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Abstract: Cyprinid herpesvirus 2 (CyHV-2) is a pathogen that causes significant losses to the global
aquaculture industry due to mass mortality in crucian carp and goldfish. This study demonstrates
that the ORF55/ORF57 deletion mutants CyHV-2-∆55-CP and CyHV-2-∆57-CP obtained through
homologous recombination replicate effectively within the caudal fin of Carassius auratus gibelio (GiCF)
cells and exhibit morphologies similar to the CyHV-2 wild-type strain. Both mutants demonstrated
a decrease in virulence, with CyHV-2-∆57-CP exhibiting a more significant reduction. This serves
as a reference for the subsequent development of recombinant attenuated vaccines against CyHV-2.
Additionally, both mutants expressed the inserted RGNNV-CP (capsid protein of Redspotted grouper
nervous necrosis virus) fusion protein gene, and inoculation with CyHV-2-∆57-CP-infected GiCF cell
lysates elicited an antibody response in the grouper. These results indicate that, while ORF55 and
ORF57 genes of CyHV-2 are not required for viral replication in vitro, they do play a role in virulence
in vivo. Additionally, expression of foreign protein in CyHV-2 suggests that the fully attenuated
mutant of CyHV-2 could potentially function as a viral vector for developing subunit vaccines or
multivalent recombinant attenuated vaccines.

Keywords: CyHV-2; RGNNV; virulence; homologous recombination; viral vector

1. Introduction

Cyprinid herpesvirus 2 (CyHV-2), also referred to as Cyvirus cyprinidallo 2 and herpesvi-
ral hematopoietic necrosis virus (HVHNV), is a virus with an icosahedral capsid containing
a dsDNA genome and is surrounded by a lipid envelope containing viral glycoproteins.
CyHV-2 causes acute mass mortality (up to 100%) in populations of crucian carp (Carassius
auratus) and its variants such as goldfish (C. auratus L.) and gibel carp (C. auratus gibelio),
resulting in significant economic losses in the aquaculture industry [1]. For environmen-
tally friendly aquaculture, vaccination strategies have demonstrated high effectiveness
and cost-effectiveness in protecting fish against various viruses [2]. Previous studies have
reported the development of vaccines for CyHV-2 in various forms, including conven-
tional live attenuated [3,4], inactivated [5–8], DNA [9,10], subunit [11], and live vector
vaccines [12–17]. However, currently, there is no commercially available licensed vaccine
against CyHV-2. Additionally, immersion and oral vaccines are better suited for large-scale
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operations in fish farms when immunizing relatively affordable juvenile carp and gold-
fish [18]. Live attenuated vaccines, on the other hand, tend to be highly immunogenic and
closely resemble natural pathogen infections due to their ability to replicate within the
host and stimulate robust cellular responses related to both innate and adaptive immune
systems [19]. Hence, attenuated live vaccines can elicit long-lasting immunity within the
host through oral or immersion routes. However, a major concern with conventional live
attenuated vaccines is the risk of reversion to virulence [20]. Recombinant attenuated
vaccines, involving the deletion of virulence-related genes, are a type of live vaccine that
cannot be easily reversed under natural conditions. Furthermore, recombinant attenuated
vaccines represent a crucial avenue for the advancement of aquaculture vaccines, given
their high stability, potent immunogenicity, and guaranteed safety [21]. To date, no studies
have reported the creation of recombinant attenuated vaccines against CyHV-2.

CyHV-2 is a member of the genus Cyvirus in the family Alloherpesviridae, to which
Cyvirus cyprinidallo 1 (Cyprinid herpesvirus 1, CyHV-1; carp pox virus), Cyvirus cyprinidallo 3
(Cyprinid herpesvirus 3, CyHV-3; koi herpesvirus, KHV), and Cyvirus anguillidallo 1 (Anguillid
herpesvirus 1, AngHV-1) also belong [22]. Phylogenetically, all three strains of cyprinid
herpesviruses (CyHVs) are closely related, with CyHV-2 and CyHV-3 being slightly more
closely related to one another than to CyHV-1 [23]. In 2018, a patent was granted in the
United States for a recombinant attenuated CyHV-3 vaccine with mutations in ORF56 and
ORF57 genes [21]. This vaccine has demonstrated exceptional immunoprotective potential
against CyHV-3 in both common carp and koi [24]. Indeed, subsequent research has
identified the ORF57 gene as the essential virulence factor in the double deletion of ORF56
and ORF57 genes [25]. However, the function of the ORF57 protein in CyHV-2 and CyHV-3
remains to be determined. The identification of ORF57 protein as a critical virulence factor
of CyHV-3 has provided a crucial target for further development of recombinant attenuated
vaccines against CyHV-2 [26]. Additionally, homology analysis and RNA interference
(RNAi) experiments were performed to investigate the ORF57 and thymidine kinase (TK)
genes of CyHVs [27]. The findings suggest that the ORF57 and TK genes are conserved in
CyHVs and may have an impact on the virulence of CyHV-2. Furthermore, the TK gene
was revealed to be unnecessary for replication in vitro but pertinent to virulence in vivo as
shown in numerous herpesviruses including CyHV-3 [28–31]. Therefore, this study selected
the ORF55 (TK) and ORF57 genes as targets for constructing CyHV-2 recombinant mutants.

The Redspotted grouper nervous necrosis virus (RGNNV) is a non-enveloped, small
icosahedral virus (25–30 nm) whose genome contains two positive-sense, single-stranded
RNA molecules: RNA1 and RNA2 [32]. RGNNV belongs to the genus Betanodavirus in
the family Nodaviridae, along with Barfin flounder nervous necrosis virus (BFNNV), Striped
jack nervous necrosis virus (SJNNV), and Tiger puffer nervous necrosis virus (TPNNV) [22].
Viral nervous necrosis (VNN) disease caused by Betanodavirus, also known as viral en-
cephalopathy and retinopathy (VER), and viral encephalopathy, is a highly destructive
disease that negatively impacts at least 57 species of marine fish and 13 species of fresh-
water fish (including goldfish) worldwide, resulting in financial losses to the aquaculture
industry [33]. The only structural protein of Betanodavirus, capsid protein (CP), encoded by
RNA2, is a promising candidate for future vaccine development because of its ability to
elicit effective immune responses [33]. A recently reported, recombinant bivalent live viral
vectored vaccine candidate expresses the major protective antigen domain of NNV-CP in
attenuated Viral hemorrhagic septicemia virus (VHSV) and has been shown to protect against
lethal VHSV and NNV challenge [34].

Viral vector vaccines, derived from non-pathogenic virions whose genomes have
been modified by inserting one or more genes encoding for the heterologous antigens,
can express several heterologous antigens to elicit strong immune responses and increase
cellular immunity in hosts [35]. These types of vaccines have been widely utilized in both
human and veterinary medicine [36,37]. Among these, herpesviruses have become signifi-
cant vectors because of their ability to carry large exogenous genes, infect only a limited
range of hosts, express envelope glycoproteins on, and elicit both cellular and humoral im-
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mune responses [36,38]. However, only a handful of viruses, including baculovirus [14,15],
adenovirus [39,40], Semliki Forest virus (SFV) [41], Salmon pancreas disease virus (Salmonid al-
phavirus, SAV) [42,43], Viral hemorrhagic septicemia virus (VHSV) [34], Infectious hematopoietic
necrosis virus (IHNV) [44], and Ictalurid herpesvirus 1 (IcHV-1; channel catfish herpesvirus,
CCV) [45], have been utilized as viral vectors for the creation of aquaculture vaccines or
expression systems. In this study, we inserted the RGNNV-CP gene into the genome of
CyHV-2 and conducted an initial assessment of its potential as a viral vector for expressing
heterologous proteins.

2. Materials and Methods
2.1. Animals, Cells and Virus

Gibel carps (C. auratus gibelio) var. CAS V weighing 8 ± 2 g and 200 ± 20 g, gibel carps
(C. auratus gibelio) var. CAS III weighing 200 ± 20 g, Fang Zheng crucian carps (C. auratus
gibelio) weighing 200 ± 20 g, and white crucian carps (C. auratus cuvieri) weighing 200 ± 20 g
were obtained from a fishery located in the Nanhai District of Foshan, Guangdong Province,
China. Additionally, goldfish (C. auratus L.) weighing 8 ± 2 g (one year old) and 100 ± 10 g
(over two years old) were obtained from a fishery in Dianshan Lake Town, Kunshan, Jiangsu
Province, China. All of the fish mentioned above, confirmed as CyHV-2-negative through
PCR testing, were maintained in recirculating aquaculture systems at a temperature of
25 ◦C until the start of the experiments.

Orange-spotted groupers (Epinephelus coioides) weighing 200 ± 20 g were acquired
from a fishery in the Hailing District of Yangjiang, Guangdong Province, China. The
Groupers were confirmed to be NNV-negative by PCR testing and housed in a seawater
recirculating aquaculture system at a temperature of 28 ◦C until the experiments.

The C. auratus gibelio caudal fin (GiCF) cell line, established and maintained in our
laboratory [46], was cultured in medium 199 (Gibco, Grand Island, NY, USA) supplemented
with 10% fetal bovine serum (Gibco, NY, USA) at 27 ◦C.

The CyHV-2 wild-type (WT) strain YC01 (Genebank: MN593216.1), isolated from
diseased gibel carp in our previous study [47], was propagated in GiCF cells (MOI = 1). The
infected GiCF cell lysate was harvested at 5 days after infection (dpi) and stored at −80 ◦C.

The virus-like particles of NNV (NNV VLP) were generously provided by Dr. Junfeng
Xie, State Key Laboratory of Biocontrol/School of Life Sciences, Sun Yat-sen University,
Guangzhou, Guangdong, China.

2.2. Construction of Transfer Vectors and Virus Recombinants

The pUC18 vector was employed for the construction of recombinant transfer vectors,
namely pUC18-∆55-CP and pUC18-∆57-CP. These vectors were designed to incorporate
the CMV promoter, the full-length RGNNV capsid protein gene (Genebank: AF534998.3),
puromycin resistance gene (Puror), enhanced green fluorescent protein (EGFP) gene, as
well as 1 kb upstream and downstream arms of the ORF55 or ORF57 gene. In brief,
the corresponding segments were initially obtained using the primers listed in Table 1
and KOD DNA Polymerase (TOYOBO, Osaka, Japan). Subsequently, the CP-Puro fusion
protein segment was generated through overlap extension PCR, along with the 55UD and
57UD segments which contain double restriction enzyme sites between the upstream and
downstream arms. Using the ClonExpress® II One Step Cloning Kit (Vazyme, Nanjing,
China), the CP-Puro fusion protein segment was ligated into the EcoRI/BamHI-digested
plasmid vector pEGFP-N3 to obtain pEGFP-N3-CP-Puror. Additionally, the 55UD and
57UD segments were separately ligated into the BamHI/EcoRI-digested plasmid vector
pUC-18, resulting in pUC-18-55UD and pUC-18-57UD. Finally, the NNV-CP fusion protein
expression cassette was obtained from pEGFP-N3-CP-Puror and subsequently ligated into
the KpnI/EcoRI-digested plasmid vectors pUC-18-55UD and the BamHI/EcoRI-digested
plasmid vectors pUC-18-57UD to obtain the recombinant transfer vectors, pUC18-∆55-CP
and pUC18-∆57-CP, respectively.
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Table 1. Primers used for constructing recombinant plasmids in this study.

Function Name Sequence (5′-3′)

For amplification of the NNV-CP gene segment
CP-F ATGGTACGCAAAGGTGAGAAGAAATTG
CP-R GTTTTCCGAGTCAACCCTAGTGC

For construction of the NNV-CP gene segment
with overlapping sequence termini (lowercase)

CP-EcoRI-F gatctcgagctcaagcttcgaattcATGGTACGCAAAGGTGAGAAGAAATTG
CP-Overlap-R gtgggcttgtactcggtcatGTTTTCCGAGTCAACCCTAGTGC

For amplification of the Puror gene segment
Puro-F ATGACCGAGTACAAGCCCACG
Puro-R GGCACCGGGCTTGCG

For construction of the Puror gene segment with
overlapping sequence termini (lowercase)

Puro-Overlap-F ctagggttgactcggaaaacATGACCGAGTACAAGCCCACG

Puro-BamHI-R tgctcaccatggtggcgatggatctGGCACCGGGCTTGCG

For amplification of the NNV-CP fusion protein
expression cassette

CP-box-F CGTTACATAACTTACGGTAAATGGCCC
CP-box-R TTACTTGTACAGCTCGTCCATGCC

For construction of the NNV-CP fusion protein
expression cassette with overlapping sequence
termini (lowercase)

∆55-CP-KpnI-F ctgacaatcgttacacggacggtacCGTTACATAACTTACGGTAAATGGCCC
∆55-CP-EcoRI-R ctctgagggttcgggagtgaagaattTTACTTGTACAGCTCGTCCATGCC

∆57-CP-BamHI-F tgacatcatgagcgggggatccCGTTACATAACTTACGGTAAATGGCCC
∆57-CP-EcoRI-R ctttgggtttagcgccgaattcTTACTTGTACAGCTCGTCCATGCC

For amplification of the ORF55 upstream arm
∆55-U-F GGGTATGTTATCCTTGTTGATGGCG
∆55-U-R GTCCGTGTAACGATTGTCAGCAG

For construction of the ORF55 upstream arm
with overlapping sequence termini (lowercase)

∆55-U-BamHI-F gcctgcaggtcgactctagaggatcGGGTATGTTATCCTTGTTGATGGCG
∆55-U-Overlap-R cgggagtgaagaattcgacatctatggtaccGTCCGTGTAACGATTGTCAGCAG

For amplification of the ORF55 downstream arm
(lowercase)

∆55-D-F TTCACTCCCGAACCCTCAGAGG
∆55-D-R CGACTGGTTCATATCCAACAGAGAAGT

For construction of the ORF55 downstream arm
with overlapping sequence termini (lowercase)

∆55-D-Overlap-F ttacacggacggtaccatagatgtcgaattcTTCACTCCCGAACCCTCAGAGG
∆55-D-EcoRI-R aacagctatgaccatgattacgaattgCGACTGGTTCATATCCAACAGAGAAGT

For amplification of the ORF57 upstream arm
∆57-U--F AGCTTGTTTCTGAAACCAGAGATGC
∆57-U-R CCCGCTCATGATGTCACACTTG

For construction of the ORF57 upstream arm
with overlapping sequence termini (lowercase)

∆57-U-BamHI-F gcctgcaggtcgactctagaggatcAGCTTGTTTCTGAAACCAGAGATGC
∆57-U-Overlap-R tgggtttagcgccgaattcgacatctatggatccCCCGCTCATGATGTCACACTTG

For amplification of the ORF57 downstream arm
∆57-D-F GGCGCTAAACCCAAAGCTC
∆57-D-R AGCAAGCTGCGCTCTGG

For construction of the ORF57 downstream arm
with overlapping sequence termini (lowercase)

∆57-D-Overlap-F atcatgagcgggggatccatagatgtcgaattcGGCGCTAAACCCAAAGCTC
∆57-D-EcoRI-R acagctatgaccatgattacgaattAGCAAGCTGCGCTCTGG

GiCF cells were individually transfected with the recombinant transfer vectors pUC18-
∆55-CP and pUC18-∆57-CP using the EZ 3000 Plus transfection reagent (ELGBIO, Guangzhou,
China) and maintained in 10% FBS medium 199 at 27 ◦C for 24 h. Subsequently, GiCF cells
were infected with the CyHV-2-WT strain (MOI = 1) and kept in 2% FBS medium 199 at
27 ◦C, to generate the CyHV-2 recombinant mutants by homologous recombination.

Two rounds of puromycin selection (Sigma-Aldrich, St. Louis, MO, USA) were per-
formed using a final concentration of 1 µg/mL to enrich the CyHV-2 recombinant mutants
by eliminating CyHV-2-WT-infected cells lacking puromycin resistance. Subsequently,
recombinant mutants CyHV-2-∆55-CP and CyHV-2-∆57-CP were purified to homogeneity
by multiple rounds of fluorescent plaque purification. In brief, green fluorescent cell foci
were picked by aspiration, and subsequently used for infecting new cells through the
limited dilution method, repeating this process iteratively to obtain homogeneous recombi-
nant strains. The purity of obtained CyHV-2 recombinant mutants was confirmed via the
nested-PCR amplification technique along with sequencing analysis.

2.3. DNA Extraction and Sequence Analysis

Genomic DNA was extracted using the FastPure Cell/Tissue DNA Isolation Mini Kit
(Vazyme, Nanjing, China). Whole-genomic sequences of CyHV-2-WT, CyHV-2-55-CP, and
CyHV-2-57-CP strains were sequenced utilizing the Illumina NovaSeq PE150 platform
provided by Beijing Novogene Bioinformatics Technology Co., Ltd. (Beijing, China). Trinity
software (version 2.14.0) was used to assemble whole-genomic sequences against reference
sequence YC01 (GenBank: MN593216.1) if CyHV-2 wild-type strain, and unmapped reads
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were retrieved employing Bowtie2 tool (version 2.4.5). Using the assembled sequence
of CyHV-2-WT as the reference, the final assembly results were aligned by DNAMAN
(version 9.0.1) and SnapGene (version 2.3.2) software.

2.4. Western Blotting Analysis

The expression of the NNV-CP fusion protein derived from the CyHV-2 recombinant
mutants within GiCF cells was assessed using Western blotting (WB). Briefly, GiCF cells
were collected at 48 h post-infection with CyHV-2-WT, CyHV-2-∆55-CP, or CyHV-2-∆57-CP
(MOI = 1) and lysed using IP lysis buffer (Pierce, Rockford, IL, USA). Total proteins in the
lysates were separated by SDS polyacrylamide gel electrophoresis, transferred to PVDF
(polyvinylidene fluoride) membranes (Merck, Boston, MA, USA), and blocked with 5%
fat-free milk in PBS-T (0.05% Tween 20). The membranes were then incubated with primary
antibody (1:2000 dilution), including rabbit anti-NNV VLP polyclonal antibody (provided
by Dr. Junfeng Xie) or mouse anti-GFP monoclonal antibody (Abmart, Shanghai, China).
After washing the membranes with PBS-T at room temperature, secondary antibodies
(1:5000 dilution), HRP-conjugated goat anti-rabbit or anti-mouse IgG (Promega, Madison,
WI, USA), were added. The reactive bands were visualized using Tanon High-sig ECL
Western Blotting Substrate (Tanon, Shanghai, China).

2.5. Indirect Immunofluorescence Analysis

GiCF cells infected with CyHV-2-WT, CyHV-2-∆55-CP, or CyHV-2-∆57-CP (MOI = 1)
were incubated at 27 ◦C for 48 h. Subsequently, infected cells were fixed with 4% paraformalde-
hyde for 15 min and permeabilized with 0.5% Triton X-100 for 20 min followed by blocking
with 10% goat serum for 30 min. Incubation with rabbit anti-NNV VLP polyclonal an-
tibody as the primary antibody (1:1000 dilution) and Alexa Fluor 555-conjugated (red
fluorescence) goat anti-rabbit IgG (Abcam, Cambridge, UK) as the secondary antibody
(1:1000 dilution) was performed. Finally, cell nuclei were stained using DAPI (Abcam,
Cambridge, UK). The cell samples were observed under a TCS SP8 confocal microscope
(Leica, Wetzlar, Germany).

2.6. Virus Purification and Transmission Electron Microscope (TEM)

The infected GiCF cell lysates were prepared as described in Section 2.1, followed
by three freeze–thaw cycles. Cell debris was removed by centrifugation at 5000× g for
30 min at 4 ◦C, and the supernatants were further centrifuged at 80,000× g for 2 h at 4 ◦C
to pellet virus. The viral pellets were then resuspended in sterile phosphate-buffered saline
(PBS, pH 7.4) after being washed with PBS. Subsequently, the resulting suspensions were
subjected to centrifugation through discontinuous sucrose gradients (20%, 30%, 40%, 50%,
and 66%) at 150,000× g for 1 h at 4 ◦C. Finally, the viral bands were carefully extracted
and pelleted by centrifugation in sterile PBS at 150,000× g for 2 h at 4 ◦C. To observe the
basic morphological structure of viral particles, the purified viruses were resuspended in
PBS and examined using TEM (JEOL JEM-1400 electron microscope, Tokyo, Japan) after
negative staining with 3% phosphotungstic acid (pH 7.2–7.4).

To observe the intracellular structure of viral particles, GiCF cells were infected with
CyHV-2-WT, CyHV-2-∆55-CP, or CyHV-2-∆57-CP (MOI = 1), and infected cells collected at
2 dpi underwent TEM assay following staining with uranyl acetate–lead citrate.

2.7. TCID50 Assay

The TCID50 assay was performed to determine the viral replication kinetics in GiCF
cells. GiCF cells were infected with CyHV-2-WT, CyHV-2-∆55-CP, or CyHV-2-∆57-CP
(MOI = 1) and incubated at 27 ◦C. The virus-infected cells were collected daily from day one
to seven post-infection and lysed by two freeze–thaw cycles. Subsequently, the viral titers
of the lysates were analyzed using TCID50 assays based on the Reed–Muench method [48].
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2.8. In Vivo Virulence Assay

Due to the partial attenuation after serial passages in cell cultures, it is necessary to
screen suitable susceptible hosts for CyHV-2-WT. Twenty individuals of each commonly
cultured crucian carp variety, including gibel carp var. CAS V (8 ± 2 and 200 ± 20 g), gibel
carp var. CAS III (200 ± 20 g), Fang Zheng crucian carp (200 ± 20 g), white crucian carp
(200 ± 20 g), and goldfish (8 ± 2 and 100 ± 10 g), were separately challenged using both
intraperitoneal injection (at a dose of 106 TCID50) and immersion (in water with a final
virus concentration of 103 TCID50/mL for 2 h or 2 days) methods. Subsequently, the fish
were maintained in recirculating aquaculture systems at a temperature of 25 ◦C. To activate
latent CyHV-2 infection, temperature stress was applied from the 14th day post-infection
by gradually reducing the water temperature from 25 ◦C to 15 ◦C at a rate of 1 ◦C per day
followed by an equal rate of temperature increase back to 25 ◦C. The fish were observed
daily for 2 months and the survival rates were recorded for each group.

The virulence assays for CyHV-2-∆55-CP and CyHV-2-∆57-CP strains were conducted
on goldfish weighing 8 ± 2 g. Goldfish were divided into three groups with 40 fish per
group, which were immersed in continuously aerated water with final virus concentrations
of 102 TCID50/mL, 103 TCID50/mL, and 104 TCID50/mL, respectively, for 2 days, ensuring
comprehensive exposure to the virus. Moreover, the same volume of M199 was used as in
the negative control group. Subsequently, the goldfish were maintained in recirculating
aquaculture systems at a constant temperature of 25 ◦C throughout the entire assay period.
Goldfish symptoms and survival rates within each group were monitored daily while PCR
verification was performed on three randomly selected dead goldfish from each group. In
each CyHV-2 strain, these assays were repeated three times.

To assess the in vivo replication capabilities of CyHV-2-∆55-CP and CyHV-2-∆57-CP,
gibel carps (var. CAS V) weighing 200 ± 20 g were randomly divided into three groups
with 70 fish per group and subsequently infected with CyHV-2-WT, CyHV-2-∆55-CP and
CyHV-2-∆57-CP via intraperitoneal injection at a dose of 4 × 106 TCID50, respectively.
The water temperature was maintained at 25 ◦C throughout the entire experiment. At
24 h post-infection and every 2 days thereafter, liver, spleen, and kidney samples were
collected from nine randomly selected fish in each group. Tissues from every three fish
were homogenized to generate one sample for viral titer determination using qPCR.

2.9. Absolute Quantitative PCR (qPCR)

Viral replication in gibel carps was evaluated by selecting the ORF72 gene encoding the
major capsid protein of CyHV-2. The copy number of the ORF72 gene was quantified using
a quantitative Real-Time PCR assay with primers 72qF (5′-GCGGATACGTTGGACGATCT-
3′) and 72qR (5′-CTCGGCTCTGATGGTGTTGT-3′). A standard curve generated through
gradient dilution of plasmid pGEX-4T-3-ORF72 was used for normalization purposes.
Absolute qPCR was performed using Polarsignal qPCR mix (MIKX, Shenzhen, China)
in the Roche LightCycler 480 system (Roche Diagnostics, Basel, Switzerland) under the
following conditions: 94 ◦C for 20 s, followed by 40 cycles consisting of 94 ◦C for 10 s, 56 ◦C
for 10 s and 72 ◦C for 10 s. Three independent biological replicates were conducted for each
CyHV-2 strain, and three technical replicates were conducted for each qPCR assay.

2.10. NNV-Specific IgM Determined via ELISA

There was a more significant decrease in virulence observed in CyHV-2-∆57-CP, which
was selected for the preliminary assessment of its ability to induce antibody response in
groupers. Orange-spotted groupers weighing 200 ± 20 g were intraperitoneally injected with
200 µL of infected GiCF cell lysates (109 copies/mL) of CyHV-2-WT, CyHV-2-∆57-CP, and
0.1% formalin-inactivated GiCF cell lysates of CyHV-2-∆57-CP, respectively. Serum samples
(n = 6) were collected on the 21st day post-injection. The levels of anti-NNV antibodies in
sera were evaluated using indirect enzyme-linked immunosorbent assay (ELISA). ELISA
plates (Nunc Maxisorp, Fisher Scientific, MA, USA) were coated overnight at 4 ◦C with
NNV-VLP in coating buffer (100 mM bicarbonate/carbonate, pH 9.6), followed by blocking
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with 5% goat serum in PBST for one hour at room temperature. After the washing steps,
serum samples diluted at a ratio of 1:10 in PBST were added to the plate and incubated
for one hour at room temperature. Subsequently, the plate was incubated with mouse
anti-grouper IgM-specific monoclonal antibodies (1:5000 dilution) (provided by Prof. Hui
Gong, Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian,
China) for one hour at room temperature, which was detected by HRP-conjugated goat
anti-mouse IgG (1:5000 dilution) (Promega, WI, USA) following the same procedure. Finally,
the color reaction was developed by adding 100 µL per well of a single solution of 3,3′,5,5′-
tetramethylbenzidine (Tiangen, Beijing, China) for 20 min and stopped by adding 50 µL of
2 M sulfuric acid. Absorbance (optical density) was measured at a wavelength of 450 nm.

2.11. Statistics Analysis

Statistical analysis was carried out using GraphPad Prism 9.5.1. Two-way analysis of
variance (ANOVA) was employed to analyze viral replications both in vitro and in vivo.
Survival curves of goldfish infected with CyHV-2 were analyzed using the Kaplan–Meier
method. ELISA data were analyzed using one-way ANOVA. Results are presented as
mean ± standard error of the mean (SEM). Statistical significance was represented as
follows: significant differences (* p < 0.05), very significant differences (** p < 0.01), and
highly significant differences (*** p < 0.001).

3. Results
3.1. Construction of the CyHV-2 Recombinant Mutants

Recombinant transfer vectors pUC18-∆55-CP and pUC18-∆57-CP were constructed as
shown in Figure 1. GiCF cells were transfected with pUC18-∆55-CP and pUC18-∆57-CP,
respectively, and then infected with CyHV-2-WT for recombination. Plaques exhibiting
green fluorescence activity were selected after two rounds of puromycin selection to enrich
recombinant CyHV-2 mutants. These mutants were further purified through eighteen
rounds of fluorescent plaque purification (Figure 2a). After 1 and 10 passages (P21 and
P30) in GiCF cells, the absence of ORF55 and ORF57 genes was verified in recombinant
mutants CyHV-2-∆55-CP and CyHV-2-∆57-CP, respectively, using nested-PCR (Figure 2b).
Furthermore, the whole-genome sequencing confirmed that only the target gene (ORF55 or
ORF57) had been replaced by the NNV-CP fusion protein expression cassette (Figure 3).
These results indicate that CyHV-2 recombinant mutants CyHV-2-∆55-CP and CyHV-2-
∆57-CP have been successfully generated, and their purity meets the requirements for
subsequent experiments.
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Figure 1. Construction of CyHV-2-∆55-CP and CyHV-2-∆57-CP. The ORF55 or ORF57 of the CyHV-2
genome was replaced by homologous recombination with transfer vectors containing the CMV
promoter, NNV-CP gene, puromycin resistance gene, and EGFP gene.
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Figure 3. Resequencing of the whole genomes of the CyHV-2 recombinant mutants. (a) The dot
matrix alignment graph between CyHV-2-∆55-CP and CyHV-2-WT. (b) The dot matrix alignment
graph between CyHV-2-∆57-CP and CyHV-2-WT. (c) Resequencing of the whole genomes of the
CyHV-2 recombinant mutants. Multiple sequence alignment of CyHV-2-∆55-CP, CyHV-2-∆57-CP,
and CyHV-2-WT. The gaps indicated by the red arrows in the figure represent the replacement of
CyHV-2 ORF55 or ORF57 with the NNV-CP fusion protein expression cassette.
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3.2. Characteristics of the CyHV-2 Recombinant Mutants

To analyze the morphology of CyHV-2-∆55-CP and CyHV-2-∆57-CP virions, purified
virus particles were negatively stained with phosphotungstic acid before being observed
under TEM. Imaging examination revealed that both CyHV-2-∆55-CP and CyHV-2-∆57-CP
virions were enveloped, icosahedral particles, and closely resembled CyHV-2-WT virions
(Figure 4a). Transmission electron microscopy (TEM) observations of GiCF cells infected
with any one of these CyHV-2 strains revealed a similar and orderly arrangement of
numerous capsomers within the cell nucleus (Figure 4b). This suggests that the deletion of
either the ORF55 or ORF57 gene from CyHV-2 did not have any discernible influence on
viral morphology or structure. Additionally, the replication abilities of CyHV-2-∆55-CP
and CyHV-2-∆57-CP were evaluated in GiCF cells through in vitro experiments (Figure 4c).
Cells were infected with CyHV-2-∆55-CP, CyHV-2-∆57-CP, or CyHV-2-WT strains, and
viral titers were quantified at the designated time points post-infection. The replication
abilities of CyHV-2-∆55-CP, CyHV-2-∆57-CP, and CyHV-2-WT in GiCF cells were found to
be comparable, as depicted in Figure 4c (p > 0.05). Furthermore, all three variants reached
their peak titers at 5 dpi with measurements of 6.50, 6.23, and 6.41 TCID50/mL, respectively.
These results suggest that the replacement of the ORF55 or ORF57 gene with an NNV-CP
fusion protein expression cassette does not have any discernible impact on the replication
ability of CyHV-2 in GiCF cells.
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Figure 4. Characteristics of CyHV-2-∆55-CP and CyHV-2-∆57-CP. (a) Virion images photographed by
a transmission electron microscope. Purified recombinant and wild-type CyHV-2 virions treated by
negative staining methods. Scale bar = 100 nm. (b) Transmission electron micrograph of infected GiCF
cells. Red arrows indicate the arrangement of recombinant and wild-type CyHV-2 nucleocapsids
in the nucleus. Scale bar = 500 nm. (c) Replication kinetics of CyHV-2-∆55-CP and CyHV-2-∆57-CP
were evaluated in GiCF cells. At the indicated time points, cell samples were collected, and viral
titers were determined using TCID50 assays.
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3.3. The Expression of the NNV-CP Fusion Protein

The expression of the NNV-CP fusion protein by CyHV-2-∆55-CP and CyHV-2-∆57-CP
was evaluated in GiCF cells. At 2 dpi, Western blotting assays confirmed the presence of
the expected 86 kDa NNV-CP fusion protein in infected GiCF cell lysates of both CyHV-2
recombinant mutants (Figure 5a). Furthermore, indirect immunofluorescence assays con-
ducted on fixed cells at 2 dpi revealed co-localization between enhanced green fluorescent
protein (EGFP) and the rabbit polyclonal antibody against NNV VLP, confirming expression
of the NNV-CP fusion protein within GiCF cells. Fluorescence signals were observed in
both the cytoplasm and the nucleus (Figure 5b), suggesting that the NNV-CP fusion protein
still maintains the nuclear localization function of NNV-CP [49].
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Figure 5. Validation of the NNV-CP fusion protein expression in CyHV-2-∆55-CP and CyHV-2-∆57-CP
by Western blotting (a) and indirect immunofluorescence assay (b). (a) At 48 h post-infection, the
NNV-CP fusion protein was detected with the rabbit polyclonal antibody against NNV VLP and the
mouse monoclonal antibody against GFP, respectively. (b) At 48 h post-infection, the NNV-CP fusion
protein was detected using the rabbit polyclonal antibody against NNV VLP, followed by Alexa Fluor
555-conjugated goat anti-rabbit IgG (red). Cell nuclei were stained using DAPI (blue). Scale bar = 10 µm.

3.4. Virulence Attenuation in the CyHV-2 Recombinant Mutants

To identify suitable animal models for further experiments, a challenge experiment
using CyHV-2-WT was conducted on various common crucian carp varieties as shown
in Table 2. Results showed that only juvenile goldfish weighing 8 ± 2 g (one year old)
exhibited mortality, possibly due to other varieties’ stronger disease resistance resulting
from selective breeding. A recent study indicates that, although CyHV-2 showed a higher
susceptibility in adult goldfish, it was more permissive to replication in larvae, resulting in
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rapid systemic infection and high mortality in juvenile goldfish [50]. Moreover, prolonged
immersion in virus-contaminated water is more likely to induce acute mortality in goldfish.
Therefore, challenge experiments were performed using juvenile goldfish to evaluate the
virulence of CyHV-2-∆55-CP and CyHV-2-∆57-CP (Figure 6). Fish infected with either
mutant or wild-type strain displayed typical clinical symptoms such as hemorrhaging,
anorexia, lethargy, and bottom-dwelling behavior. The mean survival rates for each group
are presented in Table 3.

Table 2. Survival rates of common cultured crucian carp varieties challenged by CyHV-2-WT.

Varieties Weight (g)
Survival Rates (%)

Intraperitoneal Injection Immersion for 2 h Immersion for 2 Days

Gibel carp var. CAS V
(C. auratus gibelio)

8 ± 2 100 100 100
200 ± 20 100 100 100

Gibel carp var. CAS III
(C. auratus gibelio) 200 ± 20 100 100 100

Fang Zheng crucian
carp

(C. auratus gibelio)
200 ± 20 100 100 100

White crucian carps
(C. auratus cuvieri) 200 ± 20 100 100 100

Goldfish
(C. auratus L.)

8 ± 2 90 100 30
100 ± 10 100 100 100
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TCID50/mL, and 104 TCID50/mL, respectively. The nine panels at left show the survival curves ob-
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and *** p < 0.001. 

Figure 6. The virulence of recombinant and wild-type CyHV-2 strains in goldfish. On day 0,
goldfish were infected for 2 days by immersion in water with virus concentrations of 102 TCID50/mL,
103 TCID50/mL, and 104 TCID50/mL, respectively. The nine panels at left show the survival curves
observed for three replicates. The three overlay panels at right show the cumulative survival curves
based on the three replicates. Statistical significance was represented as follows: * p < 0.05, ** p < 0.01,
and *** p < 0.001.
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Table 3. Mean survival rates of goldfish challenged by recombinant or wild-type CyHV-2 strains.

Virus Concentration
Mean Survival Rates (%)

CyHV-2-WT CyHV-2-∆55-CP CyHV-2-∆57-CP

102 TCID50/mL 89.17 93.33 92.5

103 TCID50/mL 36.67 55 72.5

104 TCID50/mL 29.17 37.5 47.5

In the challenge experiment with a virus concentration of 102 TCID50/mL, all CyHV-2
strains only induced mortality in a few weak individuals without any significant statistical
differences observed among the groups (p > 0.05). However, in the challenge experiment
with a virus concentration of 103 TCID50/mL, compared to the CyHV-2-WT-challenged
group, both the CyHV-2-∆55-CP- and CyHV-2-∆57-CP-challenged groups showed higher
survival rates with significant (* p < 0.05) and highly significant (*** p < 0.001) differ-
ences, respectively. Moreover, in the challenge experiment with a virus concentration of
104 TCID50/mL, only the CyHV-2-∆57-CP-challenged group demonstrated a very signifi-
cant difference in survival rate compared to the CyHV-2-WT-challenged group (** p < 0.01).

Furthermore, in vivo replication capabilities of CyHV-2-∆55-CP and CyHV-2-∆57-CP
have been evaluated in gibel carps (var. CAS V). As shown in Figure 7, the copy numbers of
CyHV-2-WT in liver, spleen, and kidney reached their peak at 9 days post-infection, while
the CyHV-2 recombinant mutants, although exhibiting higher copies in some samples,
remained relatively stable overall and were gradually reduced. In the liver, compared to the
CyHV-2-WT-challenged group, only the copy numbers in the CyHV-2-∆57-CP-challenged
group showed significant (* p < 0.05) and very significant (** p < 0.01) differences at 9 and
11 days post-infection, respectively (Figure 7a). In the spleen, copy numbers of CyHV-2-∆55-
CP and CyHV-2-∆57-CP demonstrated very significant (** p < 0.01) and highly significant
(*** p < 0.001) differences at 13 dpi, respectively, compared with CyHV-2-WT (Figure 7b).
Similarly, in the kidney, copy numbers of CyHV-2-∆55-CP and CyHV-2-∆57-CP showed
significant (* p < 0.05) and very significant (** p < 0.01) differences at 9 dpi, respectively,
compared with CyHV-2-WT (Figure 7c).
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Figure 7. The replication of recombinant or wild-type CyHV-2 strains in gibel carp. On day 0, gibel
carps were infected by intraperitoneal injection at a viral dose of 4 × 106 TCID50. Liver (a), spleen
(b) and kidney (c) tissues were collected for absolute qPCR targeting CyHV-2 ORF72. Statistical
significance was represented as follows: * p < 0.05, ** p < 0.01, and *** p < 0.001.
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In conclusion, these results suggest that both CyHV-2-∆55-CP and CyHV-2-∆57-CP
showed partial attenuation of virulence which was more obvious in CyHV-2-∆57-CP.

3.5. Infected GiCF Cell Lysates of CyHV-2-∆57-CP Induced Antibody Response in Grouper

On the 21st day post-vaccination, blood samples were collected from six groupers
in each group for subsequent anti-NNV specific IgM level determination using indirect
ELISA assay. The results revealed that the presence of specific anti-NNV IgM antibodies in
the serum of groupers injected with either cell culture suspension of CyHV-2-∆57-CP or
0.1% formalin-inactivated suspension of CyHV-2-∆57-CP (Figure 8). Moreover, compared
to the control group injected with cell culture suspension of CyHV-2-WT, injection of cell
culture suspension of CyHV-2-∆57-CP significantly induced a production of specific anti-
NNV IgM antibodies with very significant differences (** p < 0.01), while injection of 0.1%
formalin-inactivated suspension of CyHV-2-∆57-CP only resulted in significant differences
(* p < 0.05). These results suggested that live CyHV-2-∆57-CP suspension may elicit higher
titers of anti-NNV IgM antibodies compared to formalin-inactivated suspension.
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4. Discussion

The global crucian carp and goldfish industries have suffered significant economic
losses due to the epidemic of herpesviral hematopoietic necrosis (HVHN) disease [1].
Therefore, there is an urgent need for an effective vaccine that allows mass immunization of
cost-effective juveniles, such as crucian carp fry. Attenuated vaccines have shown the most
promising overall performance for CyHV-3 vaccines so far [26]. Identifying key virulence
genes that are non-essential for in vitro amplification is crucial for developing recombinant
attenuated vaccines. In this study, we constructed two CyHV-2 recombinant mutants,
namely CyHV-2-∆55-CP and CyHV-2-∆57-CP, and evaluated their morphology, replication
capability, pathogenicity, and ability to express heterologous proteins.

In the Alloherpesviridae family, several gene-deleted strains have been reported; how-
ever, current research mainly focuses on CCV and CyHV-3. In 1995, Zhang et al. reported a
TK-deleted recombinant CCV strain that exhibited unaltered replicative capacity in chan-
nel catfish ovary (CCO) cells but showed significantly reduced virulence while inducing
immune protection against CCV [28]. The infection kinetics of this TK-deleted CCV were
similar to those of the wild-type CCV; however, the infection duration was shorter and
shedding ability weaker [51]. Another study by Kunec et al. demonstrated that ORF12
gene deletion does affect in vitro replication of CCV [52], although its in vivo virulence
was not determined. Vanderheijden et al., on the other hand, reported an attenuated CCV
strain V60 with a large deletion observed in ORF50 gene (which may encode a secreted gly-
coprotein) [53], although it was not conclusively proven whether attenuation of virulence
directly resulted from ORF50 segment deletion.

In CyHV-3, the TK gene initially garnered attention. Costes et al. generated ORF16
(putative G protein-coupled receptor)-deleted and ORF55 (TK)-excised CyHV-3 mutants;



Vaccines 2023, 12, 43 14 of 18

however, only the ORF55-excised mutant exhibited partially attenuated virulence [54].
Fuchs et al. constructed a series of CyHV-3 recombinant mutants with deletions in ORF55,
ORF123 (deoxyuridine triphosphate pyrophosphatase), ORF141 (large subunit of ribonu-
cleotide reductase), and both ORF55 and ORF123 genes [29]. The results indicated that all
mutants can replicate in vitro, with only the ORF141-deleted CyHV-3 mutant showing re-
duced replication capability in vitro, while single-gene deletions of either ORF55 or ORF123
resulted in partial attenuation of CyHV-3 virulence [29]. Subsequent studies have revealed
that double deletions of both ORF55 and ORF123 genes significantly attenuate virulence
and induce significant immune protection in CyHV-3, making them a potential candidate
for a recombinant attenuated vaccine [30,55]. Vancsok et al. created gene deletion mutants
for 16 predicted virion transmembrane proteins (VTPs) in CyHV-3, including ORFs 25,
32, 59, 64, 65, 81, 83, 99, 106, 108, 115, 131, 132, 136, 148, and 149 [56]. However, only the
deletion of the ORF25 gene resulted in substantial attenuation but showed poor immune
protection [57]. In another study, the extent of virulence attenuation in the double-gene
deletion mutants of ORF148 and ORF149 remains insufficient to meet the requirements
for recombinant attenuated vaccine candidates [57]. Although deleting members of the
glycoprotein family may lead to virulence attenuation, their suitability as vaccine candi-
dates is limited due to potential effects on immunogenicity and relatively high sensitivity
to mutations in paralogous genes. A recent study has demonstrated that the deletion of the
ORF150 gene lead to significant virulence attenuation and effective immune protection in
CyHv-3 mutants [58]. However, this vaccine candidate still requires extensive field trials to
assess its effectiveness in real aquaculture environments. As previously mentioned in the
introduction, ORF57 has been identified as a dispensable key virulence gene in CyHV-3
and it is conserved within the CyHVs [25,27]. Furthermore, the safety and efficacy of
ORF57-deleted CyHV-3 mutants as candidates for recombinant attenuated vaccines have
also been validated [24,25,56].

In our study, there was no significant alterations in the morphology and in vitro repli-
cation capabilities of CyHV-2-∆55-CP and CyHV-2-∆57-CP, indicating that both ORF55 and
ORF57 genes are dispensable in CyHV-2. In the in vivo virulence assay, partial attenuation
of virulence was observed for both CyHV-2-∆55-CP and CyHV-2-∆57-CP, with a more
pronounced reduction seen for CyHV-2-∆57-CP. Although the function of orthologues of
pORF57 in genus Cyvirus remains unknown, previous research has demonstrated their
abundant presence in viral particles for both orthologues in CyHV-3 [59] and AngHV-1 [60],
while pORF57 has been identified as a major immunogenic protein in CyHV-2 [61]. The
deletion of the TK gene primarily affects viral replication in non-replicating cells lacking
cellular TK [26]. However, this negative impact on TK-deleted viruses can be partially offset
by a higher proportion of dividing cells found in juvenile fish [26]. This may contribute
to the incomplete virulence attenuation of TK-deleted viruses. It should be noted that
the potential impact of NNV-CP fusion protein on the replication capabilities of CyHV-2
remains unknown, but research has shown that the precursor protein α of RGNNV-CP can
induce apoptosis in host cells [62]. Overall, although neither CyHV-2 mutants CyHV-2-
∆55-CP and CyHV-2-∆57-CP achieved sufficient levels of virulence attenuation to meet the
requirements for recombinant attenuated vaccine candidates, ORF55 and ORF57 genes still
serve as reference targets for constructing multi-gene-deleted CyHV-2 mutants.

Furthermore, capsid protein (CP) is known as the sole structural protein of NNV
and has been extensively studied for vaccine development through recombinant expres-
sion using various vectors and systems, such as bacteria [63], yeast [64], insect cells [65],
avian cells [66], and plant cells [67]. In our study using CyHV-2 as viral vector, successful
expression of the NNV-CP fusion protein was achieved in GiCF cells. Some NNV-CP
fusion proteins can self-assemble into VLPs, with foreign proteins fused at their C-terminal
displayed on their surface [68]. However, in this study, the assembly of NNV VLPs within
GiCF cells was difficult due to strong interference caused by C-terminus fusion with large
protein [68]. In some studies, NNV-CP fusion proteins without a VLP formation have also
demonstrated strong immunogenicity and provided effective protection for grouper [63,69].
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Groupers that received intraperitoneal injections of GiCF cell lysates containing live or inac-
tivated CyHV-2-∆57-CP also produced specific anti-NNV IgM antibodies. However, further
research is needed to determine its capacity for inducing effective immune protection and
the ability of CyHV-2 recombinant mutants to replicate in unnatural hosts. In summary,
this study demonstrates that CyHV-2 has the ability to express foreign proteins, which elicit
the production of specific IgM antibodies in vaccinated fish, suggesting its potential as a
viral vector. This provides insights into the development of replicative vaccines expressing
foreign proteins within hosts and expression systems for foreign proteins in sensitive cell
lines. For instance, by replacing the key virulence gene with the glycoprotein gene of SVCV
(spring viremia of carp virus, Sprivivirus cyprinus), it would be possible to construct bivalent
recombinant attenuated vaccine candidates against the two main viruses affecting crucian
carp: CyHV-2 and SVCV.

5. Conclusions

In conclusion, we successfully generated two CyHV-2 recombinant mutants, namely
CyHV-2-∆55-CP and CyHV-2-∆57-CP, by inserting the NNV-CP fusion protein expression
cassette while deleting the ORF55 or ORF57 gene. Although dispensable for viral repli-
cation in vitro, both ORF55 and ORF57 genes of CyHV-2 contribute to virulence in vivo.
Additionally, our findings demonstrate that CyHV-2 can effectively express foreign proteins
capable of inducing an antibody response in vaccinated fish. These preliminary research
results highlight the potential of fully attenuated CyHV-2 as a viral vector for developing
subunit vaccines or multivalent recombinant attenuated vaccines.
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