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Abstract: Low molecular weight (LMW) thiols have many functions in bacteria and eukarya, ranging
from redox homeostasis to acting as cofactors in numerous reactions, including detoxification of
xenobiotic compounds. The LMW thiol, glutathione (GSH), is found in eukaryotes and many species
of bacteria. Analogues of GSH include the structurally different LMW thiols: bacillithiol, mycothiol,
ergothioneine, and coenzyme A. Many advances have been made in understanding the diverse and
multiple functions of GSH and GSH analogues in bacteria but much less is known about distribution
and functions of GSH and its analogues in archaea, which constitute the third domain of life, occupying
many niches, including those in extreme environments. Archaea are able to use many energy sources
and have many unique metabolic reactions and as a result are major contributors to geochemical
cycles. As LMW thiols are major players in cells, this review explores the distribution of thiols and
their biochemistry in archaea.

Keywords: archaea; low molecular weight thiols; glutathione; γ-glutamylcysteine; coenzyme A;
redox cycling

1. Introduction

Low molecular weight (LMW) thiols, a group of highly reactive compounds containing a sulfhydryl
(–SH) functional group, play critical roles within a cell [1]. Thiols can: (i) serve as a storage form for
cysteine, which can rapidly auto-oxidize in the presence of metals especially copper and iron [2,3],
(ii) directly donate electrons to oxidants becoming oxidized in the process, forming disulfides
(RS-SR) [4,5], (iii) conjugate xenobiotic agents making them more soluble [6], (iv) form complexes with
metal ions [7], and (v) act as cofactors to different enzymes, such as ribonucleotide reductases [8] and
methionine sulfoxide reductases [9]. Because of these roles, LMW thiols are considered ubiquitous
among living organisms.

Glutathione (GSH) is a tripeptide of γ-l-glutamyl-l-cysteinylglycine that represents the major
LMW thiol among eukaryotes, whereas prokaryotes more commonly synthesize alternative LMW
thiols even if GSH is present [1]. Ergothioneine (EGT) [10–12], trypanathione, bis-glutathione [13],
glutathione amide [14], γ-glutamylcysteine (γGC), mycothiol (MSH) [15,16], coenzyme A (CoA),
and bacilithiol (BSH) are some of the other LMW thiols (Figure 1). Interestingly, even in bacteria that
contain GSH, this LMW thiol can be acquired by pathways that differ from the canonical pathway in
which GSH is synthesized by the two ligases, γ-glutamate-cysteine ligase (γ-ECL) and glutathione
synthetase (GS). These alternative pathways of GSH acquisition include import [17,18] and the use of
a novel fusion protein, GshF, for the biosynthesis of GSH in bacteria that were once thought to lack
GSH [19]. The diversity in structure of LMW thiols is now being appreciated and their functions are
slowly being unraveled.
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Figure 1. The chemistry of low molecular weight (LMW) thiols and their distribution among
phylogenetic groups.

In recent years, much progress has been made in elucidating the structure and role of alternative
LMW thiols in bacteria. S-thiolation of proteins in organisms containing alternative LMW thiols has
been demonstrated [20]. However, the distribution, structure, and function of LMW thiols in archaea
is still not apparent. This review paper will provide an overview of LMW thiols in prokaryotes with
emphasis on the current state of knowledge regarding the distribution and biochemistry of these thiols
in archaea.
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2. Glutathione and γ-Glutamylcysteine

Life on earth started in a reducing environment but the introduction of oxygen demanded
an antioxidant network to cope with the oxidizing conditions. The dogma in the field has been that
the antioxidant network consisted of GSH, as this LMW thiol is common in eukaryotes [21] and
Gram-negative bacteria [16,22]. Thus, much attention has been devoted to finding this LMW thiol
in archaea. The majority of bacterial and archaeal phyla have anaerobic basal members with aerobic
members found only in derived positions. However, even in these anaerobic members, antioxidant
networks are needed (e.g., Bacteriodes) and may have co-evolved as the oxygen levels rose [23].

GSH is synthesized in two sequential enzymatic steps [24]. The gshA-encoded γGC synthetase
or ligase (GshA, EC 6.3.2.2; γ-ECL) ligates the amino group of cysteine to the γ-carboxyl group of
glutamate. In turn, the gshB-encoded glutathione synthetase (GshB, EC 6.3.2.3; GS) condenses the
resulting γGC with glycine to generate GSH. A bifunctional GshF (GshAB) also exists that catalyzes
both steps of GSH synthesis; the encoding gene appears to have spread by horizontal transfer in
bacterial symbionts or pathogens, since most of the bacteria containing gshF gene homologs are found
in domestic animals or humans [25]. Modifications of GSH exist as exemplified by the glutathione
amide present in the purple green Chromatium [14,26], and ovothiol [27], and trypanothione [28] found
mainly in unicellular eukaryotic parasites.

The first comprehensive report of a LMW thiol and its function in archaea was of γGC in the
halophilic archaeon (haloarchaeon) Halobacterium salinarum (Halobacterium halobium R1) by Newton and
Javor in 1985 [29]. Other haloarchaea (i.e., Haloarcula californiae, Haloarcula (Halobacterium) marismortui,
Halobacterium saccharovorum, Haloferax (Halobacterium) volcanii, and Halococcus sp. LS-1) were also found
to contain γGC [29]. Haloarchaea live in high salt environments, greater than 3M NaCl, and possess
cytoplasms with ionic strengths similar or exceeding those of their environment [30]. Sundquist
and Fahey (1989) [31] demonstrated that the auto-oxidation of γGC in the presence of copper was
substantially lower in high salt buffer than low salt buffer and that γGC was more stable in the high
salt buffer than GSH was in the low salt buffer. Further analysis revealed the cytosolic concentration
of γGC was 4 mM, 50 fold higher than the oxidized γGC (i.e., bis-γGC) in haloarchaea such as
H. salinarum (halobium) [31]. While the gene was not identified in this early work, Sundquist and Fahey
provided evidence in H. salinarum for a γGC reductase (GCR) that was distinct from dihydrolipoamide
dehydrogenase (DHD), the E3 component that oxidizes the thiol groups of dihydrolipoamide (Lip-(SH)2)
to lipoamide (Lip-(S)2) in α-keto acid dehydrogenase complexes [31,32]. Kim and Copley (2013) [33]
further expressed an H. salinarum (sp. NRC-1) gene annotated as mercuric reductase (MerA) in
Escherichia coli and demonstrated that the enzyme had robust NADPH-dependent GCR activity but
no mercuric reductase activity [33]. The genomes of most, but not all, haloarchaea for which whole
genome sequences are available have homologues that are at least 50% identical to GCR (UniRef 50 of
UniProt Q9HSN0). These homologs, while uncharacterized, are often annotated as DHDs. However,
haloarchaea use ferredoxin-dependent oxidoreductases to oxidize α-keto acids such as pyruvate and
α-ketoglutarate, and, thus, these E3 homologs may not be needed for central metabolism [34,35] and
instead may code for GCRs. Malki et al. (2009) [36] further showed that H. volcanii gshA (HVO_1668)
is able to synthesize γGC in vivo. This haloarchaeal gshA gene can also restore synthesis of GSH
in an E. coli gshA mutant despite only 15% sequence identity [36]. The phylogenetic analysis of the
H. volcanii GshA demonstrated that it clusters with at least 10 other haloarchaeal GshA homologs at
64–75% identity [36]. Thus, GshA and GCR are likely used to synthesize γGC and reduce the oxidized
form of this LMW thiol in haloarchaea, respectively.

Genome mining suggests that, in addition to haloarchaea, other archaea may synthesize γGC
and/or GSH. In the early survey of LMW thiols in archaea, Newton and Javor (1985) reported that
Sulfolobus acidocaldarius and five unidentified methanogens did not contain GSH or γGC [29]. However,
a putative GshA (Msp_0528) from the methanogen Methanosphaera stadtmanae, was identified to form
a distinct cluster that was related to haloarchaeal GshA, standalone γ-ECLs, and the N-terminal
γ-ECL domain of bifunctional GshFs [36]. This GshA homolog is conserved in other Methanosphaera
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species and has over 50% sequence identity to homologs of Methanobrevibacter species including
Methanobrevibacter ruminantium M1, which is responsible for the ruminant methane in ruminants
worldwide [37]. While these latter ORFs are sometimes annotated as bifunctional GshFs, only the
N-terminal γ-ECL domain is conserved suggesting γGC ligase, but not GS activity.

The InterPro database has two family classifications for GshA homologs, IPR006334 and IPR006336,
which account for 676 total hits in archaea (Figure 2; Supplemental Table S1). Phylogenetic analysis
by Copley and Dhillon (2002) indicates that GshA sequences fall into three groups including those
primarily from: (i) γ-proteobacteria, (ii) non-plant eukaryotes, and (iii) α-proteobacteria and plants,
with the latter including sequences from haloarchaea [38]. From this early analysis, γ-ECL genes
were suggested to have originated in cyanobacteria then to have undergone horizontal gene transfer
(HGT) to other bacteria, eukaryotes, and at least some archaea [38]. Of the archaeal hits to the GshA
InterPro families, most (496/676; 73%) are classified to the haloarchaea (Halobacteria class). The other
hits are dispersed among other Euryarchaeota (methanogens, Archaeoglobi, and Thermoplasmata) and
representatives of the Asgard, DPANN and TACK superphyla (Figure 2). While no archaeal hits
for GshB (IPR037013) or GshF (GshAB) (IPR006335) are apparent, some H2-oxidizing methanogens
(Methanobacterium sp.) have standalone GshB-like proteins related to the C-terminal ATP-grasp-like
domain (IPR040657) of the GshAB fusion GshF. In genome synteny with these GshB-like ORFs are
genes encoding GshA-like proteins related to the N-terminal domain of GshF (GshAB) suggesting
certain methanogens may synthesize GSH.
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Figure 2. Archaeal protein homologs associated with thiol chemistry and their phylogenetic distribution.
Left: Phylogenetic relationship of archaea based on Castelle et al. [39]. Phyla that cluster to DPANN
indicated by black vertical bar. Right: Classification of archaeal homologs based on InterPro families
and BlastP (See Supplemental Table S1 for details). Green boxes, archaeal groups with homologs.
Grey boxes, Mamarchaeota genome unavailable for analysis.

3. Protein Disulfide Relay Systems

Small protein-based dithiols can serve directly or indirectly in disulfide relays as reductants for
enzymatic reactions as well as for the repair or regulation of proteins that undergo oxidation [40].
Examples include the reduction of disulfide bonds created on enzymes as part of the formation of
deoxyribonucleotides for DNA synthesis by reducing ribonucleotide reductase [8], the generation of
reduced sulfur via 3’-phosphoadenylylsulfate [41], the reduction of methionine sulfoxide (an oxidized
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form of methionine) in the repair or regulation of oxidized proteins [9], the detoxification of H2O2 [42]
and other activities of the cell. Most notable among the protein-based dithiol reductants are the
thioredoxins (TRXs) and glutaredoxins (GRXs) that use active site cysteine residues in a CXXC
motif. These cysteine residues are oxidized to form a disulfide bond upon transfer of the reductant
to the substrate or enzyme and require regeneration by reduction for future reactions to proceed
(Figure 3) [43,44]. For GRXs, the disulfide bond formed in the active site after reductant transfer can be
reduced by LMW thiols, which in turn are oxidized. For example two GSHs can reduce the GRX disulfide
resulting in GSH oxidation to GSSG, which is reduced by GSH reductase (EC 1.8.1.7), using reducing
equivalents from NADPH [45]. By contrast to GRXs, TRXs are reduced enzymatically by TRX reductases
which can be classified by active site and electron donor. Included in this classification are the:
(i) NTRs, NAD(P)H-dependent TRX reductase flavoproteins (contain FAD coenzyme; EC 1.8.1.9) [46],
with some also able to use hydrogen (H2) [47], (ii) DFTRs, deazaflavin (F420)-dependent TRX reductase
flavoproteins [48], (iii) FFTRs, ferredoxin (Fd)-dependent TRX reductase flavoproteins of certain
bacteria [49], and iv) FTRs/FDRs, Fd: TRX reductases and Fd: disulfide reductases that use an
active-site [4Fe–4S] cluster [50] (Figure 3). The F420 cofactor used by the DFTRs is distinct from FAD
and is common to methanogenic archaea (Figure 4).

Thiol transferase systems that use protein dithiol reductants and TRX reductases are reported
in archaea, with some of the archaeal TRXs characterized so far having TRX activity but an apparent
GRX-like structure. NTRs that bind FAD and reduce TRXs using NAD(P)H are observed in the
hyperthermophilic crenarchaeota Saccharolobus (Sulfolobus) solfataricus [51,52] and Aeropyrum pernix
K1 [53]. NTRs are also reported in hyperthermophilic euryarchaeota, such as Pyrococcus horikoshii [54]
and Thermococcus onnurineus, with the latter incorporating a TRX reductase that can also directly use
H2 as reductant [47]. A GRX-like protein from P. horikoshii has demonstrated TRX activity but no GRX
activity, meaning that it requires a TRX reductase for reactivation [54]. Likewise, a GRX-like protein
disulfide oxidoreductase (PDO), is described in S. solfataricus to accept reductant from NTR and transfer
this to enzymatic reactions in the cell [52,55]. Most methanogens have multiple TRX homologues
with distinct functions [56]. One exception is Methanopyrus kandleri of the order Methanopyrales,
which has a complete genome sequence and no predicted TRX homolog [57]. Constant with this TRX
distribution in methanogens, NTR and FDR enzymes are observed in Methanosarcina acetivorans [50,56].
Likewise, an FFTR was identified in the hyperthermophilic methanogen Methanocaldococcus jannaschii,
that can reduce TRXs [48] as well as a protein similar in structure to GRX that acts like a TRX [58].
Methanobacterium thermoautotrophicum, a methanogen that grows optimally at ~65 ◦C, contains
a GRX-like protein [59]. GSH, TRX or the two thiols identified in extracts of M. thermoautotrophicum,
hydrogen sulfide and 2-mercaptoethanesulfonate (coenzyme M, CoM), were not able to serve as
reductants but dihydrolipoate could in a GRX-like activity assay that monitored the reduction of
insulin disulfide [59]. In addition, a GRX-like protein in M. acetivorans, was named methanoredoxin
(MRX) [60] because it used CoM-SH as reductant in the insulin disulfide reductase assay. CoM along
with coenzyme B (CoB) are thiol-based coenzymes that form a heterodisulfide (CoM-S-S-CoB) during
methanogenesis [61]. Consistent with the possibility that CoM-SH could serve as a GRX-like reductant,
a CoM disulfide reductase is described in M. thermoautotrophicum that regenerates CoM-S-S-CoM to
CoM-SH [62]. In γGC containing haloarchaea, thioltransferase activity is observed and suggested to be
used to reduce disulfides which are part of an enzymatic cycle [63]; alternatively, in the absence of
a LMW thiol, TRX could perform the functions attributed to the GRX-like activity [64]. InterPro search
for GRX-like homologs in archaea yielded 2892 hits, while the TRX-like fold yielded another 2775 hits
(Table S1) with many of these proteins having the conserved CXXC motif suggesting thiol-disulfide
oxidoreductase activity is common in archaea.
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Figure 3. Protein disulfide relay systems. TRX, thioredoxin; GRX-like, glutaredoxin-like;
MRX, methanoredoxin (GRX-like); and PDO, protein disulfide oxidoreducatase (GRX-like);
NTR, NADPH-dependent TRX reductase; DFTR, deazaflavin (F420)-dependent flavin containing
TRX reductase; FFTR, ferredoxin-dependent flavin TRX reductase; FTR, ferredoxin: TRX reductase
that uses an active site [4Fe-4S] cluster; FDR, ferredoxin: disulfide reductase enzymes that uses an
active-site [4Fe–4S] cluster; CoMR, coenzyme M disulfide reductase; CoM-SH and CoM-S-S-CoM,
reduced and oxidized forms of coenzyme M; GCR, bisγGC reductase; *, non-enzymatic reduction,
?, not demonstrated. Routes for protein thiol reductant (which may be general or specific): (1) catalytic
reactions such as catalyzed by Prx, thiol-dependent preoxiredoxins; (2) direct protein reduction; and
(3) indirect protein reduction such as methionine sulfoxide reductase (Msr) catalyzed reduction of
methionine sulfoxide (MetO) residues on oxidized proteins; ROOH, alkyl hydroperoxide; ROH, alcohol;
ROS, reactive oxygen species or other oxidant.
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4. Thiol-Dependent Peroxidases

One of the critical functions of LMW thiols is the reduction of oxidants. In eukaryotes,
GSH peroxidases, GPX(s), are able to detoxify organic hydroperoxides, such as lipid peroxides [65].
The general absence of polyunsaturated fatty acids in archaea and bacteria suggests that GSH-dependent
thiol peroxidases evolved in eukaryotes in response to the need to protect against polyunsaturated
fatty acid oxidation. Assays for GSH and γGC-dependent enzymes demonstrated an absence of
peroxidase activity in bacteria and haloarchaea [63]. E. coli BtuE is the only bacterial enzyme sharing
homology with the GPX family that has been shown to have GSH dependent peroxidase activity with
H2O2; however, BtuE is able to use thioredoxin (TRX, see below) to reduce organic peroxides and
prefers TRX over GSH for the reduction of H2O2 [66]. In addition, γGC could serve as a cofactor for
human GPx1-mediated H2O2 reduction with similar efficiency as GSH only at low concentrations of
the thiols [67]. InterPro (IPR000889) search of GSH peroxidases yielded 102 archaeal hits (Figure 2)
suggesting that either a GSH or γGC dependent peroxidase may exist in archaea. Peroxiredoxins
(Prxs), thiol-dependent peroxidases that scavenge peroxides, have been identified in archaea [68–75].
In particular, the S. solfataricus Prx is shown to use a thiol relay system in which the GRX-like PDO
accepts reductant from NTR to reactivate the Prx in its catalytic cycle [68–76].

5. Protein S-Thiolation/Dethiolation in Protection and Signaling

A major role for GRXs and GRX analogues is the S-thiolation/dethiolation of proteins [77,78].
S-thiolation is the formation of a mixed disulfide of cysteine with a LMW thiol, such as GSH
(S-glutathionylation), BSH (S-bacillithiolation), or MSH (S-mycothiolation). S-thiolation has emerged
as a major post-translational modification (PTM) of protein cysteines. This PTM protects protein
cysteines against permanent damage during oxidative stress when the reactive oxygen species oxidize
the thiols (R-SH) to reversible sulfenic acid (R–SOH) and further to irreversible sulfinic (R–SO2H) and
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sulfonic (R-SO3H) acid. The irreversible oxidation of –SH causes damage to protein function and
LMW thiols like GSH prevent this by reacting with protein disulfides or the sulfenic acid arising from
oxidative stress to form mixed disulfides. S-thiolation/dethiolation with its fast turnover rate can
also act as a redox signal to turn on and off transcription of genes (see Section 3). Once the oxidative
stress is removed, either GSH or other LMW thiol or GRXs and their LMW analogues catalyze the
reduction of the mixed disulfide and remove the LMW thiol to restore the protein cysteine. S-thiolation
has not been reported in archaea. However, since all aerobic organisms encounter oxidative stress,
S-thiolation/dethiolation is expected to occur in archaea.

6. Thiol-Dependent Glyoxalases

An important function of LMW thiols that may predate protection against oxidative stress is the
detoxification of xenobiotics and endogenously produced electrophiles. The LMW thiol nucleophilic
attack on electrophiles can be performed chemically or catalyzed by enzymes. GSH and presumably
other thiols react with aldehydes spontaneously to form a hemithioacetal adduct between GSH and
2-oxoaldehydes formed during carbon metabolism [45]. For example, during glycolysis glucose is split
into 3-C triosephosphates, glyceraldehyde phosphate and dihydoxyacetone phosphate, which can
isomerize to form methylglyoxal, an aldehyde of pyruvate (2-oxoaldehyde) that is a strong electrophile
and thus cytotoxic. Methylglyoxal synthase further catalyzes the production of methylglyoxal from
dihydroxyacetone phosphate. Methylglyoxal reacts with GSH to form S-lactoylglutathione, a reaction
catalyzed by glyoxalase I (glyoxylase I). Glyoxalase II (glyoxylase II) hydrolyses S-lactoylglutathione
to d-lactate and GSH.

While archaea use alternative pathways for central metabolism (e.g., methanogenesis, modified
Entner-Doudoroff or modified Emden-Meyerhof-Parnas) [79,80], these microbes produce methylglyoxal
and likely use LMW thiols to remove this intermediate based on the following evidence. Glyoxalase
I/II (EC 4.4.1.5/EC 3.1.2.6) homologs are relatively common among archaea and most haloarchaea
harbor methylglyoxal synthase (EC 4.2.3.3) homologs. Even, the methanogen M. jannaschii that does
not harbor a methylglyoxal synthase homolog is still found to produce methylglyoxal through an
alternative route as a biosynthetic intermediate of 6-deoxy-5-ketofructose-1-phosphate, a precursor
of aromatic amino acids [81]. Oren and Gurevich [82] examined eight species of Halobacteriaceae for
the presence of methylglyoxal synthase and glyoxalase activity. Glyoxalase activity was detected in
all eight species while methylglyoxal synthase activity was detected in six out of the eight species.
Haloferax volcanii extracts showed optimal glyoxalase activity at pH 7 in the presence of 3 M KCl and
GSH or γGC [82] revealing that LMW thiols could be used to remove cytotoxic electrophiles produced
during metabolism.

7. GSH Dependent Formaldehyde Dehydrogenases

Another well-known reactive aldehyde, formaldehyde, is also endogenously produced as a result
of catabolism of methionine, methanol, and glyoxalate, or the oxidative demethylation of DNA
and RNA. Formaldehyde is toxic [83] and can react with GSH spontaneously or enzymatically
(in some eukaryotes and bacteria by S-(hydroxymethyl)glutathione synthase (EC 4.4.1.22)) to produce
S-hydroxymethylglutathione (S-HMGSH) [84,85]. S-HMGSH is less toxic than formaldehyde and is
recycled through oxidation by S-HMGSH dehydrogenase (EC 1.1.1.284) to generate S-formylglutathione
and NAD(P)H [86]. Based on KEGG classification to EC 1.1.1.284, this enzyme appears common to
eukaryotes and bacteria but rare in archaea. S-formylglutathione hydrolases (FGSH, EC 3.1.2.12)
subsequently hydrolyze the S-formylglutathione to GSH and formate. While diverse in primary
sequence, FGSHs have a canonical alpha/beta-hydrolase fold and serine hydrolase catalytic triad
as exemplified by E. coli FrmB and YeiG and yeast YJL068C (PDB: 1pv1) [87]. Based on InterPro
family IPR014186 classification, FGSHs appear more common in eukaryotes and bacteria than archaea,
with the 40 archaeal hits primarily from the Sulfolobaceae family (Figure 2). Thus, an alternative route is
likely used to mediate formaldehyde detoxification in archaea.
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8. Glutathione S-Transferases

A superfamily of enzymes, glutathione S-transferases (GST), are involved in detoxification
and metabolism of endogenous compounds and defense against oxidative stress [88–90]. This GST
superfamily consists of numerous enzyme classes with different types of reactions, such as nucleophilic
aromatic substitution, nucleophilic addition and substitution, conjugate addition, epoxide ring
opening, thiolysis, isomerization, and hydrolytic dehydrogenation. GSTs can also act as disulfide bond
reductases, dehydroascorbate reductases, peroxidases, thiocyanate reductases, reductive dehalogenases,
and alkylarsenate reductases. Moreover, GSTs can be involved in deglutathionylation of protein
cysteines. GSTs are not closely related in sequence similarity but share a structural similarity,
with a TRX-like N-terminal domain, which binds GSH and a C-terminal domain, which binds the
substrate. Mashiyama and colleagues [91] constructed a network based on structural and sequence
similarity from 13,000 cytoplasmic GST sequences, including archaeal sequences [91]. Sixteen proteins
from the haloarchaea (Halobacteria class) fell into the subgroup Xi.1, which consists of GSTs with
S-glutathionyl-p-hydroquinone reductase activity [91]. Interestingly, these enzymes can catalyze
GSH-dependent thioltransferase reactions and deglutathionylation reactions along with reduction of
GS-hydroquinones to hydroquinones [92]. An InterPro search also yielded 381 archaeal homologs
that clustered to the GST-Omega family, IPR016639, which contains glutathionyl-p-hydroquinone
reductase (Figure 2). Oztetik and Cakir (2013) [93] demonstrated that Haloarcula hispanica contained
both GSH and had GST activity with 1-chloro-2,4-dinitrobenzene (CDNB), a classic GST substrate.
Analysis of the H. hispanica genome reveals the presence of gshA, at least three GSTs, and GRX
homologs. No GshB is apparent. As the GSH concentration was determined using Ellman’s reagent
((5,5′-dithiobis-(2-nitrobenzoic acid) or DTNB)), which would oxidize all –SH groups, including
that of γGC, it is likely that the LMW thiol that was measured was γGC and not GSH. Recently,
the purification, crystallization, and structure determination of NmGHR, a GST of the Xi class from
the extreme haloalkaliphilic archaeon Natrialba magadii ATCC 43099 was reported [94]. NmGHR
activity was examined using γGC and GSH as co-substrates with: (i) benzoquinone as a substrate for
glutathionyl-p-hydroquinone reductase activity, (ii) CDNB and ethacrynic acid as substrates for GST
activity, and (iii) docosahexaenoic acid (DHA) and bis(2-hydroxyethyl) disulfide (HED) as substrates
for thioltransferase activity. No activity was detected for any of these substrates; whether this is due to
the method used to purify the enzyme (e.g., His tag, E. coli host) or the choice of substrates remains to
be determined [94].

9. GSH Metabolism

Gamma-glutamyltranspeptidases (GGTs; EC 2.3. 2.2) catalyze the transfer of γ-glutamyl functional
groups from GSH to an acceptor that may be an amino acid, a peptide or water (forming glutamate).
GGTs play a key role in degradation of GSH and 224 members of the GGT InterPro family (IPR000101)
classify to archaea. The S. solfataricus GGT homolog SSO_3216 increases in abundance following
oxidative challenge [95]. Heinemann et al. (2014) further reported that S. solfataricus GGT reacts with
GSH, although primarily in the oxidized form [95]. A closer look at the sample preparation indicated
that the S. solfataricus cells were lysed with a combination of freeze/thaw cycles, and protein samples
were prepared from the resulting cell suspension. For metabolite analysis, cell pellets were resuspended
in methanol, chloroform was added, and the samples were shaken for 2 h at 0 ◦C. In both cases,
the LMW thiol including protein cysteine and GSH are likely to oxidize. The low levels of GSH detected
could have also been contamination from the media since the media for growth, DSMZ, contains yeast
extract. Ignicoccus hospitalis gave similar results. Neither I. hospitalis nor S. solfataricus have homologs
that classify to GshA, GshB or GshAB (GshF) InterPro families, although S. solfataricus SSO_2815 has
low, but significant sequence similarity (43% similarity, 23% identity) with the M. stadtmanae GshA [95].
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10. Thiol/Disulfide Switches in Archaea

Disulfide bond formation between cysteine residues and reduction of the disulfide bond acting as
an on-off redox switch for transcriptional regulation is demonstrated in bacteria and eukaryotes [96,97].
In bacteria, the transcriptional regulator OxyR is involved in oxidative stress protection [98]. Oxidative
stress causes disulfide bonds to form in OxyR, which changes its oligomerization and binding
affinity [99]. Oxidized OxyR binds more readily to various promoters, and activates antioxidant
genes [99]. The disulfides in OxyR are preferentially reduced by GRX 1 in vivo although TRX is also
able to perform the same function in E. coli [100]. In OhrR, another transcriptional factor involved in
oxidative stress protection, a key cysteine residue becomes S-bacillithiolated upon oxidative stress [101],
i.e., the LMW thiol, BSH, forms a disulfide bond with the cysteine. The S-bacillithiolated OhrR repressor
is inactive, which leads to the induction of expression of the gene encoding OhrA, a peroxiredoxin that
can detoxify lipid peroxides [102]. The removal of the BSH is performed by bacilliredoxins, analogues
of GRXs [78]. A redox switch can also be a part of bacterial two component systems (TCS); for example,
the kinase RegB from Rhodobacter capsulatus is inactivated by disulfide bond formation under oxidizing
conditions [103].

In the archaeal order Thermococcales, the sulfur response regulator, SurR, has a thiol-disulfide
redox switch that allows Thermococcales such as Pyrococcus furiosus to change between two different
metabolic modes. P. furiosus produces hydrogen gas in the absence of elemental sulfur (S0) and H2S in
the presence of S0 [104,105]. SurR contains a CXXC motif that functions as a redox-active switch that
controls its DNA binding affinity [106]. Oxidation of cysteines with S0 inhibits DNA binding by SurR,
leading to deactivation of genes related to H2 production and derepression of genes involved in S0

metabolism [107]. The oxidation can be reversed by addition of excess dithiothreitol (DTT), a reducing
agent. Lim et al. (2017) demonstrated that the in vivo reductant is a protein disulfide oxidoreductase
in Thermococcus onnurineus NA1 [108]. Interestingly, two of the three TRXs that were tested did not
reduce SurR [108] suggesting protein substrate specificity within the TRX systems.

Another redox sensitive transcriptional regulator, MsvR, has been described in the strict
methanogenic anaerobes, Methanosarcina acetivorans and Methanothermobacter thermautotrophicus.
MsvR displays differential DNA binding under oxidizing and reducing conditions in both of these
archaea [109,110]. In M. acetivorans, treatment of MsvR with H2O2 results in oxidation of cysteine
thiols, preventing binding of MsvR to promoters. Incubation of oxidized MsvR with the M. acetivorans
TRX system, consisting of NADPH, TRX reductase and one of the 7 TRXs, leads to reduction of the
cysteines and binding to its own promoter [111].

Redox signaling also appears to occur through a thiol-dependent phosphorylation cascade in
methanogens. Feige and Frankenberg-Dinkel [112] find that RdmS, a tyrosine kinase with a heme
cofactor, undergoes redox-dependent autophosphorylation in M. acetivorans. The heme cofactor does
not affect RdmS autophosphorylation activity, and the autophosphorylation only occurs under oxidizing
conditions [112]. An intramolecular disulfide bond is present in RdmS under oxidizing conditions,
and incubation with DTT or CoM abrogates the autophosphorylation revealing the importance of
disulfide bond(s) in this mechanism. The authors proposed that either the TRX/TRX reductase system
or methanoredoxin may be the natural reductant for the disulfides.

11. Coenzyme A in Archaea

CoA has been suggested to be a major thiol in archaea, possibly due to the presence of
disulfide reductases (CoADR) that reduce oxidized CoA denoting the ability of these cells to
recycle CoA to its reduced form [113–115]. CoADR classify to the InterPro IPR017758 family and
include 60 hits to hyperthermophilic archaea of the orders Sulfolobales and Thermococcales (Figure 2).
In the hyperthermophilic archaea, Hummel et al. (2005) [116] measured CoA levels in units of µmol/g
dry weight at 1.54 in Thermococcus litoralis, 0.98 in P. furiosus, and 0.4 in S. solfataricus. In addition, these
authors reported that growth on sulfur increased the CoA levels in these organisms [116]. The CoADRs
from P. horikoshii and P. furiosus are able to use both NADPH and NADH as substrates, unlike the
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mesophilic bacterial CoADR of Staphylococcus aureus [117]. However, several questions remain as to
how CoA could assume the protective functions of a LMW thiol. CoA cannot be used as a storage form
of cysteine, since the Cys moiety is decarboxylated during CoA biosynthesis. Furthermore, while an
unusual NADPH-dependent disulfide reductase with a high affinity for CoA disulfide, which would
maintain CoA in a reduced condition, is present in S. aureus [113] and B. anthracis [118], it is absent
in other related species, such as B. subtilis. Finally, the pKa of the CoA thiol is very basic (pH = 10)
indicating that it is unable to participate in oxidation and reduction reactions. The arguments for CoA
serving as the major LMW thiol are: i) It is more resistant to auto-oxidation than cysteine and GSH and
ii) it is more stable than GSH in the presence of copper, even at high temperatures [113].

12. MSH in Archaea

In high GC actinobacteria, MSH is the major thiol. MSH has an acetylated cysteine
with the amino group forming an amide bond with glucosamine, which is linked to inositol
(Figure 1) [16,27,119,120]. MSH biosynthesis proceeds through a five-step pathway [119].
The initial substrates, 1L-myo-inositol-1-monophosphate and UDP-N-acetylglucosamine, react to
form N-acetylglucosaminylinositol phosphate; this reaction is catalyzed by the N-acetylglucosamine
transferase, MshA [121,122]. An unidentified phosphatase dephosphorylates this molecule
to yield N-acetylglucosaminylinositol, which is deacetylated by an MshB deacetylase [123].
The resulting glucosaminylinositol is ligated with L-cysteine in a reaction catalyzed by a ligase,
MshC (IPR017812) [124,125]. The cysteinylglucosaminylinositol is then acetylated to form MSH in a
reaction catalyzed by MshD acetyltransferase (IPR017813) [126]. Mca, mycothiol conjugate amidase
(IPR017811), catalyzes the cleavage of the amide bond between an electrophile and glucosamine
and, thus, plays a major role in MSH dependent detoxification and recycling of MSH [127,128].
Mtr, mycothione reductase (IPR017817), catalyzes the NADPH dependent reduction of oxidized
MSH [129]. InterPro analysis of these MSH-related gene homologs reveals only a single hit for MshD
(IPR017813) in uncultivated samples. MSH has also not been detected in archaea. This absence of MSH
and absence of gene homologs involved in MSH metabolism indicates clearly that MSH is not present
in archaea thus far sequenced.

13. BSH in Archaea

In low GC Gram positive bacteria, such as the Firmicutes, BSH (Figure 1) is the major LMW thiol.
BSH is structurally similar to MSH in that it contains the core cysteinylglucosamine moiety [130].
However, BSH does not contain the N-acetyl residue at the cysteine and the cysteinylglucosamine
is linked to l-malate instead of the inositol. Because BSH shares the common cysteinylglucosamine
moiety as MSH, the BSH biosynthesis pathway shares a common biosynthetic process to MSH. The first
enzymatic reaction was identified as consisting of the joining of UDP-N-acetylglucosamine to l-malate
catalyzed by a glycosyltransferase (BshA) to yield N-acetylglucosaminylmalate (GlcNAcMal) [131].
Next, a deacetylase (BshB) deacetylates GlcNAc-Mal to yield glucosaminylmalate (GlcN-Mal) [132].
The third enzymatic reaction was proposed to involve the ligation of l-cysteine to GlcNAc-Mal to form
BSH, a reaction catalyzed by a BSH synthetase (BshC) [133,134]. InterPro search of BshA (IPR023881)
and BshC (IPR011199) homologs in archaea resulted in 39 hits for each enzyme, with the majority of
hits clustering to the Asgard (an archaeal superphylum with close ties to the last common eukaryotic
ancestor [135]). A search for the recently identified BSH disulfide reductase, Ypd, resulted in only two
gene homologs in archaea (IPR023856) [136,137]. BSH has not been detected in archaea but Asgard
archaea have only recently been cultivated [138], and the presence of BshA and BshC homologs
suggests that archaea may be capable of synthesizing BSH.

14. Aerobic and Anaerobic Biosynthesis of EGT in Archaea

Another LMW thiol that is common in bacteria is EGT (Figure 1). EGT is a thiourea derivative of
histidine, containing a sulfur atom on the imidazole ring, that exists as a thione under physiological
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conditions [139]. Synthesis of EGT was first elucidated in mycobacteria where the biosynthetic genes
are present in a five gene cluster (egtABCDE) [11]. First, similar to GSH synthesis, synthesis of γGC
is catalyzed by EgtA. Hercynine is formed by the methylation of l-histidine, a reaction catalyzed by
a methyltransferase (EgtD). EgtB then catalyzes the addition of γGC to hercynine to form hercynal
γGC sulfoxide. Glutamate is removed by a glutamine amidotransferase (EgtC) to form hercynlcysteine
sulfoxide. Finally, a pyridoxal 5-phosphate-dependent β-lyase (EgtE) converts hercynlcysteine to EGT.
Phylogenetic studies of fungal and bacterial species reveal that synthesis of EGT might not require all
five steps. For example, cyanobacteria produce high levels of ergothioneine without orthologs to egtC,
or egtE [140]. In fact, a survey of over 2,500 bacteria showed that the five gene cluster was specific to
Actinobacteria and only EgtB and EgtD are the key enzymes for EGT synthesis. The functions of EgtA,
EgtC, and EgtE are potentially performed by other unknown enzymes or are not needed since the
source of sulfur differs from γGC to cysteine [141]. EgtB (IPR017806) and EgtD (IPR035094) homologs
are present in archaea (104 for EgtB and 118 for EgtD) suggesting that EGT may be synthesized in some
archaeal species.

Recently, Seebeck and colleagues reported the anaerobic synthesis of EGT [142,143]. The green
sulfur bacterium Chlorobium limicola encodes a sulfur transferase EanB (Clim_1149, PDB: 6H9A) that
converts trimethylhistidine into EGT using oxygen-independent chemistry. The rhodanese-like enzyme
transfers sulfur to a non-activated carbon of the trimethylhistidine [143]. The EanA methyltransferase
(Clim_1148) converts histidine to trimethylhistidine to initiate this pathway. In archaea, homologs
of EanA and EanB are present particularly in anaerobic methanogens. Methanococcoides vulcani
SAMN04488587_0183 contains an EanA like domain and SAMN04488587_0184 contains a rhodanese
domain reminiscent of a sulfur transferase EanB; thus, genome synteny providing further support
for this relationship to EGT biosynthesis. The presence of the EGT biosynthesis genes (aerobic and
anaerobic) suggests that EGT may play a role in archaea even though this LMW thiol has not been
detected in archaea.

15. Conclusions and Future Directions

Herein, we show that: (i) γGC is likely the major thiol in haloarchaea and is likely present in
methanogens, (ii) CoA is the major thiol in hyperthermophiles, (iii) BSH may be present in archaea due
to the presence of BSH biosynthesis genes, and (iv) similarly, EGT may also be present in archaea as
both aerobic- and anaerobic-type EGT biosynthesis genes are detected among the archaeal genomic
sequences. In addition, novel thiols with unique structures and functions are likely to also be present in
archaea. These LMW thiols may not be easily discovered by interrogating just genomic sequences but
will require purification and structural characterization of the compound. A better understanding of
the structure and function of LMW thiols in archaea will open up novel biochemistries which explain
how archaea are able to adapt to extreme environments.
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Abbreviations

LMW, low molecular weight; γGC, γ-glutamylcysteine; MSH, mycothiol; CoA, coenzyme A; BSH,
bacilithiol; EGT, ergothioneine; GSH, glutathione or γ-l-glutamyl-l-cysteinylglycine; GCR, γ-glutamylcysteine
reductase; γ-ECL, γ-glutamate-cysteine ligase or synthetase; GS, glutathione synthetase; GshF or GshAB,
γ-glutamate-cysteine ligase/glutathione synthetase fusion protein; DHD, dihydrolipoamide dehydrogenase;
GGT, gamma-glutamyltranspeptidase; GST, glutathione S-transferase; GPX, glutathione peroxidase;
CDNB, 1-chloro-2,4-dinitrobenzene; DTT, dithiothreitol; PTM, posttranslational modification; S-HMGSH,
S-(hydroxymethyl)glutathione; FGSH, formylglutathione hydrolase; NAD(P)H, nicotinamide adenine dinucleotide
(phosphate) hydrogen; CoM, coenzyme M or 2-sulfanylethanesulfonate; CoMS-SCoM, coenzyme M disulfide;
CoB, coenzyme B or 7-mercaptoheptanoylthreoninephosphate; FAD, flavin adenine dinucleotide; coenzyme F420,
8-hydroxy-5-deazaflavin; UDP, uridine diphosphate; GRX, glutaredoxin; TRX, thioredoxin; MRX, methanoredoxin;
PDO, protein disulfide oxidoreducatase.
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