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Abstract: Bilirubin levels in obese humans and rodents have been shown to be lower than in their
lean counterparts. Some studies have proposed that the glucuronyl UGT1A1 enzyme that clears
bilirubin from the blood increases in the liver with obesity. UGT1A1 clearance of bilirubin allows
more conjugated bilirubin to enter the intestine, where it is catabolized into urobilin, which can be
then absorbed via the hepatic portal vein. We hypothesized that when bilirubin levels are decreased,
the urobilin increases in the plasma of obese humans, as compared to lean humans. To test this, we
measured plasma levels of bilirubin and urobilin, body mass index (BMI), adiposity, blood glucose
and insulin, and HOMA IR in a small cohort of obese and lean men and women. We found that
bilirubin levels negatively correlated with BMI and adiposity in obese men and women, as compared
to their lean counterparts. Contrarily, urobilin levels were positively associated with adiposity and
BMI. Only obese women were found to be insulin resistant based on significantly higher HOMA IR,
as compared to lean women. The urobilin levels were positively associated with HOMA IR in both
groups, but women had a stronger linear correlation. These studies indicate that plasma urobilin
levels are associated with obesity and its comorbidities, such as insulin resistance.

Keywords: bilirubin; urobilin; UGT1A1; HO-1; BVRA; obesity; insulin resistance; blood glucose; BMI;
HOMA IR

1. Introduction

The worldwide rates of obesity are at an all-time high, which is characterized by
a body mass index (BMI, kg/m2) greater than 30 [1]. While excessive food intake and
a sedentary lifestyle are the primary drivers of increased obesity, there has been little
progress in developing effective treatments for reducing adiposity and body weight. There
have been many large omics analyses, such as RNA sequencing, that have indicated a
genetic component for obesity. However, some factors are not observable in these types of
extensive bioinformatic analyses. In the context of obesity, how physiological responses
to weight gain affect the functionality of the detoxifying cytochrome P450 or glucuronyl
UGT enzymes in regulating catabolism and the transport of non-gene-related molecules is
mostly unexplored.

One notable non-gene-derived molecule is bilirubin, which is a catabolized product
of heme [2–7] that, for unknown reasons, has been shown to be lower in obese humans
and rodents [2,3]. Bilirubin is a strong antioxidant and robust anti-inflammatory [8–11]
that has been shown to reduce body weight in obese rodents via its hormonal actions
on the PPARα nuclear receptor [2,3,5,6,12–17]. Some studies have demonstrated that the
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glucuronyl UGT1A1 enzyme that clears bilirubin from the blood increases in the liver
with obesity [18,19]. The UGT1A1 glucuronosyltransferase conjugates bilirubin to lower
levels (clearance) [20]. The conjugated bilirubin is excreted to bile and then to the intestine,
where it is catabolized into urobilin [6]. The freshly produced urobilin can be absorbed and
enter the systemic circulation via the hepatic portal vein [6]. The physiological function
of urobilin has not been well studied. In humans, urobilin plasma levels are associated
with a higher visceral fat area in the obese [21], heart failure [22], and all-cause mortality in
diabetic patients [23].

Here, we provide intriguing data that urobilin levels are positively associated with
adiposity and BMI in obese men and women and also with insulin resistance in women,
which was determined using the Homeostatic Model Assessment for Insulin Resistance
(HOMA IR), a measurement of insulin sensitivity [24]. We demonstrate that plasma urobilin
and bilirubin levels are inversely correlated. Our data indicate that urobilin is a factor in
obese people that may be linked with worsened obesity-associated comorbidities, such as
insulin-resistant diabetes. The findings in this study help to understand better the factors
that are changed in obesity and how these are related to obesity-induced comorbidities.

2. Materials and Methods
2.1. Human Subject Participation

Blood-derived phenotypic data were collected from adult participants (aged 18–80 years)
donated to the Center for Muscle Biology (CMB) at the University of Kentucky under
an Institutional Review Board (IRB), which was reviewed and approved (IRB protocol
#46746), using the Center for Clinical and Translational Science (CCTS) grant #UL1TR001998.
Samples were selected based on a BMI >30 for obese women and men (n = 13 total (obese
women n = 8 and obese men n = 5)) and a BMI <25 for lean (n = 17 total (lean women n = 8
and lean men n = 9)). None of the obese subjects had diabetes, hypertension, heart disease,
or other significant complications. All healthy volunteers did not report any known
evidence of cardiovascular, metabolic, or neuromuscular disease and were non-smokers.
All data and blood samples were collected during the same visit after at least an 8 h fast.
Height and weight were collected using the same stadiometer and scale, whereas body
mass index (BMI) was calculated as kg/m2. Body composition was determined using a
Lunar Prodigy (GE Lunar Inc., Madison, WI) dual-energy X-ray absorptiometry (DEXA)
bone densitometer and analyzed with GE Lunar software version 10.0 software for bone
mineral content (BMC), bone mineral density (BMD), fat-free mass (FFM), mineral-free
lean mass (MFL), fat mass, and fat percent. The patients fasted, and blood was collected
(20–30 mL) by venipuncture. Fasting glucose and insulin levels were measured by a
YSI 2900 Biochemistry Analyzer and an Insulin Chemiluminescence ELISA (ALPCO),
respectively. HOMA IR was calculated by the following formula: HOMA-IR = (fasting
glucose × fasting insulin)/22.5 [24]. The additional blood that was stored at the CMB was
used for additional measures, such as bilirubin and urobilin measures, as described below.
The data in Tables 1 and 2 are displayed in mean ± standard deviation.

2.2. Plasma Bilirubin Measurements

Total bilirubin was measured by using a colorimetric method according to the manu-
facturer’s kit booklet (Cayman Chemical, Ann Arbor, MI, USA). Briefly, after adding 100 µL
of bilirubin assay catalyst into each well of 96-well plates, 50 µL of plasma was added into
designated wells, followed by 10 min of incubation at room temperature. After another
incubation of 15 min following the addition of 25 µL of freshly prepared reagent mix or
background mix, 75 µL of total bilirubin probe was added into each well, followed by a
third incubation period for 5 min. Then, the absorbance was read at 600 nm. The total
bilirubin concentration of each sample was calculated based on the standard curve.
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Table 1. Phenotyping of obese and lean humans.

Measurement Lean Obese p-Value

Age 31.55 ± 13.09 40.91 ± 17.11 0.632
BMI 22.47 ± 2.73 35.11 ± 3.53 0.057

Body Weight (kg) 64.60 ± 11.03 99.37 ± 12.21 0.256
Total Fat (kg) 14.73 ± 4.80 45.28 ± 7.33 0.022 *
Body Fat % 21.69 ± 5.66 44.42 ± 5.16 0.003 *

Total Bilirubin (mg/dL) 0.77 ± 0.59 0.52 ± 0.30 0.529
Urobilin (µM) 9.57 ± 4.50 23.38 ± 19.30 0.026 *
Blood Glucose 87.57 ± 10.66 98.06 ± 10.64 0.246
Blood Insulin 7.21 ± 4.66 18.06 ± 15.51 0.398

HOMA IR 1.63 ± 1.25 4.59 ± 4.37 0.398
* denotes p < 0.05.

Table 2. Phenotyping of obese and lean men and women.

Measurement Lean Female Obese Female p-Value Lean Male Obese Male p-Value

Age 29.76 ± 12.82 39.31 ± 12.61 0.155 33.14 ± 13.91 43.45 ± 24.23 0.4180
BMI 21.33 ± 2.54 34.46 ± 1.72 3.40 × 10−8 * 23.47 ± 2.62 36.14 ± 5.48 0.0045 *

Body Weight (g) 56.11 ± 7.21 93.07 ± 7.85 1.25 × 10−7 * 72.14 ± 7.85 109.42 ± 11.59 0.0006 *
Total Fat (g) 14.05 ± 4.97 44.68 ± 6.29 5.88 × 10−8 * 15.32 ± 4.86 46.24 ± 9.50 0.0008 *
Body Fat % 23.51 ± 6.50 46.61 ± 2.88 4.38 × 10−6 * 20.08 ± 4.57 40.92 ± 6.35 0.0005 *

Total Bilirubin (mg/dL) 0.74 ± 0.82 0.54 ± 0.33 0.527 0.79 ± 0.30 0.50 ± 0.28 0.0954
Urobilin (µM) 11.07 ± 3.79 31.21 ± 20.58 0.028 * 8.23 ± 4.85 10.86 ± 7.60 0.5108
Blood Glucose 87.38 ± 13.53 98.78 ± 11.21 0.089 87.73 ± 8.19 96.93 ± 10.81 0.1440
Blood Insulin 5.95 ± 5.11 17.06 ± 9.26 0.013 * 8.33 ± 4.20 19.64 ± 23.8 0.3493

HOMA IR 1.42 ± 1.52 4.26 ± 2.40 0.016 * 1.81 ± 0.94 5.13 ± 6.83 0.3394

* denotes p < 0.05.

2.3. Plasma Urobilin Measurements

Plasma urobilin was measured by spectrophotometry, which was performed as de-
scribed before [25–27]. Urobilin hydrochloride (Frontier Specialty Chemicals, Logan, UT,
USA) was dissolved in DMSO to make the urobilin standard curve using 0~125 µM uro-
bilin. DMSO/saline was used as the blank of standard/plasma. All blanks, standards, and
samples were attained using the same extraction method to form the oxidation products
of urobilin-zinc complexes. Briefly, 10 µL of standards or plasma samples were added to
60 µL of 54 mM zinc acetate (in DMSO) in each tube, followed by adding 12 µL of 25 mM
iodine (dissolved in 120 mM potassium iodine). After vigorously mixing for 30 s, 5 µL of
82 mM cysteine HCL was added to each sample, followed by another vortex. Then, they
were centrifuged at 5000× g for 3 min. First, supernatants were collected into the newly
designated tubes. Each pellet underwent a repeated extraction. Two supernatants were
combined. A total of 50 µL of 1 M HCL was added to the blanks to eliminate the back-
ground fluorescence. The liquid extracted from each sample was added to a 96-well plate,
and then absorbance was read at 508 nm. Each sample was performed in duplicate. The
urobilin concentration of the samples was calculated using the linear regression equation
of the standard curve.

2.4. Statistical Analysis

The data were graphed and analyzed using Prism 9 (GraphPad Software, San Diego,
CA, USA), and an analysis of variance and Tukey’s post hoc test were used to compare the
groups’ means. A two-tailed unpaired t-test was used to determine statistical significance
when comparing the two groups. To determine correlation, a linear regression line was
fitted to the data, and the linear equation and R2 value were calculated for each comparison.
Finally, p-values of 0.05 or smaller were considered statistically significant.
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3. Results
3.1. Bilirubin and Urobilin Levels in Obese and Lean Men and Women
Phenotyping of Obese and Lean Men and Women

To determine the relationship between bilirubin and urobilin in obese and lean men
and women, body weight, BMI, total fat, and body fat percentage were quantitated, and
blood was drawn for the plasma analysis of the levels of total bilirubin, urobilin, glucose,
and insulin (Tables 1 and 2). The glucose and insulin levels were used for quantifying the
HOMA IR.

The plasma measurements show that bilirubin levels were lower in obese men and
women but not significantly. The urobilin levels were significantly (p = 0.0262) higher in
the obese subjects, as compared to the lean. However, this was only seen in obese females
(p = 0.0278) and not in obese males. One factor that might regulate these differences is
that the obese women were insulin resistant, as indicated by a significantly higher insulin
level (p = 0.0127) and HOMA IR (p = 0.0160). Next, to determine the correlation of urobilin
or bilirubin with these metabolic dysfunctions, we performed Pearson’s coefficients to
calculate their relationships.

3.2. The Relationship between Urobilin and Bilirubin Levels

To determine whether urobilin and bilirubin levels are interrelated, we performed a
Pearson’s coefficient graph with a line to fit the data (Figure 1). The data show that urobilin
is negatively associated with bilirubin levels in women and men.
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Figure 1. The relationship between urobilin and total bilirubin levels in women and men. Pear-
son’s coefficient comparisons in all samples from men and women to determine the slope of the
line and the relationship between urobilin and bilirubin in lean participants of both sexes (A), only
women (B) or only men (C). The data were plotted as dot plots, linear regression was calculated, and
the slope of the line was used to determine the relationship and the robustness of the data. Light gray
squares are for lean women and men combined, and dark gray circles are for obese men and women
combined. Red circles are for obese women, blue circles are for obese men, and gray circles are for
their lean counterparts.

3.3. Urobilin and Its Correlation with Metabolic Dysfunction in Humans

The level of urobilin in the plasma has been previously associated with adiposity. We
found that urobilin was positively correlated with BMI (p = 0.0459), body fat percentage
(p = 0.0084), plasma glucose, plasma insulin, and HOMA IR (Figure 2). We then wanted to
analyze whether this correlation was sex specific. We found that urobilin was positively
correlated with higher BMI, body fat percentage, plasma insulin, and HOMA IR in females
(Figure 3). In men, urobilin levels were positively associated with these but weakly with R2

below 0.03 (Figure 4).
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Figure 2. Urobilin levels and correlations with metabolic phenotypes in women and men. Com-
parisons of metabolic phenotypes in women and men with plasma urobilin levels for (A) BMI,
(B) body fat percentage, (C) blood glucose, (D) blood insulin, and (E) HOMA IR. The data were
plotted as dot plots, linear regression was calculated, and the slope of the line was used to determine
the relationship and the robustness of the data. Light gray squares are for lean women and men
combined, and dark gray circles are for obese men and women combined.
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Figure 3. Urobilin levels and correlations with metabolic phenotypes in women. Comparisons of
metabolic phenotypes in women with plasma urobilin levels for (A) BMI, (B) body fat percentage,
(C) blood glucose, (D) blood insulin, and (E) HOMA IR. The data were plotted as dot plots, linear
regression was calculated, and the slope of the line was used to determine the relationship and the
robustness of the data. Red circles are for obese women, and gray circles are for their lean counterparts.
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Figure 4. Urobilin levels and correlations with metabolic phenotypes in men. Comparisons of
metabolic phenotypes in men with plasma urobilin levels for (A) BMI, (B) body fat percentage,
(C) blood glucose, (D) blood insulin, and (E) HOMA IR. The data were plotted as dot plots, linear
regression was calculated, and the slope of the line was used to determine the relationship and the
robustness of the data. Blue circles are for obese men, and gray circles are for their lean counterparts.

3.4. Bilirubin and Its Correlation with Metabolic Dysfunction in Humans

To determine whether bilirubin might have the opposite correlations to those observed
with urobilin, we compared plasma total bilirubin levels with the metabolic readouts.
Plasma bilirubin levels were negatively associated with BMI (p = 0.0924) and body fat
percentage in women and men combined (Figure 5). This association was still seen when
the sexes were analyzed separately (Figures 6 and 7). Interestingly, the negative association
was stronger in males, with an R2 = 0.242 for BMI and R2 = 0.1336 for body fat percentage,
as compared to R2 = 0.065 in females for BMI and R2 = 0.047 for body fat percentage.
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Figure 5. Bilirubin levels and correlations with metabolic phenotypes in women and men. Com-
parisons of metabolic phenotypes in women and men with plasma bilirubin levels for (A) BMI, (B)
body fat percentage, (C) blood glucose, (D) blood insulin, and (E) HOMA IR. The data were plotted
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as dot plots, linear regression was calculated, and the slope of the line was used to determine the
relationship and the robustness of the data. Light gray squares are for lean women and men combined,
and dark gray circles are for obese men and women combined.
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Figure 6. Bilirubin levels and correlations with metabolic phenotypes in women. Comparisons of
metabolic phenotypes in women with plasma bilirubin levels for (A) BMI, (B) body fat percentage,
(C) blood glucose, (D) blood insulin, and (E) HOMA IR. The data were plotted as dot plots, linear
regression was calculated, and the slope of the line was used to determine the relationship and the
robustness of the data. Red circles are for obese women, and gray circles are for their lean counterparts.
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Figure 7. Bilirubin levels and correlations with metabolic phenotypes in men. Comparisons of
metabolic phenotypes in men with plasma bilirubin levels for (A) BMI, (B) body fat percentage,
(C) blood glucose, (D) blood insulin, and (E) HOMA IR. The data were plotted as dot plots, linear
regression was calculated, and the slope of the line was used to determine the relationship and the
robustness of the data. Blue circles are for obese men, and gray circles are for their lean counterparts.
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3.5. Graphical Representation of the Data

The data above indicate that higher plasma urobilin levels are associated with insulin
resistance in the obese. The metabolic rearrangements in obesity are likely linked to lower
plasma bilirubin and higher urobilin levels. Additionally, urobilin might be a factor that
worsens obesity-associated comorbidities, such as insulin resistance and cardiovascular
diseases (Figure 8).
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and BMI.

4. Discussion

The significance of our study is in the finding that urobilin may have negative con-
sequences pertinent to insulin resistance and may worsen obesity-related comorbidities.
To our knowledge, the involvement of urobilin in insulin resistance in humans has not
previously been reported. In experimental animals, studies in obese and lean mice using
non-targeting mass spectrophotometry found that urobilin was higher in the liver and
colon of the obese [28,29], and urobilin was the most associated cecal metabolite for acute
myocardial ischemia [29]. Whether nutrients from the diet or other factors increase urobilin
levels are unknown. Earlier studies in the late 1990s on bilirubin showed that plasma levels
are typically reduced in obese humans, which influenced numerous studies in humans and
rodents comparing the levels in those with metabolic dysfunction (reviewed in [2]).

In 1997, work by Torgerson et al. first showed that plasma bilirubin levels were
decreased in humans with metabolic syndrome, even though they had elevated amino-
transferases (AST and ALT) [30]. We found a similar finding with bilirubin levels in our
study, such as that obese men and women had a negative correlation with adiposity and
body weight. The studies that demonstrated that the UGT1A1 enzyme is higher in obese
mice [18,19] made us curious whether lower bilirubin levels were associated with an in-
crease in its catabolized product, urobilin. Our data here from obese and lean women and
men indicate that urobilin might be a factor that either contributes to adiposity or might
worsen obesity-associated comorbidities.
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The urobilin levels were likely raised due to the increased expression of the UGT1A1
glucuronosyltransferase that conjugates bilirubin [20], providing more substrates to the
gut for catabolism into urobilin [6]. The UGT1A1 expression has been shown to be higher
in obese mice, as compared to lean mice [18,19]. This aspect is in line with the findings
that plasma bilirubin levels are lower in the obese. However, these mechanisms have yet
to be proven and could be multifactorial. For instance, a study in high aerobic-capacity
running rats showed that they have significantly higher plasma bilirubin levels because
the enzyme that converts biliverdin to bilirubin, biliverdin reductase A (BVRA) [7], was
significantly higher in the liver, and UGT1A1 was lower [31]. Some studies have focused
solely on the induction of heme oxygenase-1 (HO-1) as the means of increasing plasma
bilirubin levels [32]. None of the studies that have measured the heme oxygenase pathway
have also analyzed the urobilin levels in the serum or intestine. Based on our findings here,
this might be useful for understanding the metabolic state.

In a recent study in elite athletes, serum bilirubin levels were observed to be sub-
stantially higher [33]. However, only the bilirubin levels were quantitated and not the
urobilin. They also found that the prevalence of Gilbert’s syndrome and hyperbilirubinemia
in athletes was significant [33]. These observations suggest that moderately increasing
plasma bilirubin predisposes a better physical performance, which is also supported by the
finding that regular physical activity elevates serum bilirubin concentrations [34,35] (and
was also reviewed in [36,37]). Rats that had a loss-of-function mutation in their Ugt1a1
gene exhibited hyperbilirubinemia and were protected against hypertension and end-stage
organ damage [38–42]. New findings have shown that bilirubin is a hormone that directly
binds to the fat-burning nuclear receptor PPARα [13,15,17]. A knockout of the enzyme
that generates bilirubin, BVRA, causes a bilirubin deficiency that induces oxidative stress,
increases lipid accumulation, and reduces PPARα activity [12,43–47]. The bilirubin-PPARα
interaction activates a response that lowers lipid accumulation in the liver and adipose
tissues [2–6,13–17,31,48–50]. Hence, the therapeutic use of bilirubin has been proposed for
improving obesity and metabolic dysfunction [2,3,5].

The antioxidant [8–10], anti-inflammatory [36], and fat-burning traits of bilirubin make
it an ideal therapeutic, especially since it has been shown to also improve cardiovascular
function [2–5,11,12,31,32,48,49,51–53]. Bilirubin nanoparticle treatments in obese mice
have been shown to increase lean mass, reduce adiposity, and lower blood glucose [15].
Numerous human studies have shown that unconjugated bilirubin levels are inversely
associated with non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis
(NASH) [30,54–58]. There has been some published work showing that unconjugated
bilirubin levels could be higher in some fatty liver patients or were not causally associated
with a decreased risk of NAFLD [59,60]. Another study using a diet-induced obesity
fatty liver model demonstrated that increasing plasma bilirubin and bilirubin nanoparticle
treatments improved NAFLD while not causing liver toxicity [14,17,50], they actually
improved NAFLD and liver function by reducing the AST liver dysfunction biomarker,
lowered hepatic inflammation, and decreased the percent liver fat content [14,50]. These
suggest that higher bilirubin levels may promote physical and hepatic health.

The negative correlation of plasma bilirubin found in obese men and women in this
study is not surprising, as this has been reported numerous times. There is plausible evidence
that low bilirubin levels are deleterious and contribute to metabolic diseases [30,61–69].
Investigations on factors that mediate bilirubin and urobilin levels are needed to understand
their interplay better. For instance, the finding that urobilin levels were not significantly
higher in obese men but were in women was surprising. There could be many variables
involved, such as that the men were not insulin resistant. Another could be that the gut
microbiome may be different between the sexes and contain fewer bacteria that express
bilirubin reductase, which is the enzyme thought to catabolize conjugated bilirubin into
urobilin [6]. However, the bilirubin reductase enzyme has yet to be identified. Studies
to identify bilirubin reductase and the bacteria that express it are needed. An approach
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being investigated is the suppression of the hepatic UGT1A1 for increasing the half-life of
circulating bilirubin as a possible means of treating obesity [2].

Humans with Gilbert’s polymorphism UGT1A1*28 have a significantly reduced ex-
pression of the UGT1A1 enzyme as a result of a base pair insertion in the gene promoter
(TA7/7 promoter gene variant) [2]. Studies have shown that patients with Gilbert’s poly-
morphism and higher plasma bilirubin levels have less incidence of metabolic diseases,
such as obesity and type 2 diabetes mellitus (T2DM) [2,6,70]. Experimental studies in
mice with the human Gilbert’s syndrome polymorphism (UGT1A1*28) were shown to
have moderate hyperbilirubinemia and were protected from high-fat diet-induced hepatic
steatosis (NAFLD) and insulin resistance [50]. The studies here found that plasma total
bilirubin and urobilin are inversely associated, likely due to increased UGT1A1 expression,
indicating that regulating its expression may benefit metabolic dysfunction.

5. Conclusions

A better understanding of the indications of plasma levels of bilirubin and urobilin
is needed as well as what implications their levels have in various disease states. Our
study here, using a small cohort of lean and obese humans, is the first to report that plasma
urobilin levels are positively associated with obesity-induced comorbidities, such as insulin
resistance. It should be noted that a limitation of this study is the sample size, and larger
investigations are needed to determine whether urobilin is indeed a player in adiposity
and insulin resistance, including pre-clinical studies to determine causality. Others have
reported that urobilin levels are associated with significantly more visceral fat in obese
humans [21], cardiovascular disease [22], and mortality in diabetic patients [23]. These
findings indicate that larger human association studies are needed to better understand
the impact that urobilin might have on obesity-induced comorbidities. There needs to be
more known about the physiology and function of urobilin. Studies to identify bilirubin
reductase in bacteria and those that express it are also needed. Future studies to determine
mechanisms that reduce urobilin and increase bilirubin levels in the plasma could benefit
those with metabolic and cardiovascular complications.
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