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Abstract: Mitochondria play a major role in ROS production and defense during their life cycle.
The transcriptional activator PGC-1α is a key player in the homeostasis of energy metabolism
and is therefore closely linked to mitochondrial function. PGC-1α responds to environmental and
intracellular conditions and is regulated by SIRT1/3, TFAM, and AMPK, which are also important
regulators of mitochondrial biogenesis and function. In this review, we highlight the functions and
regulatory mechanisms of PGC-1α within this framework, with a focus on its involvement in the
mitochondrial lifecycle and ROS metabolism. As an example, we show the role of PGC-1α in ROS
scavenging under inflammatory conditions. Interestingly, PGC-1α and the stress response factor
NF-κB, which regulates the immune response, are reciprocally regulated. During inflammation,
NF-κB reduces PGC-1α expression and activity. Low PGC-1α activity leads to the downregulation
of antioxidant target genes resulting in oxidative stress. Additionally, low PGC-1α levels and
concomitant oxidative stress promote NF-κB activity, which exacerbates the inflammatory response.
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1. Introduction

The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α is described
as the master regulator of mitochondrial biogenesis and function. It was identified together
with the peroxisome proliferator-activated receptor γ (PPARγ) transcription factor in
mitochondria-rich and thermogenesis-specialized brown adipose tissue (BAT). Current
studies suggest a role of PGC-1α in the regulation of oxidative phosphorylation (OXPHOS),
fatty acid (FA)/lipid metabolism, and the modulation of reactive oxygen species (ROS).
PGC-1α is found mainly in metabolically active tissues, such as the liver, kidney, skeletal
muscle, brain, and adipose tissue [1–3]. It is also involved in the transformation of white
adipose tissue into brown adipose tissue [4]. In mammals, fasting, exercise, and cold are
associated with an increase in PGC-1α levels [5–7]. PGC-1α subsequently upregulates
respiratory gene expression in the mitochondria [8].

PGC-1α belongs to the so-called PGC family of transcriptional regulators. Other
members of the family are PGC-1β and PRC (PGC-1-related coactivator). The human
PGC-1α consists of 798 amino acids, has a molecular weight of 91 kDa, and can be divided
into several functional regions, such as the activation domain, inactivation domain, short
serine/arginine-rich stretches (RS) domain, and the RNA recognition motif (RRM) [7,9]
(Figure 1A). Its structure is not resolved yet.

PGC-1 family members do not have a DNA-binding domain. Also, PGC-1α does
not have an intrinsic histone acetyltransferase activity, which is present in other transcrip-
tional coactivators, that initiates gene transcription and chromatin remodeling. PGC-1α
acts more as a transcriptional regulator by providing a docking platform for proteins
that possess histone acetyltransferase activity. Therefore, PGC-1α indirectly promotes
transcription [10,11].
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Figure 1. Sequence, putative structure, and interactions of PGC-1α. (A) Domains and structure of 
PGC-1α. Structure generated with α-fold [12,13]. (B) Known and experimental interactions of the 
PGC-1α/PPARGC with proteins based on the STRING database entries (https://string-db.org, 
accessed on 11 October 2022). Created with BioRender.com, agreement No: XW25C9KJWR. 

Three LXXLL leucine-rich motifs (NR boxes) are located at the N-terminal of PGC-
1α’s activation region and its adjacent inactive region. These can bind to several nuclear 
receptors, such as NR, peroxisome proliferator-activated receptor α (PPARα), estrogen 
receptor (ER), or nuclear respiratory factor 1 and 2 (NRF-1/NRF-2) (Figure 1B) [14–16]. 
The serine/arginine-rich domain (RS) and the RNA processing domain (RRM) motifs 
towards the C-terminus are typical for proteins involved in RNA splicing [17,18]. 
Monsalve et al. showed in in vitro studies that the C-terminal functional region 
participates in mRNA(messenger RNA) processing to regulate gene expression. 
Mutations in the RS and RRM motifs of PGC-1α affect PGC-1α’s ability to interact with 
transcription factors and thus impair gene transcription [19]. 

2. Regulation of PGC-1α 
2.1. Splice Variants of PGC-1α 

PGC-1α gene transcription is regulated by multiple promoter regions and is coupled 
with alternative splicing, resulting in a variety of PGC-1α protein variants [20]. The 
combination of alternative splicing and alternative use of promoters is a common process 
for increasing transcriptome complexity [21]. New splice variants are generated by 
transcription from an evolutionarily conserved alternative promoter (AP), which was 
found approximately 14 kb upstream of PGC-1α´s transcription start site (TSS) [22]. The 
transcripts of this AP contain a new exon 1 (exon 1b) with two splicing options, resulting 
in proteins with two different amino termini (PGC-1α-b, 12 aa long and PGC-1α-c, 3 aa 
long). This exon is shorter than the proximal exon 1a, which encodes for a 16 aa-long N-
terminus [22,23]. The newly discovered isoforms were found in skeletal muscle after 
exercise [24–27] and apparently, their generation is more responsive to stimulation. 
Studies with PGC-1α-b in the skeletal muscle of transgenic mice revealed that a change in 
the mitochondrial volume is directly correlated with an improvement in exercise 

Figure 1. Sequence, putative structure, and interactions of PGC-1α. (A) Domains and structure
of PGC-1α. Structure generated with α-fold [12,13]. (B) Known and experimental interactions of
the PGC-1α/PPARGC with proteins based on the STRING database entries (https://string-db.org,
accessed on 11 October 2022). Created with BioRender.com, agreement No: XW25C9KJWR.

Three LXXLL leucine-rich motifs (NR boxes) are located at the N-terminal of PGC-
1α’s activation region and its adjacent inactive region. These can bind to several nuclear
receptors, such as NR, peroxisome proliferator-activated receptor α (PPARα), estrogen
receptor (ER), or nuclear respiratory factor 1 and 2 (NRF-1/NRF-2) (Figure 1B) [14–16]. The
serine/arginine-rich domain (RS) and the RNA processing domain (RRM) motifs towards
the C-terminus are typical for proteins involved in RNA splicing [17,18]. Monsalve et al.
showed in in vitro studies that the C-terminal functional region participates in
mRNA(messenger RNA) processing to regulate gene expression. Mutations in the RS
and RRM motifs of PGC-1α affect PGC-1α’s ability to interact with transcription factors
and thus impair gene transcription [19].

2. Regulation of PGC-1α
2.1. Splice Variants of PGC-1α

PGC-1α gene transcription is regulated by multiple promoter regions and is coupled
with alternative splicing, resulting in a variety of PGC-1α protein variants [20]. The com-
bination of alternative splicing and alternative use of promoters is a common process
for increasing transcriptome complexity [21]. New splice variants are generated by tran-
scription from an evolutionarily conserved alternative promoter (AP), which was found
approximately 14 kb upstream of PGC-1α’s transcription start site (TSS) [22]. The tran-
scripts of this AP contain a new exon 1 (exon 1b) with two splicing options, resulting
in proteins with two different amino termini (PGC-1α-b, 12 aa long and PGC-1α-c, 3 aa
long). This exon is shorter than the proximal exon 1a, which encodes for a 16 aa-long
N-terminus [22,23]. The newly discovered isoforms were found in skeletal muscle after
exercise [24–27] and apparently, their generation is more responsive to stimulation. Studies
with PGC-1α-b in the skeletal muscle of transgenic mice revealed that a change in the
mitochondrial volume is directly correlated with an improvement in exercise performance
and oxidative capacity [28]. Nevertheless, the structure and function of PGC-1α-b and
PGC-1α-c do not differ notably from the canonical PGC-1α [22,23].

In addition to the AP and its resulting isoforms, further TSSs and tissue-specific
promoters have been described for PGC-1α in the liver, kidney, and brain. These isoforms
need to be studied in a tissue-specific context and may vary functionally and structurally
from the canonical PGC-1α [29–31].

https://string-db.org
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2.2. Regulation of the Master Regulator

PGC-1α is tightly regulated at two different levels: Firstly, PGC-1α is regulated at the
transcriptional level (see also Section 2.1) through several transcription factors and various
extracellular stimuli such as insulin/glucagon levels, Ca2+, temperature, or exercise via
signaling cascades. Secondly, PGC-1α is regulated at the posttranslational level through
numerous modifications, such as acetylation, phosphorylation, methylation, or ubiquiti-
nation [32,33]. The overview in Figure 2 shows the most important signaling routes that
target PGC-1α through posttranslational and transcriptional modifications.

2.3. Stress-Related Transcriptional Regulation of PGC-1α

Various factors play a role in the regulation of PGC-1α, e.g., the transcription of
PGC-1α is upregulated by forkhead box class-01 (FoxO1), myocyte enhancer factor 2
(MEF2), activating transcription factor 2 (ATF2), and cyclic AMP response element-binding
protein (CREB). These upstream factors are induced by several extracellular stimuli such
as stress, exercise, or cytokines [32,34]. Early-phase mediators of inflammation, such as
the tumor necrosis factor α (TNFα), interleukin-4, and interferon-γ, regulate PGC-1α gene
expression. Nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), or
Akt serine/threonine kinase (protein kinase B; Akt; PKB) have a mediating effect on these
signaling pathways as well [35]. The relationship between cytokine signaling and PGC-1α
in the context of inflammation will be discussed in detail in Section 4.1.

p38 MAPK activates MEF2 and ATF2, both of which stimulate PGC-1α expression.
Exercise increases Ca2+ levels, leading to the activation of MEF and CREB factors via cal-
cineurin A and Ca2+/calmodulin-dependent protein kinase 2 (CAMK2) [32,37]. Activation
of 5′ adenosine monophosphate-activated protein kinase (AMPK) via CAMK2 is promoted
by calcium ions [38]. FoxO1 and Akt are activated by insulin, whereas glucagon (via
glucagon receptor) and cold temperature (via β3-adrenergic receptor; β-AR) stimulate
protein kinase A (PKA), which subsequently promotes CREB-mediated transcription [32].
In summary, the combination of a variety of response factors, integrating environmental
and intracellular stimuli, controls the PGC-1α gene expression [36].

Class II histone deacetylases (HDACs) inhibit the MEF2 transcription factor and
indirectly regulate PGC-1α gene expression. In HDAC-negative mouse models, MEF2
activity was increased, resulting in enhanced skeletal muscle development (endurance and
resistance to fatigue) [39]. This observation may be related to an increase in the PGC-1α
expression [36].

Recruitment of RNA polymerase II to the PGC-1α promoter is inhibited by its phospho-
rylation by cyclin-dependent kinase 9 [40]. In addition, transcription factors EB (TFEB)and
E3 (Tfe3), have been reported to directly regulate the PGC-1α gene [41].

In addition, various epigenetic modifications of the PGC-1α promoter regulate PGC-
1α gene expression [42]. Barrès et al. showed that promoter methylation in muscle cells
by DNA methyltransferase 3B (DNMT3B) leads to the repression of the PGC-1α gene in
the presence of high levels of FA [43]. This is relevant with respect to the involvement of
PGC-1α in the control of mitochondrial biogenesis and the regulation of mitophagy [33,44].
Aging and inflammation, which are often associated with an increase in ROS, also affect
PGC-1α gene expression. This will be further discussed later in Section 4.
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Figure 2. Overview of the effectors of PGC-1α. (A) Posttranscriptional control of PGC-1α. The
upregulators are in green boxes, while the downregulators are shown in yellow color. Transcription
factors that control PGC-1α gene expression are printed in bold. The posttranslational mediators
are in light blue. Reprinted/adapted with permission from Ref. [36]. Copyright year 2021, copy-
right owner’s name Taylor and Francis, Licence No: 5532960029681. Adapted from Hyttinen et al.,
2021 [36]. (B) Posttranslational modifications of PGC-1α. Several sites for modifications including
phosphorylation, acetylation, methylation, ubiquitination, O-GlcNAcylation (O-linked N-acetyl glu-
cosylation), and SUMOylation have been described for PGC-1α. Red molecules indicate inactivation,
and blue indicates activation. Adapted from Fernandez-Marcos and Auwerx, 2011 [32]. Created with
BioRender.com, agreement No: NJ25C9I2WL.
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2.4. Posttranslational Regulation of PGC-1α

AMPK, MAPK, Akt, S6 kinase, and glycogen synthase kinase 3β (GSK3β) are the
major and best-described protein kinases that target PGC-1α for posttranslational phospho-
rylation (Figure 2B) [32,45]. Here, we will discuss AMPK and Akt in more detail.

AMPK is activated when the cellular AMP/ATP ratio increases. It is, therefore, a
key enzyme in mitochondrial energy homeostasis. Increased AMPK activity results in the
inhibition of cell growth, proliferation, and anabolic processes such as lipid synthesis [46].
Specifically, AMPK binds to PGC-1α in muscle cells and phosphorylates Thr177 and Ser538.
This phosphorylation increases the transcriptional activity of PGC-1α. Furthermore, these
phosphorylations are required for AMPK-induced gene expression of mitochondrial genes,
glucose transporter 4 (GLUT4), and PGC-1α itself [47]. In addition, increased protein
stability is a result of the p38 MAPK-induced phosphorylation of PGC-1α at Thr262,
Ser265, and Thr298 [32]. In conclusion, cellular energy balance is primarily regulated
by the AMPK/PGC-1α axis, which largely controls mitochondrial energy metabolism.
This balance can be disrupted by chronic overnutrition, which triggers the shutdown
of AMPK expression and leads to impaired PGC-1α activity, resulting in mitochondrial
dysfunction [15,47].

Akt is involved in several cellular signaling and regulatory pathways, such as PGC-1α
regulation. It is known that phosphorylation can also decrease PGC-1α activity in cells; for
example, Akt can phosphorylate several C-terminal sites of PGC-1α. By phosphorylation
of PGC-1α, Akt inhibits both gluconeogenesis and fatty acid oxidation (FAO) [48]. Akt,
activated in the liver upon feeding, phosphorylates PGC-1α at Ser568 and Ser572, which
inhibits the gluconeogenic program of downstream targets. However, these specific phos-
phorylations do not affect the function of PGC-1α as an activator of mitochondrial and
FAO genes [49]. Akt is also involved in the phosphate-3-kinase-Akt-mechanistic target of
rapamycin (mechanistic target of rapamycin; mTOR) signaling pathway. This pathway
controls several cellular mechanisms (survival, differentiation, growth, metabolism, and
cancer) and inhibits the PGC-1α response [50,51]. In addition, Akt activates CDC2-like
kinase 2 (Clk2), which also mediates the PGC-1α inactivation [52]. Akt also inhibits the
PGC-1α-mediated activation of the FoxO1 transcription factor [32,53]. In 3T3 cells, the sta-
bility of PGC-1α is regulated by GSK3β, which targets PGC-1α for intranuclear proteasomal
degradation [54].

Sirtuin 1 (SIRT1) belongs to the family of the silent information regulator 2-related
histone deacetylase family [55]. To mediate the deacetylation of target substrates, sirtuin
proteins require nicotinamide adenine dinucleotide (NAD) [56]. Since the cellular REDOX
balance of NAD+ and NADH is closely linked to catabolic metabolism, it is proposed that
SIRT1 acts as a sensor that directly links metabolic perturbations to transcriptional outputs.
As such, SIRT1 interacts with PGC-1α and deacetylates it in an NAD+-dependent manner
(Figure 2B) [57]. It has been suggested that PGC-1α and SIRT1 are mitochondrially imported
proteins localized in the mitochondrial matrix [58], but the evidence suggest that SIRT1 is a
nuclear/cytosolic protein [59], while SIRT3is located in the mitochondria [60]. SIRTs primar-
ily affect mitochondrial function, with two existing pathways: a PGC-1α-dependent and a
PGC-1α-independent pathway [15]. In the PGC-1α-dependent pathway, SIRT1 activates
PGC-1α through deacetylation. Activated PGC-1α acts as a coactivator for mitochondrial
transcription factor A (TFAM), which is thought to promote the transport of SIRT1 and PGC-
1α into mitochondria where they form a complex with the D-loop region of mtDNA. The
D-loop region regulates mitochondrial DNA replication and transcription [58,59]. SIRT1
activity can be enhanced by exercise and fasting [61,62]. Fasting has been shown to induce
SIRT1-dependent PGC-1α deacetylation in skeletal muscle and is required for the activation
of mitochondrial FAO proteins under low glucose conditions [63]. In contrast, histone
acetyltransferase activity controls non-depressible 5 (GCN5), which results in PGC-1α
acetylation. In addition, the SIRT1 inhibitor, nicotinamide, induces PGC-1α acetylation,
thereby reducing the expression of PGC-1α target genes. Cellular energy overload leads to
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increased levels of steroid receptor coactivator 3 (SRC-3), resulting in GCN5 up-regulation
and thus pronounced PGC-1α acetylation [55].

Specific ubiquitination (Ub) of PGC-1α by the E3 ubiquitin ligase SCFCdc4

(Skp1/Cullin/F-box cell division control 4) results in a very short half-life (0.3 h) of PGC-1α
in the nucleus due to proteolytic digestion (Figure 2B) [64]. Conversely, decreased SCFCdc4

activity results in PGC-1α accumulation in response to oxidative stress, thus providing an
increased ability to neutralize toxic metabolic byproducts such as ROS [65].

The small ubiquitin-like modifier (SUMO)-1 protein attenuates the activity of PGC-1α
through SUMOylation [66]. SUMOylation of PGC-1α inactivates the enzyme, which is
reversed by a Sentrin/SUMO-specific protease (SENP1) that de-SUMOylates PGC-1α and
thus results in mitochondrial biogenesis [67].

Methylation by the protein arginine methyltransferase 1 (PRMT1) increases PGC-1α
activity and induces the transcription of genes important for mitochondrial biogenesis [68]
(Figure 2B).

Another posttranslational modification is O-GlcNAcylation, which is the addition of
β-N-acetylglucosamine (GlcNAc) groups by O-linked β-N-acetylglucosamine (O-GlcNAc)
transferase (OGT). This stabilizes PGC-1α by inhibiting its ubiquitination [69] (Figure 2B).
In addition, O-GlcNAcylation of the transcription factor FoxO1 and the CREB-regulated
transcription co-activator 2 (CRTC2) is associated with PGC-1α activity. During its inter-
action with PGC-1α, OGT transfers a GlcNAc group to FoxO1 and is then able to modify
CRTC2. This is thought to be necessary for the interaction of CRTC2 with PGC-1α, resulting
in increased PGC-1α gene expression. O-GlcNAcylation of specific transcription-related
factors, such as PGC-1α and FoxO1, is important for nutrient stress sensing and cellular
energy metabolism [70].

In summary, various posttranslational modifications create a versatile and efficient
array for regulating the activity and intracellular localization of PGC-1α, thus ultimately
contributing to the pivotal role of PGC-1α in mitochondrial energy metabolism and biogen-
esis [71].

3. The Link between PGC-1α and Mitochondria
3.1. PGC-1α as the Master Regulator of Mitochondrial Biogenesis

PGC-1α is the master regulator of mitochondrial biogenesis and an important regulator
of mitochondrial oxidative capacity (Figure 3). This occurs through a variety of transcription
factors, such as ERR, PPARγ, and NRF-1/2, which are coactivated by PGC-1α and all play
an important role in mitochondrial oxidative capacity [72,73]. In addition, the interaction
between PPARγ and PGC-1α can stimulate mitochondrial biogenesis through the regulation
of PGC-1α activity itself. Specifically, PGC-1α and PPARγ control proteins involved in the
regulation of mitochondrial biogenesis, including promoting OXPHOS gene expression
in the nucleus and mitochondria and stimulating mtDNA replication, thereby enhancing
mitochondrial function and metabolism [74–76]. The upstream gatekeepers of PGC-1α
activity are SIRT1 and AMPK, which are important actuators in the regulatory network of
metabolic homeostasis [77,78].

Mitochondrial transcription is activated by PGC-1α, PGC-1β, and PRC, but PGC-1α is
the master regulator of mitochondrial biogenesis. The process is initiated when PGC-1α is
activated by phosphorylation of AMPK or deacetylation of SIRT1 and stimulates various
nuclear transcription factors, such as NRF-1, NRF-2, and estrogen-related receptor alpha
(ERRα). Through activation of NRF-1/2 [80], PGC-1α promotes TFAM transcription and
expression [81,82]. In addition, NRF-2 regulates the gene expression of the protein import
receptor Tom70 (Tom70) of the translocase of the outer mitochondrial membrane (TOM) [83].
TFAM stimulates the transcription and replication of mtDNA [84,85], but the correlation
between TFAM levels and mtDNA transcription and replication may be complex [86]. In
the next step, specific translation factors, such as mtIF2 and mtIF3, translate the mtDNA. In
terms of energy metabolism, the PGC-1α-NRF-1/2 pathway promotes the gene expression
of mitochondrial complexes I, II, III, IV, and cytochrome c, thereby activating OXPHOS [87].
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activity of the key regulator of mitochondrial biogenesis PGC-1α activates the expression of NRF-

Figure 3. The link between mitochondrial life cycle and PGC-1α. Mitochondrial biogenesis is initiated
by an energetic imbalance sensed by two pathways: AMPK and SIRT1. Increased expression or
activity of the key regulator of mitochondrial biogenesis PGC-1α activates the expression of NRF-1/2,
which induces the expression of TFAM, which translocates to mitochondria, binds to mtDNA, and
activates transcription and replication. An increase in OXPHOS proteins reduces ROS generation in
mitochondria. Mitochondrial fusion and fission dynamics are also affected by ROS. Dysfunctional
mitochondria can be eliminated through a process known as mitophagy. Adapted with permission
from Ref. [79], Copyright year 2017, copyright Portland Press LTD. Created with BioRender.com,
agreement No: PV25C9IVVA.

In summary, mitochondrial biogenesis must undergo mtDNA transcription and trans-
lation, demonstrating that upregulation of transcription factor activation via PGC-1α is a
key step in mitochondrial biogenesis.

3.2. PGC-1α Affects Mitochondrial Dynamics and Quality Control

Complementary to mitochondrial biogenesis, mitochondrial quality control is a key
process for maintaining the energy supply by mitochondria. Mitochondrial quality control
is a multilevel process involving multiple mitochondrial and cytosolic proteases, pro-
tein replenishment, and mitophagy [88]. Maintenance of mitochondrial performance
and adaptation to changing energy demands is regulated by remodeling mitochondrial
structures, which is primarily controlled by fission/fusion, mitochondrial biogenesis, and
mitophagy [89]. Intriguingly, in addition to its role in regulating mitochondrial biogenesis,
PGC-1α is also involved in mitochondrial dynamics and mitophagy [90]. An overview of
these processes is shown in Figure 3.

It is well known that mitochondria are dynamic organelles that continuously undergo
the processes of fusion and fission. Mitochondrial fusion is controlled by mitofusin 1 (Mfn1)
and mitofusin 2 (Mfn2) in the mitochondrial outer membrane and optic atrophy 1 (Opa1) in
the mitochondrial inner membrane [91,92]. These fusion proteins contain functional GTPase
domains and, upon activation, result in an expanded, branched mitochondrial network.
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Mitochondrial fission is the process that counteracts fusion and allows the mitochondrial
network to split, resulting in small, fragmented, and globular mitochondria. Fission is also
regulated by GTPase proteins, such as fission 1 protein (Fis1) and dynamin-related protein
(Drp1) [93,94]. Healthy mitochondrial dynamics are regulated by maintaining a balance
between these opposing processes, which is fundamental to maintaining mitochondrial
quality and function [89]. According to Peng et al., it can be speculated that excessive mito-
chondrial fragmentations lead to mitochondrial dysfunction [95]. PGC-1α can slow down
the fission of neuronal mitochondria by regulating Drp1 levels [96], resulting in increased
mitochondrial fusion. This may prevent or slow down the damage and denaturation of neu-
ronal axons caused by ATP depletion induced by mitochondrial fragmentation. Activation
of PPARγ decreases Drp1 activity through phosphorylation, thereby reducing excessive
mitochondrial fission and neuronal damage [97]. The beneficial effect of PPARγ/PGC-1α to
reduce mitochondrial oxidative stress response via stimulation of mitochondrial biogenesis,
dynamics, and function was also demonstrated in a rabbit model of diabetes associated
with atrial ROS stress [98]. PGC-1α was shown to directly regulate Mfn1 gene transcription
by coactivating the ERRα, which ultimately promotes mitochondrial fusion (Figure 3) [99].
In PGC-1α overexpression and knock-out cell models, PGC-1α was shown to regulate
Mfn2 and p-Drp1 protein expression and phosphorylation [95], which are important for
the balance between mitochondrial dynamics, function, and homeostasis. In summary,
PGC-1α provides a link between mitochondrial biogenesis and fission/fusion [95].

Finally, mitochondrial degradation by autophagy is also mediated by PGC-1α through
transcriptional mechanisms [100]. Autophagy is the major process by which damaged
organelles and cellular by-products are degraded and recycled in the lysosome to maintain
cellular homeostasis [101]. Mitophagy is the mitochondria-specific form of autophagy.
Damaged and/or dysfunctional mitochondria are often characterized by a disturbance
of the mitochondrial membrane potential, which may also have effects on the sensitive
ROS balance [102]. Depolarization of mitochondria leads to the recruitment of PTEN-
induced kinase 1 (PINK1), which activates parkin, an E3 ubiquitin ligase, followed by
ubiquitination of outer membrane proteins. This mitochondria-ubiquitinated complex
is then engulfed by the autophagosome and degraded in the lysosome. Mitophagy is
critical for maintaining healthy mitochondria in various tissues and disease states by
deleting defective mitochondrial segments within the network [89]. In addition, PGC-1α
can interact with and stabilize the mRNA of mitostatin, a mitochondrial protein associated
with oncostatic (=Tumor inhibiting) activity. This induces mitostatin-dependent mitophagy,
which leads to negative feedback regulation of vascular endothelial growth factor A (VEGF-
A) production, thereby attenuating tumor angiogenesis.

Although PGC-1α expression generally counteracts the process of autophagy, it can
promote mitophagy to maintain mitochondrial homeostasis in this specific scenario, fur-
ther illustrating the complexity of the role of PGC-1α in regulating autophagic signaling
pathways [71]. Mitochondrial biogenesis and mitophagy are tightly coupled, and a bal-
anced interplay between these two processes is critical for cellular adaptation and stress
resistance [103]. PGC-1α is a key player in these processes.

4. PGC-1α, Mitochondria, and Oxidative Stress

PGC-1α levels control the expression of OXPHOS genes and oxidative stress response
genes in human, mouse, and bovine endothelial cells (Figure 4) [104]. PGC-1α itself is
controlled by SIRT3, a mitochondrial deacetylase [105]. SIRT3 likely influences glucose
metabolism by inducing an anti-Warburg effect [106], and thus indirectly reduces ROS
levels. Through the SIRT3/PGC-1α axis, ROS levels are further reduced due to an increased
expression of the antioxidant enzymes, including Mn-dependent superoxide dismutase
(MnSOD), catalase, mitochondria-localized peroxidases Prx3 and Prx5, and the oxidoreduc-
tases thioredoxin TRX2 and TRXR2, which are the members of the conserved superfamily of
Thioredoxin (TRX enzymes that function as cysteine reductases, as well as the uncoupling
protein UCP-1 [104]. The members of the peroxidase class III family de-toxify peroxide
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with thioredoxin and/or glutathione as electron donors. Glutathione peroxidase (GPx) and
peroxiredoxin have protective effects against ROS in spermatozoa during post-testicular
maturation [107]. Uncoupling proteins (UCPs) increase the leak of the inner mitochondrial
membrane for protons and thus decrease the proton motive force ∆p. Since ROS production
and ∆p are positively correlated, uncoupling via UCPs protects against oxidative damage,
as shown, for example, for UCP-2 and UCP-3 as UCP-1 homologs in the heart [108]. Thus,
UCPs, in particular UCSP-2, are key regulators of metabolism and mitochondrial ROS [109].

4.1. Inflammation, ROS, and PGC-1α

Oxidative stress in mitochondria is induced when the inflammation-related tran-
scription factor NF-κB is activated, e.g., by cytokine signaling (Figure 4). Under normal
conditions, PGC-1α regulates levels of pro-inflammatory cytokine levels through its physi-
cal interaction with the NF-κB subunit p65 (p65). More specifically, PGC-1α blocks NF-κB
transcriptional activity toward its target genes, including those encoding pro-inflammatory
cytokines [110–112]. Certain cytokines, such as TNFα and interleukin 1β (IL1-β), increase
NF-κB/P65 levels. In human and murine cardiac cells, the NF-κB subunit p65 was found to
interact with PGC-1α, thereby inactivating PGC-1α. Notably, this interaction is stabilized
upon TNFα-dependent NF-κB activation [112]. Thus, the PGC-1α—NF-κB/P65 interaction
is an important hub in inflammatory pathways. When PGC-1α activity is decreased under
inflammatory conditions due to high cytokine levels, this further enhances the inflam-
matory response [113–115], which is exacerbated by increased oxidative stress, among
other factors. This is due in part to the TNFα-induced decrease in gene expression of
ROS-scavenging enzymes in the cytosol and mitochondria. For example, the antioxidant
enzyme superoxide dismutase (SOD1), which has ROS-scavenging activity but is also
involved in the activation of nuclear gene transcription or as an RNA binding protein,
is decreased [116]. In addition, the oxidative stress sensor/transmitter GPx7, which has
multiple roles in redox homeostasis, is affected. The deficiency of GPx7 in mice or humans
is associated with ROS accumulation [117]. The increased physical interaction between
p65 and PGC-1α after TNFα-induced NF-kB activation is responsible for the reduction
of PGC-1α activity and expression [112], a metabolic switch towards glycolysis, and sub-
sequent dysregulation of the mitochondrial antioxidant defense [104]. Similarly, PGC-1α
levels are downregulated in C2C12 cells after TNFα and IL1-β treatment [118,119] or in
cardiac cells after lipopolysaccharide (LPS) and TNFα exposure [120]. Remarkably, the
regulation of PGC-1α levels by LPS appears to be tissue-specific. In skeletal muscle, LPS
induces PGC-1α expression after short-term exposure but decreases its transcript levels 24
h after LPS injection. Interestingly, LPS decreases hepatic PGC-1α levels early on, but its
expression levels recover 8–16 h after injection [121].

Figure 4 summarizes the role of PGC-1α in anti-inflammatory defense and shows how
the PGC-1α/p65 complex leads to increased oxidative stress by impairing the detoxification
of ROS, mainly by reducing gene expression of key antioxidants [123]. Low levels of PGC-
1α or decreased activity of PGC-1α in inflamed tissues increase ROS generation and cause
oxidative damage [110,124–126]. In this context, it is interesting to note that PGC-1α is
involved in the regulation of macrophage polarization from the pro-inflammatory M1 to
the anti-inflammatory M2 type. Altered PGC-1α levels disturb the balance of macrophage
types during inflammation. After LPS/TNFα injection, PGC-1α overexpression in skeletal
muscle does not suppress pro-inflammatory cytokine expression but decreases M1 cytokine
IL-12 levels and enhances the generation of anti-inflammatory M2 cytokines [115]. In line
with this, experiments with PGC-1α negative mice showed increased M1 and decreased
M2 responses in kidney cells after AKI induction [127,128].
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Figure 4. Mitochondrial ROS defense is impaired by PGC-1α downregulation under inflammatory
conditions. NF-κB decreases PGC-1α expression by modulating proinflammatory cytokines, and its
subunit p63 decreases PGC-1α activity by forming a complex. The reduced PGC-1α activity results
in the downregulation of its antioxidant target genes and ultimately results in increased oxidative
stress. Low PGC-1α levels and concomitant oxidative stress further promote NF-κB activity, thereby
exacerbating the inflammatory response. Mitochondria accumulate adjacent to the nucleus [122].
Created with BioRender.com, agreement No: AW25C9KBZ5.

In conclusion, PGC-1α and NF-κB are mutually regulated during inflammation, in
which oxidative stress plays an essential role. During inflammation, NF-κB downregulates
the expression and stability of PGC-1α. Low PGC-1α activity reduces the translation of
its antioxidant target genes, resulting in oxidative stress. On the other hand, low PGC-1α
levels and concomitant oxidative stress promote NF-κB activity, thereby exacerbating the
inflammatory response [42].

4.2. Role of PGC-1α in Mitonuclear Crosstalk for ROS Defense

The internal accumulation of ROS in the cytosol and mitochondria poses a threat to
cells when certain thresholds are crossed (Figure 5). To modulate the response to ROS,
the nucleus and mitochondria communicate via anterograde and retrograde signaling. In
general, mitonuclear crosstalk is critical for meeting metabolic demands [129]. Activation
of nuclear-mediated anterograde signaling by elevated ROS levels, for example, is medi-
ated by PGC-1α. The primary role of PGC1α as a transcriptional regulator has numerous
downstream consequences and feedback mechanisms, as demonstrated in Figure 5. Specifi-
cally, under conditions of oxidative stress, PGC1α is required for antioxidant defense by
inducing the expression of ROS-detoxifying proteins, such as GPx1 and SOD2 [130]. These
proteins play a critical role in preventing cell death [131,132]. An imbalance in PGC-1α
disturbs the redox/ROS balance in cells, ultimately affecting their inflammatory response
(Figures 4 and 5). However, under certain conditions, PGC1α activity increases following
increased ROS production after an inflammatory stimulus resulting in PGC1α-mediated
gene activation [133]. Then, PGC-1α controls the mitochondrial response by regulating
OXPHOS gene expression (Figure 5). Two nuclear transcription factors, NRF-1 and GA-
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binding protein-α (GABPα also NRF2α), are primarily accountable for this response [134].
For example, NRF-1 regulates cytochrome c gene expression and directly or indirectly
modulates the levels of the OXPHOS proteins [134], which increases the capacity of the
electron transport chain and prevents the over-reduction of the CoQ pool. Over-reduction
of the CoQ pool is a threat because it increases the likelihood of reverse electron flow
(RET) and increased ROS production at complex I [135]. The role of cytochrome c in ROS
production depends on its phosphorylation status [136]. Increased OXPHOS activity would
also decrease the NADH/NAD+ ratio, which is a determinant of ROS production, at least
in isolated mitochondria [137,138]. Thus, there is accumulating evidence that increasing
OXPHOS capacity (which is not equal to maximal respiration) has beneficial effects on
reducing ROS production. However, exact relationships are difficult to unravel because
ROS are generated at multiple sites and are diverse, and ROS detection is also challenging.
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perturbations in mitochondria initiate retrograde communications signals to the nucleus to recalibrate
quality control, antioxidant response, and Ca2+ metabolism. See main text for details. Created with
BioRender.com, agreement No: HD25C9KU1V.

The molecular mechanism is as follows: NRF-1 binds to the promoters of the mitochon-
drial replication factors TFAM [139], TFB1M, and TFB2M [140], activating their expression
and thus mtDNA replication. TFAM is a highly abundant mitochondrial protein and a key
factor for mitochondrial transcription initiation. Using super-resolution microscopy, molec-
ular modeling, and volume calculations, TFAM was shown to be the major constituent
of mitochondrial nucleoids, protein-mtDNA complexes that contain approximately 1,000
TFAM molecules per mtDNA molecule in human cultured cells [141]. TFAM binds specifi-
cally to both mtDNA promotors recruiting RNA polymerase (POLRMT) and mitochondrial
transcription factor B2 (TFB2M). In addition, TFAM binds mtDNA in a sequence-unspecific
manner, thereby enhancing mitochondrial DNA packaging by promoting looping [142].
Homozygous disruption of Tfam in chicken DT40 cells was lethal, whereas tfam+/tfam–

heterozygotes had a 40–60% reduction in mtDNA and mtDNA transcription [143]. Using
inducible tetracycline-regulated overexpression of TFAM in human HeLa cells, a direct
correlation between TFAM expression and mtDNA content was found; however, TFAM ex-
pression levels were not correlated with mtDNA transcription [144]. It appears that TFAM
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expression directly modulates the maintenance of mtDNA copy number, which is essential
for normal cellular function. Up to thousands of mitochondria are present in mammalian
cells. The number is variable, depending on the cell type and its energetic requirements.
For example, mammalian hepatocytes contain approximately 800 mitochondria per cell,
whereas mammalian oocytes are estimated to have more than 100,000 [145].

In addition to PGC-1α, PPARs (PPARγ, PPARα, and PPARβ) are involved in the mi-
tonuclear stress response. These three nuclear receptor isoforms regulate many biological
processes by binding to PPAR-specific response elements (PPREs) within the promoter
region, thereby unwinding the chromatin structure, and initiating the transcription of
specific genes (Figures 4 and 5) [146]. PPARs are involved in FA transport, β-oxidation,
activation of the synthesis of many FAs and FA derivatives, and mitochondrial respira-
tion [147]. PPARs play critical roles as lipid sensors and modulators of lipid metabolism
and are involved in a wide range of biological processes, including inflammation, cellular
growth, cancer development, apoptosis, and differentiation [148]. It should be noted that
the transcriptional control of mitochondrial biogenesis is tissue- and organ-specific, and
different stimuli can trigger different downstream pathways [149]. This will be discussed
in the next section.

4.3. PGC-1α, ROS, and Disease

Over the past few decades, human lifestyles and, especially, diets have changed. Being
overweight and obese is the result, leading to diseases such as type 2 diabetes, fatty liver
disease, and cardiac disease. Such diseases are summarized under the term metabolic
diseases and are associated with high blood glucose levels, high blood pressure, high blood
lipid levels, and high cholesterol levels [150], often related to increased ROS levels. In
this context, PGC-1α dysregulation may alter the metabolic properties of tissues and thus
be involved in various metabolic disorders. Indeed, single nucleotide polymorphisms in
the human PGC-1α gene are associated with obesity, diabetes, and hypertension [151].
Energy starvation and/or reduced catabolic rate can be detected by AMPK and SIRT1,
whose activation increases PGC-1α-dependent transcription. During high-calorie diets
or situations where energy is not limited, AMPK activity is turned off by the high levels
of intracellular ATP. Similarly, high-fat diets increase SRC-3, which positively regulates
protein levels of the acetyltransferase GCN5, which in turn plays the opposite role of SIRT1
in PGC-1α acetylation, thereby decreasing PGC-1α transcriptional activity. Disruptions
in this metabolic network that controls PGC-1α activity can significantly contribute to
systemic metabolic complications [55].

Aging represents a progressive disruption of the homeostasis of physiological sys-
tems. It leads to structural destruction, organ dysfunction, and increased susceptibility to
injury and disease [152]. With continued cell division, telomeres gradually shorten and
eventually enter a dysfunctional state, leading to cell growth arrest and senescence. The
deficiency of telomerase reserve transcriptase (TERT) in mice leads to telomere dysfunction
and shortening with DNA damage [153]. Studies using TERT-knockout mice showed
decreased PGC-1α gene expression [153,154]. While PGC-1α deletion leads to cellular
senescence characterized by telomere shortening, DNA damage, and increased p53 levels,
ectopic expression of PGC-1α has beneficial effects on telomere function [155]. During
telomere dysfunction, p53 can be activated to bind and repress PGC-1α promoters. This
repression leads to mitochondrial dysfunction in the liver and heart in age-related dilated
cardiomyopathy, defects in hepatic gluconeogenesis, and reduced reconstitution capacity
of hematopoietic stem cells [153]. Accumulating evidence suggest an anti-aging effect of
PGC-1α in various organs, but more research is needed to identify clear PGC-1α-related
targets for treatment [152]. Studies using muscle-specific PGC-1α knockout mice have
shown that a decrease in PGC-1α and reduced mitochondrial oxidative capacity potentiate
the development of glucose intolerance and insulin resistance associated with aging [156].
Paradoxically, another study showed that PGC-1α overexpression in muscle leads to insulin
resistance in young mice fed a high-fat diet [157].
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Furthermore, PGC-1α may play a role in the response of cancer cells to the environ-
ment. First, the supply of nutrients and oxygen in tumors fluctuates, forcing cancer cells to
adapt their metabolism, relying alternatively on glycolysis or OXPHOS. Such fluctuations
alter the energy status of cancer cells and interfere with signaling pathways (AMPK, mTOR),
transcription factors (hypoxia-inducible factor 1 alpha; HIF1α), and proteins (glucose trans-
porter; GLUT) known to be associated with PGC-1α activity [11]. Second, common cancer
treatments such as radiation or chemotherapy have been shown to induce oxidative stress
in tumor cells [158,159]. ROS overproduction can either induce cell death or resistance to
treatment through mechanisms involving antioxidant enzymes [160]. ROS are mainly pro-
duced by mitochondria, and thus regulation of mitochondrial biogenesis and PGC-1α may
interfere with treatment response [11]. Finally, studies have shown that lipids are an energy
source for cancer cells. Adipocytes are important members of the tumor microenvironment.
They promote cancer cell aggressiveness by releasing cytokines (adipokines), such as inter-
leukin 6 to increase the invasive properties of breast cancer cells, or chemokine (C-C motif)
ligand 7, resulting in the local proliferation of prostate cancer cells [161,162]. In addition,
adipocytes release FA from lipid droplets that are oxidized by fatty acid β-oxidation in
cancer cells. This metabolic interaction between adipocytes and cancer cells promotes
aggressiveness and metastasis [163]. Although the majority of the literature supports the
tumorigenic activity of PGC-1α, there are also paradoxical antineoplastic effects in some
tumor types [164–168]. In renal cell carcinoma, increased mitochondrial activity is induced
by PGC-1α. This activity is closely associated with increased ROS production, leading to
increased oxidative stress. Thus, ectopic expression of PGC-1α leads to impaired tumor
growth and increased sensitivity to cytotoxic therapies [165].

4.4. PGC-1α as a Drug Target

In the last decade, increased PGC-1α activity as a potential therapeutic target has
come into focus, especially in aging research [36,152,169]. Therefore, it is important to
know which and how drugs increase PGC-1α activity in order to assess their potential for
potential treatments.

Resveratrol is a natural polyphenolic phytochemical with anti-inflammatory, antiox-
idant, anti-diabetic, and neuroprotective effects [170]. The SIRT1 pathway activated by
resveratrol is associated with deacetylating activity, leading to changes in several down-
stream regulators such as PGC-1α [171]. Increased SIRT1 activity, triggered by elevated
NAD+ levels, upregulates PGC-1α transcriptional activity [57]. However, resveratrol does
not bind to the native peptide of SIRT1 or full-length protein substrates. Regardless of
the direct target of resveratrol, SIRT1 remains one of the most intensively studied targets
associated with the anti-aging effects of resveratrol [170]. Niu et al. showed in recent
studies that dietary resveratrol activates the AMPK/PGC-1α axis, thereby promoting the
biogenesis of obesity-damaged mitochondria and muscle regeneration [172].

Metformin is a synthetic antidiabetic drug that activates PGC-1α via AMPK [173] and
also downregulates mTOR and ROS production [174]. Metformin has multiple targets,
including direct or indirect (through AMPK signaling) inhibition of complex I [175–177].
Recent research has also shown that metformin and other biguanides can directly inhibit
cytochrome c oxidase [178]. However, it is important to note that the effects of metformin
are strongly dose-dependent. Complex I inhibition is only observed at metformin concen-
trations higher than those typically achieved in vivo (>1 mM) [179–181]. An alternative
mechanism of metformin action has been proposed [178,182,183], suggesting that alter-
ations in the hepatic redox state and inhibition of glycerol-3-phosphate dehydrogenase
(GPD2) potentiate its glucose-lowering effects. This alternative mechanism is significant
because it occurs at lower concentrations of metformin. The described anti-aging effects of
metformin are based on reduced insulin levels and a consequent reduction in insulin-like
growth factor 1 (IGF1) signaling and glucose levels [184].

Rapamycin, a macrolide immunosuppressant, works primarily by inhibiting mTOR.
Studies have shown that rapamycin extends the lifespan of mice [185–191]. Inhibition
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of mTOR is one of the major effects of AMPK. Rapamycin can, therefore, phenocopy
some effects of AMPK and also ameliorate renal fibrosis by blocking mTOR signaling in
interstitial macrophages and myofibroblasts [192]. However, mTOR can activate Yin Yang 1
(YY1), a transcription factor that increases the activity of the PGC-1α promoter [193,194].

Fenofibrate is a drug for hypertriglyceridemia and mixed dyslipidemia. Fenofibrate
has lipid-modifying effects through the activation of PPARα and also protects against
age-related changes in the kidneys. It increases the phosphorylation of AMPK and the
activation of PGC-1α [195].

Bezafibrate, a drug used to treat hyperlipidemia, activates the PGC-1α/PPAR pathway
and increases mitochondrial biogenesis and fatty acid β-oxidation in mice. In humans,
bezafibrate is believed to exert effects in tissues with chronic bioenergetic degenerative
conditions [196]. A recent research article demonstrated that Bezafibrate is a potential
pharmacological candidate for disorders with MGA (3-Methylglutarate) accumulation,
such as Barth syndrome and dilated cardiomyopathy with ataxia syndrome. MGA had
a strong tendency to reduce PGC-1α activity. Pretreatment with bezafibrate prevents
MGA-induced oxidative stress and mitochondrial dysfunction [197].

Rosiglitazone is a PPARγ agonist, which is used as an antidiabetic agent. It has
also been reported to increase the nuclear fraction of PGC-1α in a mouse model of renal
fibrosis, exert protective effects against oxidative stress, and reduce epithelial-mesenchymal
transition (EMT)-derived fibrosis [198].

Adiponectin is a cardioprotective agent in diabetes [199]. Previous studies reported
that hypoadiponectinemia impaired AMPK-PGC-1α signaling in diabetic hearts [200].
In a cardiomyocyte model for type 2 diabetes (cells grown in high glucose/high-fat
medium), adiponectin partially rescues mitochondrial biogenesis via PGC-1α mediated
signaling [199].

In addition to drugs that promote PGC-1α/TFAM activation, there are also agents and
substances that downregulate the expression or activation of the mitochondrial biogenesis-
associated transcription factors PGC-1α and TFAM and the regulating AMPK [201].

miR-130b-3p is a small non-coding RNA (microRNA; miRNA) that negatively regu-
lates PGC-1α/TFAM biogenesis pathway [202].

2-Methoxyestradiol is a potent anticancer agent that promotes the mitochondrial
biogenesis of osteosarcoma cells. 2-Methoxyestradiol affects and downregulates SIRT3 and
PGC-1α activity in a concentration-dependent manner, i.e., especially at low physiological
concentrations [203].

High-glucose/high-fat conditions: Previous studies showed that mitochondrial bio-
genesis and function are significantly reduced in adipose and muscle tissue of obese
animals [204,205]. High-glucose/high-fat conditions resulted also in altered mitochondrial
structure and decreased PGC-1α activity in cardiac myocytes [199].

Cyclosporine A is a drug, used to treat many autoimmune diseases. Qi et al. found
that cyclosporine A decreased the expression of PGC-1α at both the mRNA and protein
levels in HepG2 cells and inhibited mitochondrial biogenesis [206].

The above-mentioned basic findings can be used as a basis for future clinical ap-
proaches in PGC-1α related diseases, such as cancer, metabolic diseases, neurodegeneration,
or age-related diseases.

5. Conclusions

As shown in this review, PGC-1α is a master regulator of almost all steps of the
mitochondrial life cycle: fusion/fission, mitochondrial biogenesis, and mitophagy. It also
plays an essential role in mitochondrial redox biology and ROS homeostasis by controlling
the expression of ROS-scavenging enzymes on the site and OXPHOS complexes on the
other. Through its regulation by sirtuins, NAD+-dependent deacetylases, and AMPK, the
cell’s energy sensor, PGC-1α also responds to the redox and energy status of the cell, both
of which are strongly determined by mitochondria. PGC-1α is thus a key player in the
intracellular communication between the cytosol, nucleus, and mitochondria that serves
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ROS homeostasis. Many known drugs that indirectly or directly improve cellular functions
act on mitochondria via PGC-1α as a final target.
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Abbreviations

AMPK 5′ adenosine monophosphate-activated protein kinase
AP alternative promoter
ATF2 activating transcription factor 2
BAT brown adipose tissue
CAMK2 Ca2+/calmodulin-depend protein kinase 2
Clk2 CDC2-like kinase 2
CREB cyclic AMP response element-binding protein
CRTC2 CREB-regulated transcription co-activator 2
DNMT3B DNA methyltransferase 3B
Drp1 dynamin-related protein 1
ER estrogen receptor
ERRα estrogen-related receptor α
FA fatty acid
FAO fatty acid oxidation
Fis1 fission 1 protein
FoxO1 forkhead box class-01
GABPα GA-binding protein-α
GCN5 acetyltransferase protein acetyltransferase general control non-depressible 5
GlcNAc β-N-acetylglucosamine
GPxGPx1GPx7 glutathione peroxidaseglutathione peroxidase 1glutathione peroxidase 7
GSK3β glycogen synthase kinase 3β
HDACs class II histone deacetylases
IGF1 insulin-like growth factor 1
IL1-β interleukin 1β
LPS lipopolysaccharide
MAPK mitogen-activated protein kinase
MEF2 myocyte enhancer factor 2
Mfn1 mitofusin 1
Mfn2 mitofusin 2
MGA 3-Methylglutarate
miRNA microRNA
MnSOD Mn-dependent superoxide dismutase
mRNA messenger RNA
mTOR mechanistic target of rapamycin
NAD nicotinamide adenine dinucleotide
NF-κB nuclear factor-kappa B
NR nuclear receptor
NRF-1 nuclear respiratory factor 1
NRF-2 nuclear respiratory factor 2
O-GlcNAc O-linked β-N-acetylglucosamine
OGT O-linked β-N-acetylglucosamine transferase
Opa1 optic atrophy 1
OXPHOS oxidative phosphorylation
p65 NF-κB subunit p65
PGC-1α peroxisome proliferator-activated receptor γ coactivator 1α
PGC-1β peroxisome proliferator-activated receptor γ coactivator 1β
PKA protein kinase A
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PKB/Akt protein kinase B
POLRMT mtDNA promotors recruiting RNA polymerase
PPARs receptor-like peroxisome proliferator-activated receptors
PPARα peroxisome proliferator-activated receptor α
PPARγ peroxisome proliferator-activated receptor γ
PPREs PPAR-specific response elements
PRC PGC-1 related coactivator
PRMT1 protein arginine methyltransferase 1
Prx3 peroxiredoxin 3
Prx5 peroxiredoxin 5
ROS reactive oxygen species
RRM RNA recognition motif
RS short serine/arginine-rich stretches
SCFCdc4 Skp1/Cullin/F-box cell division control 4
SENP1 Sentrin/SUMO-specific protease
SIRT1 sirtuin 1
SIRT3 sirtuin 3
SRC-3 steroid receptor coactivator 3
SUMO small ubiquitin-like modifier
TERT telomerase reserve transcriptase
TFAM mitochondrial transcription factor A
TFB2M mitochondrial transcription factor B2
Tfe3 transcription factor E3
TFEB transcription factor EB
TNFα tumor necrosis factor α
Tom70 translocase of outer mitochondrial membrane receptor subunit 70
TRX2 thioredoxin 2
TRXR2 thioredoxin reductase 2
TSS transcription start site
Ub specific ubiquitination
UCP-1UCP-2UCP-3 uncoupling protein 1uncoupling protein 2uncoupling protein 3
VEGFA vascular endothelial growth factor A
YY1 yin yang 1
β-AR β3-adrenergic receptor
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