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Abstract: Flavonoids are one of the important metabolites of plants, and many flavonoids have
functions of antioxidant or antimicrobial, which can help plants resist environmental stress. On the
other hand, flavonoids also have a health-promoting effect for humans, such as antioxidant and
anti-aging, and some flavonoids can assist in disease treatment. Fruit is one of the main sources of
plant food and flavonoids intake for humans. Understanding the flavonoidome of various fruits
is helpful to choose fruit combinations according to different demands. In this study, we explored
the composition and relative content of flavonoids in 22 fruits and analyzed some health-promoting
flavonoids in fruits. In addition, we selected several fruits and measured their antioxidant capacity
through experiments. Our study initially established a database of fruit flavonoidome, and can
provide reference for nutrition research, fruit breeding and industrial development.

Keywords: phytochemicals; fruit; metabolomics; antioxidant; health-promoting

1. Introduction

Fruit is one of the most important plant food sources for humans. Compared to vegeta-
bles, most fruits can be eaten without heating, and thus they retain more of their nutrients.
Fruit contains a variety of dietary phytochemicals which can be roughly divided into alka-
loids, phenolics, nitrogen-containing compounds, organosulfur compounds, phytosterols,
and carotenoids [1]. Flavonoids are secondary metabolites and belong to the phenolics,
which have been widely studied to have benefits in human health.

Flavonoids have three rings (C6-C3-C6) as their basic skeleton in chemical structure.
Based on the oxidation degree of the central heterocycle, flavonoids can be classified to
flavonols, flavones, isoflavones, anthocyanins, flavanones, flavanols, and chalcones [2].
Flavonoids are well known for their antioxidant activity due to the ability to reduce free
radical formation and scavenge free radicals [3]. For plants, flavonoids can protect them
from biotic or abiotic threats. For example, sakuranetin is a type of flavonoid phytoalexin
which can inhibit the growth of the fungal pathogen Magnapothe oryzae in rice [4]. A higher
content of anthocyanin and flavonoid can improve the cold tolerance of mango [5]. For
consumers, many flavonoids are beneficial to human health. Studies show that quercetin
and catechin have an anti-inflammatory effect on macrophages [6]. Researchers have
also found that some flavonoids have anti-tumor activity such as morin, quercetin and
rutin [7,8]. In these studies, flavonoids can inhibit the proliferation and migration of
tumor cells and influence the expression of some tumor-related genes. As flavonoids have
many benefits for health, many studies have analyzed flavonoids in various fruits such
as jujube and blackberry [9,10]. However, these studies usually focus on a specific fruit,
and there are still limited summaries and comparative analyses between various fruits.
To understand more about the health-promoting effects of flavonoids in food, scientists
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have also studied the bioaccessibility of various flavonoids. For example, in animal studies,
anthocyanin from fruits can be absorbed from the stomach and small intestine and the
bioavailability is estimated to be 0.26–1.8% [11]. In addition, the form of food also affects the
bioaccessibility of flavonoids. A study showed that hesperidin was more bioaccessible from
orange juice than from orange segments [12]. Since a large number of flavonoids exist in
plants, focusing on a single flavonoid or flavonoid in a single species limits a comprehensive
understanding of the distribution and variety of flavonoids in foods, especially in fruits. We
summarized and analyzed the composition, classification and relative content of flavonoids
in different fruits, and summarized them as the flavonoidome. Exploring the flavonoidome
by metabolomics contributes to understanding the composition and content of various
flavonoids in different fruits.

Metabolomics is a useful tool to investigate the various metabolites in organisms [13].
Similar studies have been conducted to uncover the difference of nutrients between various
vegetables [14]. However, there are still few comparative studies focusing on flavonoids
in various fruits. Here, we analyze the flavonoidome in 22 common fruits in the south of
China. We also selected several fruits to determine their antioxidant capacity. These results
help us better understand the differences in the types and amounts of flavonoids found
in different fruits and provide a reference for a healthy diet and industrial utilization of
natural products.

2. Materials and Methods
2.1. Plant Materials

To study the flavonoidome of the fruit, 22 fruits, including pear (Pyrus communis
L.), red bayberry (Myrica rubra Siebold et Zuccarini), grape (Vitis Vinifera L.), strawberry
(Fragaria × ananassa Duch.), blueberry (Vaccinium corymbosum L.), cherry (Prunus avium
L.), apple (Malus pumila Mill.), durian (Durio zibethinus Murr.), mandarin (Citrus reticulate
Blanco), loquat (Eriobotrya japonica (Thunb.) Lindl.), litchi (Litchi chinensis Sonn.), kiwifruit
(Actinidia chinensis Planch.), watermelon (Citrullus lanatus (Thunb.) Matsum. et Nakai), Hami
melon (Cucumis melo L.), pineapple (Ananas comosus (L.) Merr.), papaya (Carica papaya L.),
banana (Musa sapientum L.), passion fruit (Passiflora edulis Sims), mango (Mangifera indica L.),
mangosteen (Garcinia mangostana L.), grapefruit (Citrus × aurantium Linnaeus) and pitaya
(Hylocereus undatus (Haw.) Britt. et Rose), were bought from a local market in Hangzhou,
China. Samples were harvested and frozen in liquid nitrogen for the metabolome analysis.

2.2. Sample Extraction

Samples were vacuum freeze-dried by a lyophilizer (ScientZ-100F, Ningbo, China)
and ground (30 Hz,1.5 min) to a powder using a grinding instrument (MM 400, Retsch,
Haan, Germany). One hundred milligram of powder was weighed and dissolved in 1.2 mL
of 70% methanol extract. The samples were vortexed for 30 s every 30 min six times and
stored at 4 ◦C overnight. After centrifugation at 12,000 rpm for 10 min, the supernatant
was filtered through a microporous membrane with a pore size of 0.22 µm. Then, samples
were transferred to an injection bottle for UPLC-MS/MS analysis.

2.3. Ultra-Performance Liquid Chromatography (UPLC) Analysis

The metabolome of flavonoids was analyzed by ultra-performance liquid chromatogra-
phy (UPLC) using a SHIMADZU Nexera X2 (Kyoto, Japan). The chromatographic column,
Agilent SBC18 1.8 µm, 2.1 mm × 100 mm, was used at a flow rate of 0.35 mL/min. The
mobile phase A was ultra-pure water (0.1% formic acid added) and phase B was acetoni-
trile (0.1% formic acid added). The elution gradient was: B phase at 5% at the beginning,
increasing linearly to 95% within 9 min, then this was maintained at 95% for 1 min; then, B
phase decreases to 5% in 1 min, and equals 5% for 3 min. The column temperature was
40 ◦C. The loading sample volume was 4 µL. The effluent was alternatively connected to
an ESI-triple quadrupole-linear ion trap (QTRAP)-MS.
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2.4. ESI-QTRAP-MS/MS

Linear ion hydrazine-flight time (LIT) and triple quadrupole (QQQ) scanning were
obtained on the triple quadrupole linear ion TRAP mass spectrometer AB4500 Q TRAP
(Framingham, MA, USA). The UPLC/MS/MS system was equipped with an ESI turbo
ion spray interface. Both positive and negative ion modes can be controlled by Analyst
1.6.3 software (AB Sciex). The ESI source operating parameters are as follows: ion source,
turbo spray; source temperature, 550 ◦C; ion spray voltage (IS), 5500 V (positive ion
mode)/−4500 V (negative ion mode); ion source gas I (GSI), gas II (GSII), and curtain gas
(CUR) were set to 50, 60, and 25.0 psi, respectively; and collision-induced ionization
parameters were set to high. The instrument was tuned and calibrated with 10 and
100 µmol/L propylene glycol solution in the QQQ and LIT modes, respectively. The
QQQ scan uses an MRM mode and has the collision gas (nitrogen) set to medium. Through
further DP and CE optimization, the DP and CE of each MRM ion pair were completed.
A specific set of MRM ion pairs was monitored at each period, based on the metabolites
eluted during each period.

2.5. Data Analysis of the Widely Targeted Metabolome

Based on the MWDB (Metware database), the material was qualitatively determined
according to the secondary spectral information. The isotopic signals, repeated signals
of K+, Na+, NH4

+, and the repeated signals of large-molecularweight fragments were
removed during the analysis. Data were analyzed and visualized by Metware Cloud
(https://cloud.metware.cn/), accessed on 11 August 2023.

2.6. Determination of Antioxidant System Activity

Hydroxyl radicals were produced by Fenton reactions of H2O2/Fe2+, and the scaveng-
ing rate of hydroxyl radicals was determined by measuring the change in absorbance at
510 nm.

The ammonium molybdate method was used, and the change in absorbance at 405 nm
was measured to determine the CAT (catalase) activity. One unit of CAT activity was
defined as the amount of decomposed 1 µmol H2O2 per second per g of sample.

The nitrotetrazolium blue chloride (NBT) method was used, and the change in ab-
sorbance at 560 nm was measured to determine the SOD (superoxide dismutase) activity.
When the inhibition rate in the reaction system is 50%, the activity of SOD in the reaction
system is defined as one unit of enzyme activity (U/mL).

The H2O2 method was used, and the change in absorbance at 470 nm was measured
to determine the POD (peroxidase) activity. A change in an absorbance value of 0.01 per
minute per g of sample in a 1 mL reaction system is defined as one unit of enzyme activity.

The commercial kits (Cominbio Co., Ltd., Suzhou, China) were used to determine
these antioxidant system activities. A microplate reader (INFINITE 200 PRO, TECAN) was
used to measure the absorbance of each reaction mixture.

2.7. Statistical Analysis

Using the GraphPad Prism 8 statistical software, the data were analyzed using a
one-way analysis of variance (ANOVA) followed by the least significant difference test
at a 95% confidence level. To indicate statistically significant differences, different letters
above the columns are used. In the figures, the standard error is depicted. The experiments
were repeated three times, and three samples replicates were taken with similar results.
The principal component analysis (PCA) was also performed using R software (v. 3.4.1).
The data were standardized and PCA analysis was performed using the R software’s own
principal component analysis function “prcomp”.

https://cloud.metware.cn/
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3. Results
3.1. Detect the Flavonoidome of Fruits

To obtain a deeper understanding of the flavonoidome of different fruits, a widely
targeted metabolome assay was performed on 22 fruits commonly sold in China. According
to the ripening process, fruits can be divided into climacteric fruits and non-climacteric
fruits, and different phytohormones regulate the ripening process in these two kinds of
fruit [15]. As phytohormones can influence the synthesis of flavonoids, we want to explore
whether the ripening process is related to the flavonoidome. These 22 fruits can be divided
into climacteric fruit, including pear (Pyrus communis L.), red bayberry (Myrica rubra Siebold
et Zuccarini), apple (Malus pumila Mill.), durian (Durio zibethinus Murr.), kiwifruit (Actinidia
chinensis Planch.), watermelon (Citrullus lanatus (Thunb.) Matsum. et Nakai), Hami melon
(Cucumis melo L.), papaya (Carica papaya L.), banana (Musa sapientum L.), passion fruit
(Passiflora edulis Sims), mango (Mangifera indica L.), mangosteen (Garcinia mangostana L.) and
pitaya (Hylocereus undatus (Haw.) Britt. et Rose); and non-climacteric fruit, including grape
(Vitis Vinifera L.), strawberry (Fragaria × ananassa Duch.), blueberry (Vaccinium corymbosum
L.), cherry (Prunus avium L.), mandarin (Citrus reticulate Blanco), loquat (Eriobotrya japonica
(Thunb.) Lindl.), litchi (Litchi chinensis Sonn.), pineapple (Ananas comosus (L.) Merr.) and
grapefruit (Citrus × aurantium Linnaeus) (Figure 1A). To explore whether the flavonoidome
in fruit is correlated with the different ripening process, we performed a PCA analysis of
these fruits. The result showed that component 1 (PC1) explained 14.68% and component 2
(PC2) explained 13.67% of the variability. These data show that most fruits have similar
principal components of flavonoids, except pear (Figure 1B). The metabolic diversity of
other fruits is non-significant since they clustered together in the PCA score plots. This
result shows that there was no correlation between the components of the flavonoids and
the ripening process (climacteric or non-climacteric).
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In the metabolome data, a total of 372 flavonoids were detected (Figure 2A). These
flavonoids were classified as chalcones, flavanones, dihydroflavonol, anthocyanins, flavones,
flavonols, flavonoid carbonoside, flavanols and isoflavones. Though tannin and proan-
thocyanidins do not belong to flavonoids, they were also detected for technical reasons.
Among these flavonoids, flavone is the most abundant, with 110 species, and the second
most abundant were flavonols, with 92 species. There were 14 flavonoids that did not
fall into any of these categories, and therefore they were classified as other flavonoids
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(Figure 2B). Some of these flavonoids, such as apigenin and sakuranetin, have been ex-
tensively studied and found to be beneficial to human health, and Figure 2C shows their
structure. As these flavonoids may have a potential effect on human health, it is important
to understand the specific types and amounts of flavonoids in different fruits.
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3.2. Comparative Analysis of Flavonoids in 22 Fruits

To illustrate the distribution of flavonoids in 22 fruits, hierarchical cluster analysis
was used to visualize the relative abundance of flavonoids. In the cluster heatmap of the
flavonoidome, pear, blueberry, mandarin, mangosteen, grape, strawberry, grapefruit and
litchi exhibited a relative higher abundance of flavonoids (Figure 3A). As flavones, flavonols,
anthocyanins and isoflavones are the four most abundant groups in the total flavonoids, we
also carried out heatmap analysis of the four groups separately (Figure 3B–D). The heatmap
of the flavones showed that pear, mandarin, grapefruit and mangosteen had a higher
abundance (Figure 3B). In the cluster heatmap of flavonols, pear, blueberry, mandarin, red
bayberry and strawberry were shown to contain a higher amount (Figure 3C). Anthocyanins
are one of the most important groups of substances that give color to plants [16]. In
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our data, two dark fruit, blueberry and grape, had a higher abundance of anthocyanins
(Figure 3D). As for the isoflavones, pear, mangosteen, cherry and grapefruit showed the
highest abundance in the heatmap (Figure 3E).
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To better understand the difference of flavonoids in the 22 fruits, we counted the total
number and distribution of flavonoids in various fruits. In terms of flavonoid diversity,
blueberry had the widest variety with 164 flavonoids, while grape (155), cherry (146),



Antioxidants 2023, 12, 1665 7 of 13

strawberry (145), and grapefruit (144) followed (Figure 3F). Hami melon, papaya, durian,
mango and watermelon had fewer flavonoids, with 36, 39, 41, 45 and 48, respectively
(Figure 3F). Intriguingly, the non-climacteric fruits contained a greater variety of flavonoids
on average.

We also counted the proportion of various flavonoids in the 22 fruits. Like the data in
Figure 2A, flavones and flavonols were the two most common kinds of flavonoids in all
the 22 fruits. Though the number of flavones accounted is more in the total flavonoids, the
number of flavonols was higher in many fruits, such as red bayberry, grape and strawberry
(Figure S1). Additionally, the number of anthocyanins was relatively low in watermelon,
passion fruit, mango and grapefruit (Figure S1). These results help us understand the
differences in the composition of flavonoids in different fruits and can be used as a reference
for raw materials of flavonoid extraction.

3.3. Health-Promoting Flavonoids in Fruit

The composition and proportion of flavonoids varied from fruit to fruit. In addition,
we found that some fruits contained flavonoids not present in other fruits (Table 1). In our
data, isoliquiritigenin was only present in passion fruit, belonging to chalcones, and this
study showed that it has the ability to carry out antigrowth and -proliferation in various
cancer cells [17]. Mangosteen contained many unique flavonoids such as garcinone B
and kushenol E, and research has found that they have potential activity in anti-microbial
and cancer therapy, respectively [18,19]. Though there is not too much research about
these flavonoids in mangosteen, they remain a potential biological resource for food and
medical research. Apigenin, wogonin and chrysosplenol D belong to flavone, and they are
specifically present in cherry, with studies showing they all have antitumor activity [20–22].
Jaceosidin is a unique flavone in red bayberry. Studies in mice found that it can inhibit
myocardial oxidative damage and the inflammatory response [23]. Astragalin is a flavonol
found in pear, which functions in ulcerative colitis therapy [24].

In addition to the unique flavonoids found in certain fruits, there are also some
health-promoting flavonoids that are common in many fruits. Here, we list some of the
health-promoting flavonoids and the fruits that contain more of them. Flavonols are one of
the most common kinds of flavonoids. Some flavonols with health-promoting functions
have been well studied, such as rutin, morin and quercitrin. Rutin is widely found in many
fruits, and studies have shown that it has anti-diabetic and anti-Alzheimer’s effects [25,26].
In our data, 19 fruit contain rutin, and the highest levels are found in pear and litchi
(Figure 4). Morin was found in eight fruit, and the amount in blueberry and mangosteen
was the most (Figure 4). These flavonols have multiple functions including antioxidant,
anti-diabetic, anti-inflammatory, antitumor, antihypertensive and antibacterial effects [27].
Quercitrin is another flavonol with a wide spectrum of bioactivities including antioxidant,
anti-inflammation, anti-microbial and immunomodulation [28]. It was found in 14 kinds of
fruit, including red bayberry and blueberry (Figure 4). Phlorizin belongs to chalcones, it was
most abundant in apple (Figure 4) and has antioxidant and anti-inflammatory activities [29].
Red bayberry contained the most sakuranetin in the 22 fruits (Figure 4), and this flavonoid
is reported to have antioxidant, anti-microbial and anti-inflammatory effects [30]. Catechin
and epicatechin are both flavanols with antioxidant and anti-inflammation functions [31],
and are well known in tea. In our data, they were abundant in grape (Figure 4). Gallic acid
is a hydroxybenzoic acid. It is found in both a free state or as a constituent of hydrolysable
tannins, and it is a widely used food additive and industrial auxiliary material. It appeared
in 13 of the fruits and has antioxidant, anti-cancer and anti-microbial abilities (Figure 4) [32].
The flavanone hesperidin was mainly found in citrus fruits such as mandarin and grapefruit
(Figure 4). It has health-promoting effects like anti-inflammation, antioxidant and lipid-
lowering effects [33].
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Table 1. Specific flavonoids in some fruit.

Fruits ID Q1 (Da) Q3 (Da) Formula Compounds Class

Passion fruit pme3217 257.08 137 C15H12O4 Isoliquiritigenin Chalcones
Lmmp007480 257.08 137.02 C15H12O4 2,4,4′-trihydroxychalcone Flavones

mws1292 565.16 409.09 C26H28O14 Isoschaftoside Flavonoid
carbonoside

Mangosteen pmp000358 355.15 299.06 C21H22O5 Licoagrochalcone D Chalcones
Lmsp010391 329.1 287.06 C18H16O6 Salvigenin Flavones
pmp000638 355.12 299.06 C20H18O6 8-prenylkaempferol Flavones
Hsmp10763 381.17 269.05 C23H24O5 Mangostinone Other Flavonoids
Hsmp10672 395.15 339.09 C23H22O6 Garcinone B Other Flavonoids
Hsmp10144 409.17 353.1 C24H24O6 Mangostanin Other Flavonoids
pmp000385 423.22 367.12 C26H30O5 Kanzonol J Other Flavonoids
pmp000647 425.2 369.13 C25H28O6 Kushenol E Other Flavonoids
Hsmp09614 427.18 371.11 C24H26O7 Mangostanol Other Flavonoids
Hsmp08787 429.19 355.12 C24H28O7 Garcinone D Other Flavonoids
pmp000368 383.15 327.16 C22H22O6 Licoricone Isoflavones
Lmdp003994 461.14 299.09 C23H24O10 Wistin Isoflavones

Cherry pmp000383 419.13 257.08 C21H22O9 Liquiritin Flavanones
pmp000571 271.06 153.01 C15H10O5 Apigenin Flavones
mws4160 285.08 270.07 C16H12O5 Wogonin Flavones

Lmjp005224 361.09 328.06 C18H16O8 Jaceidin Flavones
pmp000788 361.09 346.06 C18H16O8 Chrysosplenol D Flavonols

pme3250 285.08 270 C16H12O5 Biochanin A Isoflavones
mws0908 283.06 268 C16H12O5 Glycitein Isoflavones

Red Bayberry pmp000234 527.15 331.08 C27H26O11 Salcolin A Flavones
pmp000004 331.08 316.06 C17H14O7 Jaceosidin Flavones

Pear mws2209 449.11 287.06 C21H20O11 Astragalin Flavonols

3.4. Antioxidant System Activities in Different Fruit

Many of the flavonoids mentioned above have antioxidant properties. Due to the
lower redox potentials, flavonoids can reduce highly oxidizing free radicals. In addition,
flavonoids can form complexes with free radicals involved in oxidative processes and
stabilize them [3]. To investigate the antioxidant ability of the fruits, we chose nine fruits
that were rich in flavonoids, including pear, red bayberry, grape, blueberry, apple, mandarin
litchi, banana and pitaya, then detected the scavenging rate of hydroxyl radicals, and
the antioxidative enzyme activity of catalase (CAT), superoxide dismutase (SOD) and
peroxidase (POD). The hydroxyl radical is the most powerful but short-lived reactive
oxygen species in plants. Though it can also function as a signal molecule, its destructive
effect is unable to be ignored [34]. So, the redundant hydroxyl radical should be effectively
scavenged. We detected the hydroxyl radical removal ability of these nine fruits, and
the results showed that the extracts of mandarin, red bayberry and banana exhibited
the highest scavenging rate (Figure 5A). SOD and CAT are two enzymes that degrade
superoxide anion (O2

•−) and hydrogen peroxide (H2O2), respectively. The superoxide
anion can be dismutated to hydrogen peroxide and O2 by SOD, and hydrogen peroxide can
be scavenged by CAT [35]. In these nine fruits, the extract of litchi showed the highest CAT
and SOD activity (Figure 5B,C). Peroxidase is a superfamily of enzymes which can reduce
peroxide through substrate oxidation, and thus protect plant from oxidative stress [36].
Like the results of CAT and SOD activity, litchi had the highest POD activity among these
nine fruits (Figure 5D).
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4. Discussion

Although fruit is not a substitute for medicine, the range of contained flavonoids
still has the potential to promote human health. Furthermore, fruit can also be used as a
biological source of industrially extracted compounds. By metabolome analysis of fruits, it
is possible to understand which metabolites are enriched in which fruits. This will provide a
reference for extracting and purifying compounds that are difficult to synthesize artificially.
In addition, metabolome analysis can also identify potential allergens or compounds that
are harmful to humans. By modifying the metabolic pathway genes in fruit, safer and
tastier fruits could be created. In this study, we divided the fruits into climacteric and non-
climacteric, and tried to explore whether the ripening process can affect the components of
the flavonoids. However, our PCA analysis showed that both ripening processes showed
no significant difference in the components of the flavonoids. The ripening mode of the
fruit is mainly regulated by plant hormones, while flavonoids help plants adapt to the
environment and regulate their physiological state, and this may have limited influence on
the ripening process.

In the antioxidant ability experiment, litchi showed the highest activity of CAT, SOD
and POD. We listed the top 40 flavonoids with the highest content in litchi, which belong to
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anthocyanins, flavonols, flavones, isoflavones, proanthocyanidins, flavonoid carbonoside
and chalcones (Table S1). Although there was no direct evidence that they affect the
activity of CAT, SOD and POD enzymes in litchi, their biological functions and potential
applications are still worth exploring. A study has shown that in addition to flavonoids,
litchi is also rich in phenolic acids, which may also be one of the reasons for its high
antioxidant activity [37].

Flavonoids belong to phenolics, and they are not the only metabolites with antiox-
idant abilities. Other phenolics, carotenoids and polyphenolics are all reported to have
a significant role in plant antioxidant responses [38,39]. Therefore, the type and content
of fruit flavonoids play an important role but it cannot be directly used to measure their
antioxidant capacity. Besides antioxidants, flavonoids also have many beneficial effects
in regulating physiological indicators and assisting in disease treatment. The discovery
of the fruit flavonoidome can provide a reference for future research in these aspects. For
plants, the synthesis of flavonoids ensures that they grow better and protect themselves
from invasion. Thus, scientists can modify the flavonoids synthesis pathway to breed more
disease-resistant and storage-resistant fruits.

Though flavonoids have lots of benefit for human health, a relative low bioaccessibility
limits the body’s absorption of flavonoids from food. Therefore, the health-promoting ef-
fects of flavonoids are not entirely utilized through digestion and absorption. The intestine
is the main organ of the human body that absorbs nutrition from food, and various gut
microbes in the intestine directly or indirectly participate in the digestion and absorption
of nutrients, playing an important role in health. Changes in diet and abuse of antibiotics
can alter the microbial composition and lead to different health outcomes. The flavonoids
in food are hydrolyzed and absorbed in the gut and are bound to glucuronate/sulfate
forms by phase II enzymes in epithelial cells and the liver. The gut microbes play an
important role in the metabolism of dietary flavonoids [40]. A study has shown that the
flavonoid quercetin can promote populations of Bifidobacterium, Bacteroides, Clostridia, and
Lactobacillus and significantly suppressed Enterococcus and Fusobacterium, thus promoting
gut homeostasis [41]. Catechins are one of the main antioxidant agents, and they are widely
distributed in many foods, especially green tea. The metabolism of catechins requires gut
microbes, which can biotransform catechins into phenylvalerolactones and phenylvaleric
acids [42]. On the other hand, catechins can inhibit the growth of Helicobacter pylori, Staphy-
lococcus aureus, Escherichia coli O157:H7, Salmonella typhimurium DT104 and Pseudomonas
aeruginosa [43]. These studies suggest that gut microbes can promote the metabolism of
flavonoids, and flavonoids can also regulate gut microbiota to influence health.

5. Conclusions

In this study, we analyzed the flavonoidome in 22 fruits. There were total 372 flavonoids
detected and divided into 12 groups (chalcones, flavanones, dihydroflavonol, anthocyanins,
flavones, flavonols, flavonoid carbonoside, flavanols, isoflavones, tannin, proanthocyani-
dins and other flavonoids). Flavones and flavonols were the two most abundant flavonoids
in all these 22 fruits; among them, pear and mandarin contained the most abundant
flavones, and pear and blueberry contained the most abundant flavonols. Furthermore, we
analyzed the content and benefits of some representative flavonols, chalcones, flavones,
flavanols, tannin and flavanones in the fruits to cite their health-promoting effects. Then,
we detected the antioxidant ability of some fruits and found that litchi had the highest
antioxidant activity. Thus, our flavonoidome database can provide a reference for fruit
genetic breeding and transformation, nutrition research and industrial development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antiox12091665/s1, Figure S1: Classification of flavonoids in
each fruit; Table S1: Top 40 flavonoids with the highest content in litchi.
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