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Abstract: Iron overloads osteoporosis mainly occurs to postmenopausal women and people requiring
repeated blood transfusions. Iron overload increases the activity of osteoclasts and decreases the
activity of osteoblasts, leading to the occurrence of osteoporosis. Conventional treatment options
include calcium supplements and iron chelators. However, simple calcium supplementation is not
effective, and it does not have a good therapeutic effect. Oxidative stress is one of the triggers for
osteoporosis. Therefore, the study focuses on the antioxidant aspect of osteoporosis treatment. The
present work revealed that antioxidant carboxymethyl chitosan-based carbon dots (AOCDs) can
effectively treat iron overload osteoporosis. More interestingly, the functional modification of AOCDs
by doping calcium gluconate (AOCDs:Ca) is superior to the use of any single component. AOCDs:Ca
have the dual function of antioxidant and calcium supplement. AOCDs:Ca effectively improve the
bioavailability of calcium and achieve ultra-low concentration calcium supplement for the treatment
of iron-induced osteoporosis in zebrafish.

Keywords: iron overload; osteoporosis; carbon dots; antioxidant; calcium bioavailability

1. Introduction

Osteoporosis (OP) is a disease characterized by reduced bone mass, damaged bone
microstructure, increased bone fragility, and easy to fracture bones [1–3]. A bone is a
metabolically active tissue. Bone homeostasis is regulated by osteoblast-mediated bone
formation and osteoclast-promoted bone resorption. The disruption of bone homeostasis
performs a fundamental role in the pathogenesis of OP [3]. At present, post-menopausal
women are the main population of OP. Some studies have suggested that post-menopausal
women OP is not only related to decreased estrogen, but also may be the result of elevated
iron levels. An important way to maintain the balance of iron is menstrual bleeding
to women. The ferritin increases about 2–3 times from the perimenopausal period of
45 years old to the post-menopausal period of 60 years old [4]. Clinical treatments include
bis-phosphonates, estrogens and related compounds, vitamin D, and calcitonin [5]. In
particular, the combination of calcium supplements with vitamin D is considered a routine
strategy for the treatment of OP [6,7]. However, taking calcium supplements to prevent
and treat OP has become a controversial topic. Calcium supplementation may fail to
compensate for renal calcium loss, and increased calcium load in circulation could lead to
extra skeletal deposition, including in the coronary arteries [8,9].

Antioxidant drugs for osteoporosis have become a new research hotspot. Studies have
found that most OP patients show high levels of oxidative stress. Excessive ROS upset
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the balance between bone formation by osteoblasts and resorption by osteoclasts, leading
to bone mass loss and bone quality degradation. Therefore, an oxidative stress injury is
considered a major pathogenesis of osteoporosis [10]. Iron ions generate ROS through the
Fenton reaction, which enhances the activity of osteoclasts and decreases the activity of
osteoblasts. Oxidative stress induced by iron overload can lead to impaired bone formation
and mineralization, and damage the microstructure of bone tissue and promote disease
progression [11–14]. The increase in iron level in post-menopausal women may be one
of the causes of OP. Estrogen inhibits iron-regulator synthesis, maintains iron transporter
protein integrity and enhances iron uptake by duodenal enterocytes and iron release from
iron storage macrophages and hepatocytes. Therefore, postmenopausal women exhibit iron
accumulation outside of estrogen deficiency. Iron accumulation promotes bone resorption and
bone loss through oxidative stress and inflammatory responses [13,15–18]. There are three
main types of antioxidant defense systems that eliminate free radicals and peroxides, including
antioxidants (Glutathione, Melatonin, Vitamin C, and Vitamin E, Protein Antioxidants: Ferritin
and Ceruloplasmin), anti-oxidase (Superoxide Oxidoreductase, Catalase, and Glutathione
Peroxidase), and repair enzyme (DNA Repair: Glycosylase, AP-Endonuclease, and DNA
Polymerase, Lipid Peroxide Metabolism: Phospholipase A2, and Acyltransferase) [19,20].
Therefore, improving antioxidant capacity and removing excessive ROS are also effective
methods of the treatment of OP. Many carbon dots (CDs) with antioxidant properties have
been reported to relieve oxidative stress in zebrafish [21–23]. At the same time, there are also
many CDs with iron chelating function [24–26]. This means CDs could be a potential drug for
the treatment of OP induced by iron overload.

Zebrafish is an advantageous model organism for OP research and drug screening.
The first cartilage structure of the jaw is formed at 2-day post fertilization (dpf) in zebrafish.
The cleithrum, endopterygoid, sphenoidalia, and other structures of the head can be
observed by alizarin red staining at 6 dpf. In this study, 0.2 mM ferrous ammonium sulfate
(FAS) was selected to establish iron overload OP model in zebrafish larvae. Iron chelated
EWCDs [24] and antioxidant carboxymethyl chitosan-based carbon dots (AOCDs) were
used to treat iron overload OP. It was found that iron overload OP was not alleviated
by iron chelated EWCDs. Antioxidant AOCDs had good therapeutic effect. In addition,
calcium-doped carboxymethyl chitosan carbon dots (AOCDs:Ca) had a better therapeutic
effect than AOCDs and calcium gluconate salt. AOCDs:Ca superimposes the two functions
of antioxidant and calcium supplementation, which greatly improves the bioavailability of
calcium. AOCDs:Ca is a potential drug for the treatment of iron overload OP.

2. Materials and Methods
2.1. Zebrafish Rearing and Mating

AB zebrafishes were provided by the Aquatic Institute of Heilongjiang. The zebrafish
was raised in the (AAE-022-AA-A) circulating water system. The water temperature was
28 ◦C, and the photoperiod was 14 L:10 D. The zebrafish were fed twice a day with brine
shrimp. Adult zebrafish mated in a 2:1 ratio of male to female. The time after fertilization
was denoted as hour post-fertilization (hpf).

2.2. Sample Collecting

Zebrafish embryos were randomly placed in 6-well culture plates (30 embryos in 4 mL
solution per well). Deionized water was added to the control group. The model group was
added 0.2 mM ferrous ammonium sulfate (FAS, Aladdin). The solution was changed every
24 h. Zebrafish embryos in FAS were reared at 28 ◦C for 48 h. Then, embryos were rinsed
with deionized water. Deionized water was added to the control group. To the model
group, we added 1 mg mL−1 carbon dots solution or 0.6287 µg mL−1 calcium gluconate at
48 hpf without a water change. Zebrafish larvae were raised to 6 dpf. A total of 30 larvae
were used for determination of ROS and ALP content. A total of 30 larvae were used for
RNA extraction. Several larvae were taken and fixed overnight with 4% PFA at 4 ◦C for
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alizarin red staining. Alizarin red was purchased from Tianjin Zhiyuan Chemical Reagent
Co., LTD. (Tianjin, China)

2.3. Quantitative Real-Time PCR

Total RNA was isolated using TRIzols reagent (Takara, Dalian, China). cDNA was
obtained by PrimeScriptTM RT Reagent Kit (Takara, Dalian, China). Real-time PCR was
performed with 7500 Real-Time PCR SYSTEM (Applied Biosystems, Foster City, CA, USA)
by using SYBR Premix Ex Taq II (Takara, Dalian, China) according to the recommended
instructions. The primer sequences are shown in Table S1. Three parallel experiments were
set up for each sample. Ef1α was used as a housekeeping gene. The experimental data
were processed by the 2−∆∆CT method.

2.4. Alizarin Red Staining

Zebrafish larvae were fixed with 4% PFA. Then, zebrafish larvae were washed twice
with 1× PBS. Zebrafish larvae were depigmented with 1.5% H2O2/0.25% KOH solution.
Zebrafish larvae were washed with 25% glycerol/0.1% KOH solution. A total of 0.05 %
alizarin red solution was prepared and stained for 30 min in darkness. The 50% glyc-
erol/0.1% KOH solution was prepared to wash larvae, until the solution had no obvious
color. A total of 50% glycerol was added, and a Macro zoom fluorescence microscope was
used to photograph (Axio zoom. V16, ZISS). Image analysis software (Image J 1.52A) was
used to calculate the staining area.

2.5. The Synthesis of AOCDs and AOCDs:Ca

A total of 0.1 g Carboxymethyl chitosan and 2 g acrylamide, or 0.1 g Carboxymethyl
chitosan, 2 g acrylamide, and 0.0448 g calcium gluconate salt (Aladdin, Shanghai, China)
was dissolved in 20 mL deionized water, and microwaved 700 W for 10 min. The products
were dissolved in 30 mL deionized water and centrifuged at 12,000 rpm for 20 min. The
supernatant was filtered with 0.22 µM filter membrane and dialyzed with 1000 Da for 48 h.
The deionized water was changed every 12 h. The powder of AOCDs and AOCDs:Ca was
obtained by freeze drying.

2.6. The Characterization of AOCDs and AOCDs:Ca

UV-vis absorption spectra were performed using a SHIMADZU UVmini-1240 UV-VIS
spectrophotometer. PL spectra and lifetime were measured by state/transient fluorescence
spectrometer (FLS1000, Edinburgh). FT-IR spectra were taken on a Nicolet IS50 (Thermo
Fisher, Waltham, MA, USA) FT-IR spectrophotometer. The TEM and HR-TEM images were
recorded using FEI, TECNAI TF20 field emission electron microscope. X-ray photoelectron
spectroscopy (XPS) experiments were performed using electronic spectrometer (ESCALAB
XI+, Thermo Fisher). The results (binding energies) were calibrated using the C 1s peak for
C-C at 284.8 eV, and fitted using the software Thermo Advantage v5.967 (Thermo Fisher
Scientific Inc., USA). The determination of calcium content was performed by Inductively
coupled plasma spectrometer (iCAP 7400, Thermo Fisher).

2.7. The Biosafety Assessment of AOCDs and AOCDs:Ca

Zebrafish embryos were exposed to 0 mg/mL, 0.1 mg mL−1, 0.2 mg mL−1, 0.4 mg mL−1,
0.8 mg mL−1 AOCDs, or AOCDs:Ca solutions at 3–4 hpf. A total of 30 zebrafish embryos were
prepared in each group. Each group had three repetitions. Dead embryos were removed, and
the solution was changed every 24 h. We measured the frequency of autonomic movement
at 24 hpf for 1 min, heart rate at 48 hpf for 15 s, the hatching rate of zebrafish embryos
at 54 hpf. The survival rate and malformation rate of zebrafish embryos was evaluated at
96 hpf. Among them, the frequency of autonomic movement was used to characterize the
neurotoxicity of CDs. The heart rate was used to characterize the toxicity of blood circulation
system of CDs. The hatching rate was used to characterize the impact of CDs on development.
The malformation rate and death rate directly reflected the biological safety of CDs.
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2.8. Determination of ROS

Live Zebrafish were added with 0.1 mM DCFH-DA, kept in the dark for 1 h, and
washed with DW. After zebrafish embryos were anesthetized with 0.05% Tricaine for 5 min,
the zebrafish were observed and photographed by fluorescence microscope.

2.9. Determination of ALP

A total of 30 zebrafish embryos were collected and homogenized with 0.9% NaCl.
Centrifugation was performed at 1000 g/min at 4 ◦C for 10 min. The total protein assay
kit (BCA method) was purchased by beyotime (Shanghai, China). The content of ALP was
measured using Kit (Jian cheng, Nanjing, China).

2.10. Determination of Ca in AOCD:Ca

AOCD:Ca were taken and treated with chloroazide (HNO3/HCl = 1/3, v/v) at 70 ◦C
for 24 h. The content of AOCD:Ca with Ca2+ in the samples was determined by ICP-OES.

2.11. Data Analysis

The stained area was calculated by AI. All data were expressed as mean ± SEM
from at least three independent experiments. Group differences were performed using
t-test. * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001 were considered statistically
significant by GraphPad Prism 6 and Origin 8 software.

3. Results
3.1. Establishment of Iron Overload Osteoporosis Model

First, the OP model of zebrafish was successfully established by using 0.2 mM of
FAS. The use of FAS has almost no toxic effects and does not affect the cartilage develop-
ment of zebrafish embryos. Images of juvenile zebrafish after alizarin red head skeletal
staining showed that bone loss and a significant decrease in bone mineral density after
FAS treatment. Importantly, after numerical analysis of the images, it was found that the
staining area was reduced compared to the control group (Figure 1A,B). These results
exhibit osteoporotic symptoms after the appearance of FAS treatment. To reconfirm the
OP model, the expression of osteoblast- and osteoclast-related genes was examined at the
molecular level. Compared with the control group, the expression of runx2b, a marker
gene of osteoblasts, was significantly decreased after FAS treatment, while the expression
of bmp2b was not significantly changed (Figure 1C,D). On the other hand, since mature
osteoblast tissues contain large amounts of alkaline phosphatase (ALP), ALP content can be
used as a marker of osteoblast tissue maturation. Compared with the control group, ALP
content was significantly decreased after FAS treatment (Figure 1E). These results implied
that FAS inhibited the expression of runx2b and decreased the content of osteogenic tissue.
In addition, Cathepsin K (ctsk) was abundant in osteoblasts and performed an important
role in bone resorption by osteoclasts. Meanwhile, anti-tartrate phosphatase type 5 (acp5b) is
a commonly used marker of osteoclasts and bone resorption. The mRNA expression levels
of ctsk and acp5b were significantly increased after FAS treatment compared to controls,
indicating active osteoclasts (Figure 1F,G). Ultimately, these results demonstrate that FAS
can be used to establish a zebrafish OP model.
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Figure 1. Establishment of iron overload osteoporosis model. (A). Alizarin red staining, The red
rectangle is the location of osteoporosis. (B). Numerical analysis of staining area (unit: pixel), Effect
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FAS on osteoclast-regulated genes, (F). ctsk, (G). acp5b, (n = 3, t-test, * p < 0.05, ** p < 0.01, *** p < 0.001).

3.2. Preparation and Characterization of the AOCDs and AOCDs:Ca

Using carboxymethyl chitosan (CC) and acrylamide (AM) as raw materials or doped
calcium gluconate as raw materials, AOCDs and AOCDs:Ca were obtained by hydrother-
mal treatment. The solution appeared yellow under sunlight and had blue fluorescence
emission at UV-365 nm (Figure 2A). Transmission electron microscopy (TEM) showed that
AOCDs and AOCDs:Ca were uniformly divided in deionized water with average particle
sizes of 4.91 nm and 4.99 nm. The diffraction peak was clearly observed under high resolu-
tion TEM (HRTEM) (Figure 2B,C). The diffraction peak spacing was 0.20 nm and 0.22 nm,
respectively, corresponding to the 100 and 101 faces of graphite. These results indicated
the successful preparation of graphene quantum dots. Based on the fluorescence lumines-
cence properties of CDs, we evaluated the optical properties of AOCDs and AOCDs:Ca
by PL emission. It was found that AOCDs and AOCDs:Ca had excitation wavelength-
dependent fluorescence emission properties. Optimal excitation and emission were 370 nm
and 450 nm, respectively (Figure 2D). At the same time, AOCDs and AOCDs:Ca were
observed to redshift about 80 nm and 73 nm, respectively, with the increase in excitation
light by normalization (Figure 2E). The UV-vis spectrum showed a broad absorption range,
indicating that AOCDs and AOCDs:Ca had aromatic-like structure. The absorption shoul-
der at 257 nm was caused by the π-π* transition of C=O/C=C (Figure 2F). The absorption
of AOCDs:Ca was significantly weaker than that of AOCDs, indicating successful Ca2+

doping. The fluorescence lifetime of these two CDs was 5.59 ns and 5.15 ns, respectively
(Figure 2G).
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In order to further study AOCDs and AOCDs:Ca functional groups on the surface, we
analyzed the AOCDs and AOCDs:Ca chemical structure by X-ray photoelectron spectroscopy
(XPS) and Fourier transform infrared (FT-IR) spectra. The full XPS spectra of AOCDs showed
three peaks of 284.57, 398.65, and 532.85 eV, respectively, indicating that AOCDs was composed
of C, O, and N elements with atomic ratios of 65.11%, 18.19%, and 16.69%, respectively
(Figure 3A). The high-resolution XPS spectra of the C 1s band were divided into three peaks
at 284.80, 285.75, and 287.87 eV, corresponding to C-C/C=C, C-N/C-O, and C=O, respectively
(Figure 3B) [27–29]. N 1s band had one peak located at 399.57 eV, which belonged to Pyridine N
(Figure 3C) [30]. The O 1s band had two peaks at 531.08 and 531.91 eV, corresponding to C=O
and O-C/O-H, respectively (Figure 3D) [31,32]. The total XPS spectra of AOCDs:Ca showed
284.57, 398.65, 532.85, and 346.78 Ca2p eV peaks, respectively, indicating that AOCDs:Ca
was composed of C, O, N, and Ca elements, with atomic ratios of 49.09%, 33.23%, 17.07%,
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and 0.61%, respectively (Figure 3E). The high-resolution XPS energy spectra of C 1s band
was divided into three peaks at 284.80, 285.82, and 287.80 eV, corresponding to C-C/C=C,
C-N/C-O, and C=O, respectively (Figure 3F) [33,34]. N 1s band had one peak located at
399.55 eV, which belonged to Pyridine N (Figure 3G) [35]. The O 1s band had two peaks at
531.17 and 532.07 eV, corresponding to C=O and C-O, respectively (Figure 3H) [36,37]. The
Ca 2p band had two peaks located at 347.03 and 350.68 eV (Figure 3I). Together, these four
high-resolution spectra showed that Ca atoms had been successfully embedded in AOCDs:Ca
and existed as ions. This provided the basis for the efficient release of Ca2+. In addition,
FT-IR spectra showed that the stretching vibration of O-H/N-H from CC of 3291 cm−1, the
stretching vibration of carboxyl (1650 and 1438 cm−1), and amide carbonyl from AM (C=O,
1650 cm−1) in AOCDs. The mixed in-plane bending vibration of amides C-H and N-H was
located at 1436 cm−1. Therefore, AOCDs and AOCDs:Ca are obviously hydrophilic. Based on
the above characterization results, Ca2+ doped success, AOCDs:Ca have aromatic structure
similar to AOCDs. It also has the optical properties of the origin of the defect of pyridine
nitrogen atom (Figure 3J).
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3.3. Antioxidant Properties of AOCDs and AOCDs:Ca

The biosafety of AOCDs and AOCDs:Ca was determined. Zebrafish embryos were
treated with different concentrations of AOCDs and AOCDs:Ca. The frequency of auto-
nomic movement, heart rate, hatching rate, and survival rate had no significant difference.
The malformation rate was lower (Figures S1 and S2). In order to ensure the safety of
CDs, 0.1 mg/mL was selected as the treatment concentration. We detected whether ferrop-
tosis occurred in OP caused by iron overload, and whether CDs alleviated FAS-induced
oxidative stress, Glutathione peroxidase (gpx4a), and ferritin (fth1) inhibit ferroptosis. In
zebrafish, they correspond to gpx4a and fth1a. Compared with control group, the expression
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level of gpx4a and fth1 were significantly increased in FAS group. This result indicated that
ferroptosis did not occurred in iron overload OP. Compared with FAS group, the expression
level of gpx4a did not change significantly in EWCDs group but increased significantly in
the AOCDs and AOCDs:Ca groups. Upregulation of gpx4a expression implied that AOCDs
and AOCDs:Ca had antioxidant properties. Compared with FAS group, the expression of
fth1a did not change significantly in AOCDs and AOCDs:Ca groups. The down-regulation
of fth1a expression by EWCDs may be due to its iron chelation ability (Figure 4A,B). Further
detection of ROS showed that the levels of ROS was significantly increased after FAS treat-
ment, which triggered oxidative stress in zebrafish. EWCDs had no effect on ROS content
compared with FAS group. After treatment with AOCDs and AOCDs:Ca, the content of
ROS decreased significantly (Figure 4C,D). These results indicated that EWCDs had no
antioxidant properties, while both AOCDs and AOCDs:Ca had antioxidant properties,
AOCDs had better antioxidant performance.
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3.4. AOCDs:Ca Improve the Effect of Iron Overload Osteoporosis Treatment

We have confirmed that EWCDs alleviates iron-overloaded nonalcoholic fatty liver
disease through Fe3+ chelation [24]. Therefore, this study attempted to use EWCDs, AOCDs,
and AOCDs:Ca in the treatment of iron overload OP. Compared with the control group,
the alizarin red staining found that the dyeing area of FAS group was reduced. Compared
with the FAS group, the EWCDs group had no obvious change. AOCDs and AOCDs:Ca
groups increased (Figure 5A). The stained area represents bone mass. Numerical analysis
of the staining results showed that there was no significant change after EWCDs treatment,
but significant increase in bone mass after AOCDs and AOCDs:Ca treatment (Figure 5B).
These results indicated that EWCDs had no effect, whereas both AOCDs and AOCDs:Ca
had effect on iron overloaded OP.
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(D). runx2b, (E). bmp2b, (F). ctsk, (G). acp5b, (t-test, * p < 0.05, ** p < 0.01, *** p < 0.001).

Treatment efficacy was assessed at the molecular level. Compared with FAS group,
the content of ALP increased after EWCDs and AOCDs treatment but did not change
significantly after the AOCDs:Ca treatment (Figure 5C). Runx2b was not affected after
treatment with the three CDs (Figure 5D). The expression of bmp2b increased after AOCDs
treatment. EWCDs and AOCDs:Ca had no effect on bmp2b (Figure 5E). At the same time,
we found that the expression of ctsk was increased by EWCDs and AOCDs, compared with
the FAS group. The AOCDs:Ca significantly decreased the expression of ctsk (Figure 5F).
The level of acp5b was decreased by the three CDs (Figure 5G). It is well known that the
metabolic balance of bone is maintained by osteoblasts and osteoclasts [11]. Although
EWCDs promoted the production of ALP, it also up-regulated the expression of osteoclast
gene. This may be the reason why EWCDs does not treat iron overload OP. The AOCDs up-
regulated the expression of bmp2b, down-regulated the expression of acp5b, and promoted
the production of ALP. The AOCDs promoted the balance of bone metabolism toward
bone remodeling to achieve the treatment of iron overload OP. Although AOCDs:Ca only
inhibited osteoclasts gene (ctsk, acp5b) expression, alizarin red staining was deepened
after treated with AOCDs:Ca. It indicated the content of calcium increased. Due to the
doping of calcium, the AOCDs:Ca achieved calcium supplementation. The AOCDs and
AOCDs:Ca significantly reduced the ROS content and effectively alleviated iron overload
OP. Although calcium doping attenuated the antioxidant effect, it made up for the deficiency
of antioxidant through calcium delivery. Therefore, the AOCDs:Ca had the best therapeutic
effect on iron overload OP.
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3.5. AOCDs:Ca Improve Calcium Bioavailability

Next, we compared the therapeutic effects of calcium supplementation and AOCDs:Ca.
The calcium content of AOCDs:Ca was determined by ICP. It was found 1 mg mL−1 AOCDs:Ca
contained 0.6287 µg mL−1 calcium (Figure 6A). It was consistent with the calcium content
measured by XPS (Figure 3E). We used the same concentration of 0.06287 µg mL−1 Ca2+

to treat iron overload OP. Low calcium supplementation alone did not improve osteoporo-
sis symptoms compared with FAS group. However, AOCDs:Ca with low concentrations
of calcium were recovery (Figure 6B,C). This indicated that AOCDs:Ca not only alleviated
iron overload OP through anti-oxidation, but also improved the bioavailability of calcium.
At the mRNA level, calcium supplementation treatment had no effect on the recovery of
bmp2b and acp5b, although there was some recovery of runx2b and ctsk (Figure 6D–G). In
contrast, AOCDs:Ca inhibited osteoclast gene expression on the one hand and increased
calcium content on the other. Together, it promoted the balance of bone metabolism towards
bone remodeling, and thus the treatment of iron overload osteoporosis. Thereafter, it had
better therapeutic effect than calcium supplementation alone and AOCDs.
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Figure 6. The effect of AOCDs:Ca superior to calcium in iron overload OP. (A). The measure of
calcium content in AOCDs:Ca, (B). Alizarin red staining, (C). Numerical analysis of staining area
(unit: pixel), (n = 3, t-test, *** p < 0.001). Effect of treatment on genes osteoblast-regulated genes,
(D). runx2b, (E). bmp2b, (F). ctsk, (G). acp5b, (t-test, * p < 0.05, ** p < 0.01, *** p < 0.001).

4. Discussion

FAS was selected to establish the iron overload OP model in zebrafish. This is because
FAS can better cause reduced ossification without affecting the development of zebrafish,
thus creating a model of osteoporosis (Figure S3). When iron overload is mentioned, the
first thing that comes to mind is treatment with iron chelators. However, chelators are often
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accompanied by side effects [38–40]. Therefore, it is an important research topic to find a
safer and more effective iron chelator.

The small size of CDs makes It easy to enter zebrafish, it can be metabolized, and
it has high biosafety [41]. EWCDs with excellent iron chelation function are selected.
However, EWCDs have no therapeutic effect on OP caused by iron overload. The levels of
ROS increased in iron overload OP, indicating that iron overload caused oxidative stress.
EWCDs did not reduce the ROS content. Interestingly, when we turn our attention to
AOCDs, we find that AOCDs effectively clear iron-induced ROS. It blocks the oxidative
stress and lipid peroxidation caused by iron overload and alleviate the OP caused by
oxidative damage [42]. It indicated that oxidative stress was the main reason of iron
overload OP. Antioxidant performed an important role in treatment of iron overload
OP. In addition, AOCDs improve ALP activity and stimulate osteoblast differentiation
by upregulating related mRNA expression. This suggests that AOCDs alleviate iron
overload OP by promoting bone formation. OP is also characterized by overactivity of
osteoclasts. Inhibition of bone resorption by hyperactive osteoclasts may be a potential
therapeutic strategy, but there are currently no effective drugs in clinical practice [43].
Selective regulation of Ca2+ can affect the balance of bone metabolism and regulate the
proliferation, differentiation and function of osteoblasts/osteoclasts [44]. We determine
that AOCDs serve as nanocarriers for Ca2+. Although Ca doping leads to a decrease
in antioxidant capacity, the staining deepens after AOCDs:Ca treatment, indicating an
increase in intraosseous calcium content. It may be the main reason for its better effect
than AOCDs. To confirm the biological function of calcium, we use AOCDs:Ca and
calcium gluconate with the same calcium content for the treatment of iron overload OP,
respectively. Calcium supplementation alone is found to be ineffective, suggesting that
the superior therapeutic effect of AOCDs:Ca on iron overload osteoporosis results from
increased calcium bioavailability. Therefore, the antioxidant properties of AOCDs:Ca and
the promotion of low-dose calcium delivery and absorption make it a potential drug for
OP treatment.

Studies have shown that drug-loaded nanomaterials or CDs can increase the concen-
tration of drugs through sustained release. However, whether AOCDs:Ca can sustain the
release of Ca2+ to enrich Ca2+ at the site of OP, and thus improve the bioavailability, re-
mains to be further investigated. Furthermore, it is not known which antioxidant signaling
pathway or antioxidant defense system is activated in the treatment of iron overload OP. In
addition, rheumatoid arthritis (RA) patients often accompany the occurrence of OP [45].
Most importantly, AOCDs themselves have the function of treating OP. Using AOCDs as
an anti-RA drugs vector, a new drug can be developed to treat both RA and OP. This could
be a future direction for AOCDs.

5. Conclusions

In summary, we successfully constructed a novel functionalized carbon dots as a cal-
cium supplement to achieve the treatment of osteoporosis. Here, carboxymethyl chitosan-
based carbon dots (AOCDs) were found to alleviate iron overload osteoporosis as an
antioxidant. Meanwhile, with the introduction of calcium ions (AOCDs:Ca), the dual
effect of antioxidant and calcium supplementation was achieved, effectively treating iron-
induced osteoporosis in zebrafish. More importantly, the therapeutic effect of AOCDs:Ca
was superior to that of calcium gluconate of the same quality. AOCDs:Ca effectively im-
proved the bioavailability of calcium and achieved an ultra-low concentration of calcium
supplementation. Thus, this work provides new insights to optimize high quality antiox-
idants and to develop an efficient calcium supplementation. With further optimization,
this strategy shows great potential for application to the alleviation of various types of
calcium deficiencies.
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