and the phagocytosis of
SELENOK-deficient imDCs were evaluated, and the ERS markers and phenotypic markers
were detected.

2. Materials and Methods
2.1. Mice

Male WT mice (C57BL/6J) were purchased from the Guizhou Laboratory Animal
Engineering Technology Centre, and the SELENOK knockout (KO) mice were obtained
from the Saiye Biotechnology Co., Ltd. (Suzhou, China). The Institutional Animal Care and
Use Committee at the Guizhou Medical University approved all the research protocols (No.
1800238).

2.2. Preparation of imDCs and mDCs

Fifty-one WT and twenty-four KO male mice aged eight weeks were used for the
preparation of the imDCs and the mDCs, as previously described [6]. Briefly, bone mar-
row suspensions treated with erythrocyte lysate were cultured in RPMI 1640 medium
containing foetal bovine serum (Hyclone, Logan, UT, USA), granulocyte-macrophage
colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) (PeproTech, Rocky Hill, NJ,
USA); the imDCs were obtained after 7 days. Lipopolysaccharides (Sigma–Aldrich, Darm-
stadt, Germany) were used to induce mDCs for another 2 days.

2.3. Cell Counting Kit-8 (CCK8) Assay

The imDCs and the mDCs prepared from the WT mice were treated with the ERS
inducer, Tm (0.1, 0.5, 1, 2, 5, 10, 20 µg/mL) (Sigma–Aldrich, Darmstadt, Germany), for
24 h, and the control group was treated with dimethyl sulfoxide (DMSO) for the same time.
Subsequently, a CCK8 assay was used to determine cell viability by using a microplate
reader (Cytation5, Biotek, VT, USA) at 450 nm. For the SELENOK KO imDCs, the cells
were treated with or without Tm (0.5 µg/mL), followed by a CCK8 assay.
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2.4. Migration Capability Detection

The free migration of the imDCs prepared from the WT mice was assayed by Transwell
(Millipore, MA, USA) according to the previous description [6] after treatment with Tm
(0.1, 0.5, 1 µg/mL) for 24 h. In addition, the imDCs were pre-treated with 30 µM Rhosin
(MedChemExpress, Rocky Hill, NJ, USA), a RhoA inhibitor, for 24 h, followed by 1 µg/mL
of Tm, and then the migration ability was detected. To evaluate the effect of SELENOK on
the imDCs’ migration, the imDCs prepared from the KO mice were treated with or without
Tm (0.5 µg/mL). Then, the migration ability was assayed by Transwell.

2.5. Phagocytosis Assay

Phagocytosis was assayed in terms of the cells’ ability to internalise FITC-dextran. The
imDCs prepared from the WT mice were treated with Tm (0.1, 0.5, 1 µg/mL) for 24 h and
co-cultured with FITC-dextran (1 mg/mL) (40 KDa, Sigma, Darmstadt, Germany) for 1.5 h,
as previously described [6]. For the SELENOK KO imDCs, the cells were treated with or
without Tm (0.5 µg/mL), followed by FITC-dextran treatment. The phagocytosis ability
was then measured by flow cytometry at Ex./Em. = 488 nm/520 nm (NovoCyte, ACEA
Biosciences, San Diego, CA, USA).

2.6. Calcium Measurement

Cytosolic Ca2+ levels in the WT and SELENOK-deficient imDCs treated with or
without 0.5 µg/mL Tm were measured by flow cytometry [18]. After collecting the imDCs,
they were incubated with 1 µM calcium fluorescent dye, Fluo-4 AM (Beyotime, Beijing,
China), for 30 min at room temperature and then washed with phosphate buffer solution.
Fluorescence intensity was detected by flow cytometry and the Ca2+ levels were monitored.

2.7. Real-Time PCR

The total RNA was isolated from the WT imDCs after treatment with Tm (0.1, 0.5,
1 µg/mL) for 24 h by the TRIzol method (Invitrogen, Carlsbad, CA, USA). The cDNA
synthesis and RT-PCR were performed according to our previous description [6]. The
primers used in this study are listed in Table 1. The ERS genes included the C/EBP
homologous protein (CHOP), the binding immunoglobulin protein (BIP), ATF4 and ATF6.
The reference gene was glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the
mRNA levels of target genes were calculated using the 2−∆∆CT method [19].

Table 1. Real-time PCR primers.

Symbol Accession Number Forward Primer Reverse Primer Refs.

GAPDH NM_001289726 tgacatcaagaaggtggtgaagc ccctgttgctgtagccgtattc [20]
SELENOK NM_019979 tccacgaagaatgggtagga gcttctcagagcagacatttacct [20]
SELENOS NM_024439 cagaagattgaaatgtgggacagc cctttggggatgacagatgaagtag [20]

CHOP NM_007837 ccaacagaggtcacacgcac tgactggaatctggagagcga [21]
BIP NM_001163434 tgtggtacccaccaagaagtc ttcagctgtcactcggagaat [21]

ATF4 NM-009716 cgagatgagcttcctgaacagc ggaaaaggcatcctccttgc [21]
ATF6 NM_001081304 taccacccacaacaagacca tgatgatcccggagataagg [21]

2.8. Western Blot

The RIPA lysates were used to prepare protein extracts of DCs and Western blotting
was performed. The antibodies RhoA (2117T), ATF4 (11815S), CHOP (5554T), BIP (3177T)
and GAPDH (5174T) were purchased from CST; ATF6 (ab227830) and SELENOK (ab139949)
were obtained from Abcam; SELENOS (15591-1-AP) was obtained from Proteintech; CD11c
(GB11059) was obtained from Servicebio; CD40 (ER1803-54), CD80 (M1007-10) and CD205
(ET7107-58) were obtained from Huabio.
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2.9. Statistical Analysis

The data were analysed by GraphPad Prism 8.0, and an analysis of variance (ANOVA)
was applied to determine the statistical difference, followed by Tukey’s test. The data were
presented as mean ± SD. The p values of less than 0.05 indicated statistical significance.

3. Results
3.1. ERS Resulted in Decreased DCs Cell Viability

The effect of the ERS inducer, Tm, on the cell viability of imDCs and mDCs was
determined by the CCK8 assay. The results in Figure 1a show that the cell viability of
imDCs was significantly reduced after Tm (0.1, 0.5, 1, 2, 5, 10, 20 µg/mL) treatment.
Moreover, treatment with 0.5 µg/mL Tm did not affect mDCs cell viability, while the
cell viability decreased significantly after treatment with 1, 2, 5, 10 or 20 µg/mL of Tm
(Figure 1b).
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Figure 1. ERS resulted in decreased DC cell viability. The effect of the ERS inducer, tunicamycin (Tm),
on the cell viability of imDCs (a) and mDCs (b) was determined by the CCK8 assay (n = 6). * p < 0.05,
** p < 0.01 and *** p < 0.001 were compared with DMSO-treated imDCs or mDCs. ERS, endoplasmic
reticulum stress; DCs, dendritic cells; imDCs, immature dendritic cells; mDCs, mature dendritic cells;
CCK8, Cell Counting Kit-8; DMSO, dimethyl sulfoxide.

3.2. ERS Decreased Migration and Increased Phagocytosis in imDCs

The migration and phagocytosis of imDCs treated with Tm were assayed by Transwell
and flow cytometry, respectively. As shown in Figure 2a, the free migration of imDCs was
reduced after treatment with 0.5 and 1 µg/mL of Tm, and Rhosin, a RhoA inhibitor, which
could also lead to a decrease in the imDCs migration capacity (Figure 2b). In addition,
Tm (0.1, 0.5 µg/mL) treatment downregulated the protein levels of RhoA (Figure 2e,f),
indicating that a decrease in the RhoA protein level or activity is partly responsible for
the decrease in Tm-induced imDC migration. The phagocytosis ability of imDCs was
significantly enhanced by 0.5 µg/mL of Tm (Figure 2c,d), and elevated CD205 protein
levels, an endocytic receptor of DC, were observed after the Tm (0.1, 0.5, 1 µg/mL) treatment
(Figure 2e,g).
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Figure 2. ERS decreased migration and increased phagocytosis in imDCs. (a) The free migration
ability of imDCs treated with Tm (0.1, 0.5, 1 µg/mL) was assayed by Transwell (n = 3). (b) The free
migration ability of imDCs treated with or without Rhosin, a RhoA inhibitor, under Tm treatment was
assayed by Transwell (n = 3). (c,d) The phagocytosis ability in imDCs after treatment with Tm was
measured by flow cytometry, and the fluorescence intensity was calculated (n = 3). (e–g) The protein
levels of RhoA and CD205 in imDCs after treatment with Tm were assayed by Western blotting, and
the density values were calculated (n = 3). * p < 0.05, ** p < 0.01 and *** p < 0.001 were compared
with DMSO-treated imDCs. ERS, endoplasmic reticulum stress; imDCs, immature dendritic cells;
Tm, tunicamycin; Ras homolog gene family member A, RhoA; CD205, cluster of differentiation 205;
DMSO, dimethyl sulfoxide.

3.3. ERS Downregulated Phenotypic Markers in imDCs

The phenotypic markers of the imDCs treated with Tm were measured by Western
blotting. It was shown that the phenotypic markers CD11c, CD40 and CD80 were down-
regulated (Figure 3), suggesting that Tm induces a decrease in the total protein levels of
imDC phenotypic markers, thereby affecting their function.

3.4. ERS Increased the Levels of ERS Markers in imDCs

The mRNA and protein levels of the ERS markers SELENOK and SELENOS were
assayed by RT-PCR and Western blotting, respectively. The results showed that the gene
(Figure 4) and protein (Figure 5) levels of SELENOK, SELENOS, ATF4, ATF6, BIP and
CHOP were gradually increased in Tm-treated imDCs, suggesting that altered immune
function was due to an alteration in the imDCs markers, which is associated with increased
ERS levels, and SELENOK and SELENOS were involved in the regulation of ERS.



Antioxidants 2022, 11, 1264 6 of 14
Antioxidants 2022, 11, x FOR PEER REVIEW 6 of 14 
 

 

Figure 3. ERS downregulated the phenotypic markers in imDCs. (a–d) The protein levels of CD11c, 

CD40 and CD80 in imDCs after treatment with Tm were assayed by Western blotting, and the den-

sity values were calculated (n = 3). * p < 0.05 and ** p < 0.01 were compared with DMSO-treated 

imDCs. ERS, endoplasmic reticulum stress; imDCs, immature dendritic cells; CD11c, cluster of dif-

ferentiation 11c; CD40, cluster of differentiation 40; CD80, cluster of differentiation 80; Tm, tuni-

camycin; DMSO, dimethyl sulfoxide. 

3.4. ERS Increased the Levels of ERS Markers in imDCs 

The mRNA and protein levels of the ERS markers SELENOK and SELENOS were 

assayed by RT-PCR and Western blotting, respectively. The results showed that the gene 

(Figure 4) and protein (Figure 5) levels of SELENOK, SELENOS, ATF4, ATF6, BIP and 

CHOP were gradually increased in Tm-treated imDCs, suggesting that altered immune 

function was due to an alteration in the imDCs markers, which is associated with in-

creased ERS levels, and SELENOK and SELENOS were involved in the regulation of ERS. 
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CD40 and CD80 in imDCs after treatment with Tm were assayed by Western blotting, and the density
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ERS, endoplasmic reticulum stress; imDCs, immature dendritic cells; CD11c, cluster of differentiation
11c; CD40, cluster of differentiation 40; CD80, cluster of differentiation 80; Tm, tunicamycin; DMSO,
dimethyl sulfoxide.
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Figure 4. ERS increased the mRNA levels of the ERS markers in imDCs. (a,b) The mRNA levels of
SELENOK and SELENOS, as well as (c–f) the ERS markers ATF4, ATF6, BIP and CHOP in imDCs
after treatment with Tm, were assayed by RT-PCR (n = 3). * p < 0.05, ** p < 0.01, *** p < 0.001
and **** p < 0.0001 were compared with DMSO-treated imDCs. ERS, endoplasmic reticulum stress;
imDCs, immature dendritic cells; SELENOK, selenoprotein K; SELENOS, selenoprotein S; ATF4,
activating transcription factor 4; ATF6, activating transcription factor 6; BIP, binding immunoglobulin
protein; CHOP, C/EBP homologous protein; Tm, tunicamycin; DMSO, dimethyl sulfoxide.
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Figure 5. ERS increased the protein levels of the ERS markers in imDCs. (a–c) The protein levels
of SELENOK and SELENOS, as well as (a,d–g) the ERS markers ATF4, ATF6, BIP and CHOP in
imDCs after treatment with Tm, were assayed by Western blotting, and the density values were
calculated (n = 3). * p < 0.05, ** p < 0.01 and *** p < 0.001 were compared with DMSO-treated imDCs.
ERS, endoplasmic reticulum stress; imDCs, immature dendritic cells; SELENOK, selenoprotein K;
SELENOS, selenoprotein S; ATF4, activating transcription factor 4; ATF6, activating transcription
factor 6; BIP, binding immunoglobulin protein; CHOP, C/EBP homologous protein; Tm, tunicamycin;
DMSO, dimethyl sulfoxide.

3.5. SELENOK Deficiency Induced Increased Migration and Decreased Phagocytosis in imDCs

The results in Figure 6a indicate that SELENOK protein levels were downregulated
in mDCs when compared to imDCs, and SELENOK deficiency in imDCs of SELENOK
KO mice was observed (Figure 6b,g). SELENOK-deficient imDCs showed reduced viabil-
ity (Figure 6c), increased migratory capacity (Figure 6d) and reduced antigen phago-
cytosis (Figure 6e,f). Compared with Tm-treated WT imDCs, Tm-treated SELENOK-
deficient imDCs showed unchanged cell viability (Figure 6c), increased migratory capacity
(Figure 6d) and decreased antigen phagocytosis (Figure 6e,f); changes in migration capacity
were RhoA-dependent (Figure 6d,g,h). Compared with WT and KO controls, Tm treat-
ment showed increased phagocytosis and CD205. Still, the decrease in the phagocytosis
induced by SELENOK deficiency did not lead to significant downregulation of CD205
(Figure 6e–g,i). Furthermore, SELENOK deficiency led to elevated Ca2+ levels with or
without Tm treatment (Figure 6j,k).

3.6. SELENOK Deficiency-Induced SELENOS Upregulation Was Involved in ERS

As shown in Figure 7, SELENOK deficiency upregulated the expression of SELENOS,
ATF4 and CHOP in control imDCs. In Tm-treated imDCs, SELENOK deletion induced
significant upregulation of SELENOS and significant downregulation of ATF4, ATF6,
BIP and CHOP, indicating that SELENOK deficiency-induced SELENOS upregulation is
involved in the regulation of ERS.

3.7. SELENOK Deficiency Downregulated Phenotypic Markers in imDCs

It was shown that SELENOK deficiency reduced the expression of CD40, and the ex-
pression of CD11c, CD40 and CD80 was further reduced in Tm-treated SELENOK-deficient
imDCs compared to Tm-treated WT imDCs (Figure 8), suggesting that SELENOK deficiency
can downregulate the phenotypic markers of imDCs and affect their immune function.
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Figure 6. SELENOK deficiency induced increased migration and decreased phagocytosis in imDCs.
(a) The protein levels of SELENOK in imDCs and mDCs were assayed by Western blotting, and the
density values were calculated (n = 3). (b) The density value analysis of SELENOK KO validation in
imDCs after treatment with Tm (n = 3). (c) Effect of SELENOK KO on the viability of imDCs after
treatment with Tm (n = 3). (d) Effect of SELENOK KO on the migration of imDCs after treatment with
Tm (n = 3). (e,f) Effect of SELENOK KO on the phagocytosis ability of imDCs after treatment with
Tm (n = 3). (g–i) Effect of SELENOK KO on the protein levels of RhoA and CD205 in imDCs after
treatment with Tm (n = 3). (j,k) Effect of SELENOK KO on the levels of Ca2+ in imDCs after treatment
with Tm (n = 3). * p < 0.05, ** p < 0.01 and *** p < 0.001 were compared with DMSO- or Tm-treated
WT imDCs. SELENOK, selenoprotein K; imDCs, immature dendritic cells; mDCs, mature dendritic
cells; Tm, tunicamycin; RhoA, Ras homolog gene family member A; CD205, cluster of differentiation
205; DMSO, dimethyl sulfoxide; WT, wild-type; KO, knockout.
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Figure 7. SELENOK deficiency-induced SELENOS upregulation was involved in ERS in imDCs.
(a–f) The protein levels of SELENOS and the ERS markers ATF4, ATF6, BIP and CHOP in WT and
KO imDCs after treatment with Tm were assayed by Western blotting, and the density values were
calculated (n = 3). * p < 0.05, ** p < 0.01 and *** p < 0.001 were compared with DMSO- or Tm-treated
WT imDCs. SELENOK, selenoprotein K; SELENOS, selenoprotein S; ERS, endoplasmic reticulum
stress; imDCs, immature dendritic cells; ATF4, activating transcription factor 4; ATF6, activating
transcription factor 6; BIP, binding immunoglobulin protein; CHOP, C/EBP homologous protein; Tm,
tunicamycin; DMSO, dimethyl sulfoxide; WT, wild-type; KO, knockout.
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Figure 8. SELENOK deficiency downregulated the phenotypic markers in imDCs. (a–d) The protein
levels of CD11c, CD40 and CD80 in WT and KO imDCs after treatment with Tm were assayed
by Western blotting, and the density values were calculated (n = 3). * p < 0.05, ** p < 0.01 and
*** p < 0.001 were compared with DMSO- or Tm-treated WT imDCs. SELENOK, selenoprotein K;
imDCs, immature dendritic cells; CD11c, cluster of differentiation 11c; CD40, cluster of differentiation
40; CD80, cluster of differentiation 80; Tm, tunicamycin; DMSO, dimethyl sulfoxide; WT, wild-type;
KO, knockout.
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4. Discussion

Our study showed that the ERS inducer, Tm, can downregulate the phenotypic mark-
ers in WT imDCs through ERS, leading to decreased migration and increased phagocytosis.
Furthermore, SELENOK deficiency downregulated the phenotypic markers in imDCs by
SELENOS-regulated ERS, which led to increased migration and decreased phagocytosis.

Several previous studies suggested that SELENOK plays an essential role in the
immune function of T cells, neutrophils and macrophages [9–11]. However, how SELENOK
regulates the function of DCs is still unknown. In the present study, SELENOK deficiency
downregulated the phenotypic markers of imDCs under ERS conditions. It modulated
RhoA-dependent migration and Ca2+/CD205-mediated phagocytosis (Figure 9), indicating
that SELENOK is essential for imDCs’ migration and phagocytosis.
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Figure 9. Schematic diagram of the mechanism of imDCs dysfunction mediated by SELENOK. Under
ERS conditions, SELENOK, SELENOS and ERS markers were upregulated, and the phenotypic
markers were downregulated. The downregulation of RhoA inhibited migration and increased Ca2+

or CD205 enhanced phagocytosis in WT imDCs. In SELENOK KO imDCs, SELENOS upregulation at-
tenuated ERS levels, decreased phenotypic markers, upregulated RhoA due to increased Ca2+, which
promoted migration, increased Ca2+ or decreased CD205, which inhibited phagocytosis. imDCs,
immature dendritic cells; SELENOK, selenoprotein K; ERS, endoplasmic reticulum stress; SELENOS,
selenoprotein S; RhoA, Ras homolog gene family member A; CD205, cluster of differentiation 205;
WT, wild-type; KO, knockout.

It was found that reduced SELENOK levels increased ERS-induced apoptosis in the
HepG2 cells [22]. The deficiency of SELENOK increased West Nile virus-induced death in
mice [9] and induced apoptosis in mice neurons [12]. Overexpression of SELENOK could
decrease the viability and increase apoptosis in the BGC-823 cells, but did not affect the
HEK-293 cells [23]. In this study, the cell viability of imDCs and mDCs was decreased after
the ERS inducer treatment (Figure 1), and SELENOK and SELENOS were upregulated
by Tm in imDCs (Figures 4 and 5). In addition, SELENOK deficiency induced a decrease
in imDCs cell viability, but had no changes after Tm treatment (Figure 6), which was
related to the increase in SELENOS (Figure 7). It was shown that SELENOK [9,12,22] and
SELENOS [24,25] have a protective role in ERS-induced cell death or apoptosis. In addition,
SELENOK and SELENOS can form a complex involved in regulating ERS [26], which is
consistent with the Tm-induced upregulation of SELENOK and SELENOS.
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SELENOK deficiency inhibits the migration of human melanoma cells by reducing the
Ca2+ flux [27]. Still, overexpression of SELENOK inhibits the migration of human gastric
cancer cells by increasing Ca2+ levels [23]. It reduces the migration of choriocarcinoma
cells by ERK, p38 MAPK and Akt pathways [28], suggesting that SELENOK has different
effects on the migration of different tumours. For immune cells, the migration of T cells and
neutrophils and the migration and phagocytosis of macrophages in SELENOK-deficient
mice were decreased via deficiency in Ca2+ flux [9,29]. Furthermore, SELENOK overex-
pression enhances microglia migration and phagocytosis through an inositol triphosphate
receptor (IP3R)-induced increase in Ca2+ levels [30]. In this study, we found that SELENOK
deficiency induced an increase in cytosolic Ca2+ levels, resulting in increased migration
and decreased phagocytosis. In addition, changes in the migration due to Ca2+ levels were
RhoA-dependent, and Ca2+ or CD205 were associated with the regulation of phagocytosis
in imDCs (Figures 2 and 6). Our previous study also revealed that a decrease in RhoA led
to a decrease in imDCs migration [6]. Previous reports have also shown that increased
Ca2+-dependent RhoA could lead to increased migration in intestinal epithelial cells [31].
This study consistently showed that increased Ca2+ levels increased RhoA-mediated migra-
tion in SELENOK-deficient imDCs. Recently, human CD205 has not been predicted to bind
to Ca2+, which contributes to oligosaccharide binding to other endocytic receptors [32,33],
suggesting that Ca2+, CD205 or other endocytic receptors are jointly involved in the phago-
cytosis of imDCs. In addition, mechanical stiffness-induced PIEZO1-mediated increases in
Ca2+ levels promoted the antitumor response in DCs [18]. In contrast, the increase in Ca2+

levels inhibited antigen phagocytosis of imDCs in this study, which is probably due to the
developmental state of DCs and different treatment conditions.

An increase in misfolded proteins and reactive oxygen species or disruptions in
Ca2+ homeostasis induce ERS, leading to unfolded protein reactions that include the
IRE1, PERK and ATF6 pathways [12,34]. ERS plays an essential role in the immune
response of T cells, B cells, macrophages and DCs [34]. Reports showed that IRE1/XBP1
and PERK/CHOP could affect maturation, antigen presentation, cytokine secretion and
antitumor response in DCs [14–17,34–39]. In this study, the ERS markers ATF4, ATF6, BIP
and CHOP were increased after treatment with Tm in WT imDCs, leading to decreased
migration and enhanced phagocytosis (Figures 2–5). In contrast, in SELENOK-deficient
imDCs, SELENOS upregulation diminished ERS levels, leading to increased migration
and decreased phagocytosis (Figures 6–8). However, impaired ER function resulted in a
decrease in the phenotypic markers of the WT or KO imDCs. Studies have shown that ERS
in the tumour microenvironment impairs the antitumor immune response of DCs [36–38].
Combined with the results in this study, we suggest that SELENOK-deficient DCs in
tumour tissues would attenuate their antitumor immune response. The human and mouse
SELENOK proteins have high sequence homology [8], and we hypothesise that SELENOK
performs the same role in human DCs, but further experimental verification is required.

5. Conclusions

In conclusion, this study found that SELENOK is required for imDC migration and
phagocytosis. SELENOK has essential functions in tumour cell invasion and migra-
tion [23,27,28], and the migration and phagocytosis of immune cells [9,29,30]. SELENOK is
associated with the prognosis of lung adenocarcinoma and melanoma [8,27,40] and can
be a potential target for tumour immunotherapy. Previous studies have only focused on
the effect of SELENOK on tumour cells or immune cell function. We anticipate that it is
essential to investigate the effect of SELENOK on immune cell infiltration in the tumour mi-
croenvironment and on tumour cell–immune cell interactions. Importantly, SELENOK, in
addition to regulating ERS, is a palmitoylation-modifying protease. It can promote DHHC6-
catalysed palmitoylation of CD36, which is required for macrophage function [8,29,41,42].
In addition, SELENOK plays an important role in the differentiation of myogenic cells
mediated by satellite cells [43], and the degradation of SELENOK is required for adipocyte
differentiation [44]. The effects of SELENOK-mediated palmitoylation on DCs’ function
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and SELENOK deficiency on DCs’ differentiation and maturation are worthy of future
investigation.
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