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Abstract: Coronaviruses (CoVs) are a large class of positively stranded RNA viruses that pose a
significant threat to public health, livestock farming, and wild animals. These viruses have the ability
to cross species barriers and cause devastating epidemics. Animals are considered to be intermediate
hosts for many coronaviruses, and many animal coronaviruses also have the potential for cross-species
transmission to humans. Therefore, controlling the epidemic transmission of animal coronaviruses is
of great importance to human health. Vaccination programs have proven to be effective in controlling
coronaviruses infections, offering a cost-effective approach to reducing morbidity and mortality,
so the re-emergence of lethal coronaviruses emphasizes the urgent need for the development of
effective vaccines. In this regard, we explore the progress in animal coronavirus vaccine development,
covering the latest taxonomy of the main animal coronaviruses, spillover events, diverse vaccine
development platforms, potential main targets for animal coronavirus vaccine development, and
primary challenges facing animal coronavirus vaccines. We emphasize the urgent need to create a
“dual-effect” vaccine capable of eliciting both cellular and humoral immune responses. The goal
is to highlight the contributions of veterinary scientists in this field and emphasize the importance
of interdisciplinary collaboration between the veterinary and medical communities. By promoting
communication and cooperation, we can enhance the development of novel and super vaccines to
combat human and animal coronavirus infections in the future.

Keywords: one health; animal coronaviruses; vaccine; platforms and strategies; targets and efficacy

1. Introduction

CoVs are established pathogens that have been identified as the causative agents
of respiratory and gastrointestinal illnesses in both animals and humans. Human coron-
aviruses (HCoVs) have been acknowledged as significant contributors to respiratory tract
infections globally since their discovery in the 1960s. To date, there are nine known CoVs
that infect humans, namely human coronavirus 229E (HCoV-229E), human coronavirus
OC43 (HCoV-OC43), human coronavirus NL63 (HCoV-NL63), human coronavirus HKU1
(HCoV-HKU1), severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East
respiratory syndrome coronavirus (MERS-CoV), canine coronavirus-human pneumonia-
2018 (CCoV-HuPn-2018), human porcine delta coronavirus (Hu-PDCoV), and the newly
identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (also known as
2019-nCoV) [1–4]. Apart from the human coronavirus, there are also animal coronaviruses.
Animal coronaviruses have been identified in a wide range of domestic and wild animal
species, including birds, pigs, cattle, dogs, cats, rodents, and bats (Figure 1). It is known
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that not only human coronaviruses pose a threat to public health, but animal coronaviruses
also continue to emerge and cause diseases [5–8]. Certain coronaviruses found in animals
have the potential to induce significant morbidity and mortality in their respective hosts,
exemplified by pathogens like the porcine epidemic diarrhea virus (PEDV) and the feline
infectious peritonitis virus (FIPV). Furthermore, there exists compelling evidence suggest-
ing zoonotic transmission of several human coronaviruses, with animal reservoirs serving
as their likely origins. Notably, the SARS-CoV outbreak of 2002–2003 was traced back to
bats in China [9–11], while dromedary camels in the Middle East were responsible for
the MERS-CoV outbreak in 2012 [12]. Although several plausible candidates have been
proposed, there is no clear evidence for the involvement of specific animal intermediate
hosts in the origin of SARS-CoV-2 [13–15]. In addition, zoonotic transmission has been
documented for HCoV-OC43 (from cattle to humans) and potentially for HCoV-229E, with
a suggested transmission route from bats to humans through camels [16–18]. The trans-
mission of zoonotic viruses between humans and animals results in the development of
severe respiratory diseases, including acute respiratory distress syndrome (ARDS) and
pneumonia, often resulting in fatalities [19]. Hence, the inter-species transmission of animal
coronaviruses to humans represents a critical concern, as it can precipitate the emergence
of novel viral strains with pandemic capabilities (Figure 1).
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Figure 1. Schematic diagram showing zoonotic cycle of coronaviruses. Coronaviruses can infect var-
ious animal species, increasing the likelihood of cross-species transmission. Bats serve as natural 
reservoirs for ancestral coronaviruses. Direct transmission between host species, whether confirmed 
or suspected, is depicted by solid arrows, acknowledging the potential for indirect transmission 
through an unidentified intermediate host. Additionally, dashed arrows signify suspected indirect 

Figure 1. Schematic diagram showing zoonotic cycle of coronaviruses. Coronaviruses can infect
various animal species, increasing the likelihood of cross-species transmission. Bats serve as natural
reservoirs for ancestral coronaviruses. Direct transmission between host species, whether confirmed
or suspected, is depicted by solid arrows, acknowledging the potential for indirect transmission
through an unidentified intermediate host. Additionally, dashed arrows signify suspected indirect
transmission via an unidentified intermediate host, with the understanding that direct transmission
cannot be ruled out. Uncertain spillover events are represented by dotted arrows accompanied by a
question mark.
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It is widely recognized that traditional vaccination is the most effective approach for
preventing and controlling CoV infections and transmissions. This is because vaccinations
are more cost-effective than treatments and can substantially decrease morbidity and mor-
tality rates in vaccinated populations. Given the zoonotic nature of animal coronaviruses, it
is crucial to develop effective vaccines to control their spread and prevent future outbreaks.
Although several animal coronavirus vaccines are currently available, their efficacy and
ability to confer cross-protection against various strains and subtypes are limited [20,21].
Therefore, there is an urgent need to develop new generation vaccines that can provide
broad protection against diverse animal coronaviruses. Thus, this review systematically
summarizes the current status of animal coronaviruses vaccine and highlights future devel-
opment directions. The concepts presented in this review are aimed at shedding light on
vaccine development and viral prevention strategies for animal coronaviruses.

2. Main Animal Coronaviruses and Their Taxonomic Perspectives

Based on the classification standards set by the International Committee on Tax-
onomy of Viruses (ICTV), the taxonomy of CoVs has been recently categorized within
the order Nidovirales and the family Coronaviridae. This family has been subdivided into
three distinct subfamilies: Orthocoronavirinae, Letovirinae, and Pitovirinae [22]. Within the
Orthocoronavirinae subfamily, four genera have been identified based on genetic and sero-
logic characteristics: Alphacoronavirus (αCoV), Betacoronavirus (βCoV), Gammacoronavirus
(γCoV), and Deltacoronavirus (δCoV) (Table 1, Figure 2) [3,23,24]. The latest ICTV classifi-
cation reveals that the genus αCoV comprises 15 subgenera with 26 viral species, while
the βCoV genus includes 5 subgenera and 14 viral species. δCoV and γCoV each consist of
three subgenera, hosting seven and five species, respectively (Figure 2) [22,24]. In terms of
host range, each genus of coronavirus demonstrates the ability to infect a diverse range
of host species. Specifically, αCoV and βCoV predominantly infect mammals, particularly
bats. On the other hand, δCoV and γCoV primarily infect birds, though they can also infect
mammals [5]. The Letovirinae and Pitovirinae subfamilies are associated with amphibians
and bony fish hosts, respectively [25]. Up to now, coronaviruses and coronavirus-like
infections have been reported in various animal species, including swine, cattle, horses,
camels, cats, dogs, rodents, birds, bats, rabbits, ferrets, mink, and wildlife, with many being
subclinical [26]. It is believed that many animal coronaviruses can be transmitted across
species to humans, posing a significant threat to public health. Below are some of the major
animal coronaviruses that have been identified.
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Table 1. Coronavirus taxonomy, hosts, tissue tropism and clinical illness in animals and humans.

Genus Virus Name Host Tissue Tropism Cellular Receptor Clinical Illness Reference

Alpha

Canine coronavirus (CCoV) Dog, Human Intestines, respiratory tract, lungs APN, Sialic Acid Diarrhea, vomiting, drowsiness, mild
fever, pneumonia [1,28–32]

Feline coronavirus (FCoV) Cat Intestines, monocytes APN, Sialic Acid Peritonitis, enteritis [33]

Transmissible gastroenteritis virus (TGEV) Pig Intestines APN, Sialic Acid Gastroenteritis [34,35]

Porcine respiratory coronavirus (PRCV) Pig Respiratory tract, lungs, tonsils APN Fever, dyspnea, coughing [36–38]

Porcine epidemic diarrhea virus (PEDV) Pig Intestines ND Gastroenteritis [39,40]

Human coronavirus 229E (HCoV-229E) Human Intestines, respiratory tract APN Colds, pneumonia [41,42]

Human coronavirus NL63 (HCoV-NL63) Human Intestines, respiratory tract, duodenum,
heart, kidney ACE2 Colds, pneumonia [42–45]

Swine acute diarrhea syndrome-coronavirus (SADS-CoV) Pig Intestines ND Diarrhea, vomiting [36,37,46,47]

Bat coronaviruses (Bat CoV) Bat Intestines ACE2 Diarrhea [48]

Beta

Bovine coronavirus (BCoV) Cattle Respiratory tract, intestines, trachea, lungs Sialic Acid Gastroenteritis, pneumonia [29]

Mouse hepatitis virus (MHV) Murine Respiratory tract, intestines, CNS CEACAM Hepatitis, encephalitis [49,50]

Porcine hemagglutinating encephalomyelitis (PHEV) Pig CNS ND Neurological and/or enteric disease [51]

Human coronavirus OC43 (HCoV-OC43) Human Intestines, respiratory tract Sialic Acid Colds, pneumonia [29,33]

Middle east respiratory syndrome coronavirus (MERS-CoV) Camel, Human Intestines, kidney, placenta DPP4 (CD26) Respiratory disease [50,52]

Severe acute respiratory syndrome coronavirus (SARS-CoV) Human Intestines, duodenum, heart, kidney ACE2 Pneumonia, gastroenteritis [43,53]

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Human Intestines, duodenum, heart, kidney ACE2, KREMEN1, ASGR1 Pneumonia, gastroenteritis [43,54–57]

Equine coronavirus (ECoV) Horse Respiratory tract, CNS ND Diarrhea, fever, lethargy, and anorexia [36,58]

Gamma
Infectious bronchitis virus (IBV) Avian Respiratory tract, intestines, kidney Sialic Acid Respiratory, kidney, oviduct, and

intestinal tract disease [36,59,60]

Turkey coronavirus (TCoV) Turkey Intestines Sialic Acid Enteric disease [37]

Delta Porcine deltacoronavirus (PDCoV) Pig, Human Intestines APN Enteric disease, fever, cough,
abdominal pain [2,37,61]

Note: APN, aminopeptidase N; CEACAM, carcinoembryonic antigen-related cell adhesion molecules; ACE2, angiotensin-converting enzyme 2; DPP4, dipeptidyl peptidase 4;
ASGR1, asialoglycoprotein receptor-1; KREMEN1, kringle containing transmembrane protein 1; CNS, central nervous system; ND, not determined.
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Figure 2. The latest classification of human and animal coronaviruses according to the International
Committee on Taxonomy of Viruses (ICTV) [3,22,27]. The figure illustrates the classification of coron-
aviruses within the order Nidovirales, suborder Cornidovirineae, family Coronaviridae, and subfamily
Orthocoronavirinae, which further divides into the alpha, beta, gamma, and delta genera. Partial
species of each genus are depicted in the figure.
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2.1. Porcine Coronaviruses

Porcine coronaviruses are a group of viruses that can cause severe diseases in pigs,
leading to significant economic losses in the swine industry. They can be categorized
into two types based on clinical signs: enteric and respiratory types. These types lead
to fecal-oral transmission and aerogenic transmission as the main routes for viral spread,
respectively. Recently, there are at least six known pig coronaviruses: PEDV, TGEV, SADS-
CoV, porcine respiratory coronavirus (PRCV), porcine deltacoronavirus (PDCoV), and
porcine hemagglutinating encephalomyelitis virus (PHEV) [62–65]. Several coronaviruses
affect pigs. Among these, PEDV, TGEV, PRCV, and SADS-CoV belong to αCoV, while
PHEV and PDCoV belong to the βCoV and δCoV genra, respectively [62]. Swine enteric
coronavirus diseases are caused by PEDV, TGEV, SADS-CoV, and PDCoV. Compared to
infections of piglets with SADS-CoV or PDCoV, PEDV and TGEV are the most important
enteric coronaviruses in pigs, causing significant economic losses to the pig-farming in-
dustry worldwide. These viruses cause severe gastrointestinal diseases in neonatal pigs,
affecting the respiratory and gastrointestinal tracts (TGEV, PEDV, PDCoV, and SADS-CoV),
as well as the peripheral and central nervous systems (PHEV). Although natural infection
stimulates protective immunity, cross-protection among these viruses is not yet known [62].

Here, our focus is on introducing three coronaviruses that have been extensively studied
in pigs. PEDV was first identified in the 1970s in the United Kingdom, and has since been
documented in various countries globally. However, the virus was not detected in the United
States until 2013, causing a widespread outbreak [66]. Similar to TGEV, the virus triggers severe
diarrhea in piglets, leading to significant economic losses. PEDV antibodies are incapable of
neutralizing TGEV, suggesting antigenic variations between the two viruses. PEDV exhibits
some genetic characteristics that resemble human coronaviruses, particularly HCoV-229E. More-
over, similar to SARS-CoV and SARS-CoV-2, PEDV is capable of replicating in Vero cells [67–71],
indicating potential similarities in the pathogenicity mechanisms between the coronaviruses.
TGEV was first identified in 1946 [72]. In recent years, several vaccines have been tested for their
efficacy in safeguarding against TGEV [73–75]. Yet, it has been observed that administering a
live-attenuated TGEV vaccine to pregnant pigs led to elevated antibody levels in their serum
and colostrum. Despite this, the antibody levels in the milk dropped significantly within days
after giving birth, indicating that the live-attenuated TGEV vaccine does not offer sufficient
protection for their nursing offspring [38,76]. Additionally, direct inoculation of young pigs with
attenuated virus is also incapable of inducing enough immunoglobulin A (IgA)-secreting cells
in the intestines to offer protection against TGEV. Interestingly, sows that have recovered from
a virulent TGEV infection produce enough milk IgA to provide protection against infection
and diarrhea in their suckling offspring [76]. PHEV is currently the sole recognized neurotropic
coronavirus impacting swine and is the only identified porcine βCoV to date. The initial report
of PHEV dates back to approximately 1957 in Ontario, Canada, and subsequent occurrences of
outbreaks have been well-documented [77,78]. Despite its ubiquitous presence in most swine
herds globally, PHEV infection often does not cause clinical signs. The disease caused by PHEV
is age-dependent, with morbidity and mortality affecting piglets under four weeks of age. While
pigs are the only known species susceptible to natural PHEV infection, experimental infections
of mice and Wistar rats show that the virus is also neurotropic. Currently, no vaccine has been
developed to protect against PHEV.

From an epidemiological perspective, TGEV, PRCV, and PHEV have been present in
the pig population for several decades, while PEDV, PDCoV, and SADS-CoV are considered
emerging coronaviruses [62]. Despite infecting the same natural host, these six CoVs em-
ploy different cellular receptors for binding, and usually cause infections in pigs. However,
PDCoV has demonstrated the ability to infect other species, such as badgers, calves, and
cats [79], and even has the potential to infect humans [2,80]. Of particular concern is PEDV,
which has been found to engage with human APN and replicate in human intestinal cells,
indicating the potential for cross-species transmission [40,81]. Therefore, there is a need
to strengthen coronavirus surveillance in other possible reservoirs, as both PDCoV and
PEDV may pose a potential risk to other animals and humans. The emergence of novel pig
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coronaviruses and their potential to cause zoonotic infections highlights the importance of
understanding the epidemiology and public health implications of these viruses [64,82].

2.2. Canine Coronavirus (CCoV)

Canine CoVs, which comprise canine coronavirus (CCoV) and canine respiratory coron-
avirus (CRCoV), belong to the αCoV and βCoV genera, respectively. Currently, two genotypes
of CCoV are acknowledged, identified as CCoV types I (CCoV-I) and II (CCoV-II) [83]. These
genotypes differ primarily in their spike proteins, which share only around 50% similarity [84].
CCoV type I and type II have evolutionary links to feline CoV (FCoV) type I and type II,
respectively. FCoV type II arose from a heterologous recombination between FCoV type I
and CCoV type II, while CCoV type I shares greater genetic similarity with FCoV type I than
with CCoV type II [85]. The first case of canine CoV was reported in Germany in 1971 [86],
and since then, multiple CCoV outbreaks have been documented worldwide, underlining the
significance of CCoV as an enteropathogen of dogs [83]. Canine CoV enters enterocytes lining
the small intestine villi via the host protein aminopeptidase (APN). Noteworthy is the fact
that while CCoV genotype II engages canine APN, it also interacts with feline APN, contrary
to the conventional idea that each virus must utilize a species-specific receptor [28].

CCoV, characterized by its high infectivity, predominantly spreads through fecal
shedding, and transmission occurs primarily through the fecal-oral route. This virus
exhibits a specific tropism for the alimentary tract, leading to distinct clinical manifestations,
typified by gastroenteritis symptoms, including anorexia, emesis, watery diarrhea, and
dehydration in canines. Despite its high morbidity rates, CCoV has low mortality rates [84].
Recent studies have shown that CCoV strains have the capability of experiencing S gene
exchange with TGEV at the N-terminal domain, providing a new and unexplored factor in
the evolution process of CCoV and the potential inter-species circulation between dogs and
pigs [87]. In contrast, CRCoV induces a mild respiratory illness in canines, characterized
by clinical symptoms such as coughing and potential bronchopneumonia. Remarkably,
CRCoV exhibits notable genetic and amino acid resemblances to bovine CoV (BCoV),
suggesting a plausible evolutionary link from a shared ancestor [88]. The mechanism of
CRCoV binding and entry involves sialic acids, alongside the potential participation of
human leukocyte antigen class I (HLA1) [29,89]. Both inactivated and attenuated vaccines
demonstrate efficacy in preventing canine CoV infection.

2.3. Equine Coronavirus (ECoV)

The equine coronavirus (ECoV), classified within the βCoV genus, was first discovered
in the feces of a diarrheic foal in North Carolina, USA in 1999 (ECoV-NC99) [90]. Since 2010,
various outbreaks have been reported in Japan, Europe, and the USA. ECoV is transmitted
via the fecal-oral route, and horses contract the virus by consuming fecally contaminated
feed and water. Infected horses, whether clinically symptomatic or asymptomatic, seem
to be responsible for direct and indirect transmission of ECoV. Clinically, ECoV infection
is associated with fever, lethargy, anorexia, colic, and diarrhea [91]. The disease is usually
self-limiting, and horses typically recover with supportive care.

2.4. Feline coronavirus (FCoV) and Feline Infectious Peritonitis Virus (FIPV)

FCoV is a relatively harmless enteric or chronic asymptomatic infection, commonly
found in domestic cats. The virus was identified as a coronavirus by electron microscopy in
1970 [92]. Biologically, FCoVs can be divided into two subtypes, namely the feline enteric
virus CoV (FECV) and the feline infectious peritonitis virus (FIPV). APN serves as a binding
receptor for both FECV and FIPV [93]. FECV typically causes inapparent enteritis in cats by
replicating in the intestinal epithelium [94]. On the other hand, FIPV infects monocytes and
can lead to systemic diseases, including fatal peritonitis with immune complex vasculitis,
accompanied by necrosis and pyogenic granulomatous inflammation [95].

FCoVs can be categorized into two serotypes, I and II, based on differential antibody
neutralization and variations in the amino acid sequence of the S protein [96]. Serotype
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I FCoV predominates as the most prevalent strain, and recombination events between
serotype I FCoV and serotype II canine CoV can directly yield serotype II FCoV (Figure 1).
From a clinical perspective, it is challenging to distinguish between FECV and FIPV based
on virus antigen, virus particle morphology, and serology [97]. Due to the potential
occurrence of antibody-dependent enhancement (ADE) following FIP vaccination [98],
vaccination against FIP is currently not recommended. Further research is necessary to
explore the pathogenesis of FIPV infection and in order to develop novel vaccines that are
highly efficient and safe.

2.5. Bovine CoV

In 1973, bovine CoV (BCoV) was initially identified as a cause of calf diarrhea in the
United States [99]. This virus belongs to the βCoV of the family Coronaviridae and is capable
of causing neonatal diarrhea, winter dysentery, and respiratory illness in cattle [51,100].
BCoV attachment and entry into host cells relies upon the binding of sialic acids as receptors.
It can be transmitted through fecal-oral or respiratory means and has a dual tropism for
both the respiratory and gastrointestinal tracts [101–103]. It has been suggested that the
HCoV-OC43 is related to BCoV and that BCoV is likely an ancestor of HCoV-OC43, or they
may have evolved from a common ancestor [101].

In addition to infecting cattle, BCoV has been detected in other hosts, such as wild
ruminants, dogs, poultry, giraffes, and it may have zoonotic potential [101–103]. BCoV,
like other members of the Coronaviridae family, expresses a surface S glycoprotein, which
carries a furin cleavage site and was cleaved into S1 and S2 subunits. However, unlike
many other Beta coronaviruses, it possesses a hemagglutinin esterase (HE) that appears to
have been acquired through recombination and resembles the hemagglutinin of influenza
C virus. Both S and HE proteins aid in viral attachment to host cells and induce the forma-
tion of neutralizing antibodies against BCoV [51,100]. A common practice for controlling
BCoV infection in cattle is the vaccination of pregnant cows, which can protect neonates
through the transfer of antibodies via the colostrum [104].

2.6. Avian CoVs

The primary virus belonging to avian CoV is the infectious bronchitis virus (IBV)
in chickens. It belongs to the γCoV genus and exhibits high serotype diversity owing
to selection pressures, including natural selection, genetic evolution, and human inter-
vention [105,106]. IBV infection can lead to severe respiratory, urogenital, renal, and
reproductive disorders, manifested by symptoms such as rales, sneezing, diarrhea, and
reduced egg quality and production [107,108]. The sialic acid acts as a receptor determinant
for avian IBV entry into host cells [59,109].

Other avian species that have been confirmed to be susceptible to CoV-induced dis-
eases include turkeys, pheasants, and guinea fowl [110]. Of these, Turkey coronavirus
(TCoV) is the most thoroughly characterized and economically significant after IBV, having
been identified as a cause of enteric disease in turkeys in the US since the 1940s and cur-
rently posing a problem in turkey-producing regions worldwide. Pheasant CoV (PhCoV)
is implicated in respiratory and renal issues, and seems closely related to IBV and TCoV.
Guinea fowl CoV (GfCoV) is linked to a fulminating disease, with a high death rate and pos-
sibly pancreatic degeneration [111]. Live-attenuated vaccines and inactivated oil-emulsion
vaccines are commonly employed for the control of IBV infections in farms [112–114].
However, no vaccines are available for TCoV, PhCoV, or GfCoV.

3. Genomic Structure of Animal CoVs and Function of Their Related Proteins

Much like their human counterparts, animal CoVs have a genome consisting of a
linear, positive-sense, single-stranded RNA of approximately 22,000 to 36,000 nucleotides,
with a 5′-cap structure and a 3′-polyadenylated tail [115]. They have a genome structure
that comprises two open reading frames (ORFs) located in the 5′-proximal two-thirds of
the genome [35,38,116]. These ORFs, known as ORF1a and ORF1b, encode the replicase
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polyproteins pp1a and pp1ab [117], as shown in Figure 3. The 3′-proximal one-third of
the genome encodes four structural proteins: S, E, M, and N, along with several accessory
proteins [38]. Some coronaviruses also have an additional structural protein called the
hemagglutinin-esterase (HE) protein, which is acquired through recombination events
(Figure 3A) [118].
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Figure 3. Schematic diagram of coronavirus structure and genome organization. (A) Illustration of
the gene, protein, and genome organization of coronaviruses. Coronaviruses possess a positive-sense,
single-stranded RNA (ssRNA) genome, ranging from 22 to 36 kb. The 5′-terminal portion encodes
a polyprotein, pp1ab, cleaved into 16 non-structural proteins involved in genome transcription and
replication. The 3′ terminus encodes structural proteins—spike (S), envelope (E), membrane (M),
and nucleocapsid (N). Additionally, species-specific accessory genes, dispensable for virus replication,
are present. A comparison is made between prototypical and representative strains across the four
coronavirus genera. (B) Schematic representation of the coronavirus viral particle, highlighting the
spike (S) protein and receptor-binding domain (RBD) as primary inducers of neutralizing antibodies.
These components constitute essential antigens for coronavirus vaccines. Also depicted are the N
(nucleocapsid), M (membrane), and S (spike) proteins, crucial targets for subunit vaccine development.
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The S protein serves a pivotal role in facilitating viral entry into host cells through
interaction with key receptors, such as ACE2, APN, and DPP4 (Table 1). This protein
comprises two distinct subunits: the N-terminal S1 subunit and the C-terminal S2 subunit
(Figure 3B) [119,120]. The S1 subunit further encompasses an N-terminal domain (NTD)
and a C-terminal domain (CTD), also known as the receptor-binding domain (RBD). While
the NTD binds to attachment factors, the CTD (RBD) orchestrates virus-host cellular recep-
tor binding (Figure 3B) [120,121]. Conversely, the S2 subunit facilitates the fusion between
viral and host cell membranes [122]. Furthermore, various structural proteins, such as
N, M, and E proteins, exhibit diverse functionalities throughout the viral life cycle and
pathogenesis [123,124]. For example, the N protein is indispensable for processes such as
RNA synthesis, replication, virion assembly, and post-translational modification [125,126],
whereas the M protein interacts with the N protein and aids in virion assembly [127,128].
The E protein functions as a virulence determinant by creating ion channels within lipid bi-
layers, thereby contributing significantly to virion assembly, budding, and release [129,130].
Notably, certain coronaviruses, such as mouse hepatitis virus (MHV), HCoV-HKU1, HCoV-
OC43, and BCoV, possess an additional structural protein, the hemagglutinin esterase (HE)
protein, positioned upstream of the S protein gene (Figure 3A). Both the S and HE proteins
play crucial roles in facilitating virus attachment to host cells [118,122].

In addition, coronaviruses also have accessory proteins encoded in the 3′ terminal
region of the genome, which vary in number and type across different coronaviruses
(Figure 3A). These proteins are generally considered non-essential for virus replication
in vitro. However, they contribute to viral–host protein interaction and participate in many
processes, including virus particle assembly, apoptosis, autophagy, and inflammatory
response. These functions are crucial to viral pathogenesis [68,131–135].

4. Spillover Event and Cross-Species Potential of Animal Coronavirus

CoVs have been responsible for various diseases in numerous hosts, resulting in
high mortality rates and significant economic losses. The diverse genomic propensity of
CoVs facilitates their ability to evolve and recombine, enabling them to overcome natural
barriers to cross-species transmission, allowing the virus to adapt and proliferate in new
hosts during a spillover event [5]. For instance, the recent spillover of bat CoVs into
pigs, which includes PEDV and SADS-CoV, is an example of such events. Moreover,
documented cases of animal-to-human transmission via intermediate hosts, such as SARS-
CoV, potentially SARS-CoV-2, and MERS-CoV, highlight the critical role of intermediate
host species in facilitating viral spread from bats to humans. As CoV spillovers can
occur undetected among animal populations, understanding and preventing this event
occurrence are increasingly crucial in mitigating cross-species transmission.

Similarly, coronaviruses have been observed to emerge within the swine industry as a
result of spillover events with bats. One such example is transmissible gastroenteritis (TGE),
which was first identified as a CoV (TGEV) in swine in the United States in 1946 [63,72,136].
Interestingly, PRCV evolved from TGEV into a respiratory pathogen in 1984, indicating
the capacity of CoV mutation to confer varying tissue tropism within a single host species.
Moreover, PEDV is suspected to have originated from a bat reservoir [137]. PDCoV is
also thought to have emerged from a bird-to-pig transmission event, although its specifics
remain unknown [5]. Ongoing incidents of coronavirus spillover are occurring in pigs, with
one example being SADS-CoV. This βCoV strain appears to have directly jumped from bats
to pigs in China [138–140]. The existence of spillover, spillback, and secondary spillover has
been confirmed in SARS-CoV-2 [141], demonstrating the wide range of hosts and ongoing
transmission events observed in domestic, captive, and wild animals. This underscores the
urgent need for further research into animal coronaviruses. Thus, preventing the spread
of the coronavirus in intermediate hosts, along with the development of new vaccines
targeting the virus, is an effective measure to control the spread of animal coronavirus.
Indeed, the “One Health” concept emphasizes the need for close monitoring of the health
status of animals and humans in certain environments, accelerating the development of
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animal vaccines to mitigate the possibility of further disease outbreaks. These efforts aim
to minimize the spread of animal infectious diseases and enhance the capacity to prevent
the transmission of future emerging infectious diseases.

5. Types of Vaccine Development Platforms and the Trialed or Generated Animal
Coronavirus Vaccines

Viral vaccines are primarily intended to trigger the immune system of the body, which is
mainly accomplished by activating B cells that produce antibodies and generating killer T cells,
also known as cytotoxic T cells. This allows the immune system to recognize and respond
swiftly to specific viral pathogens in the future. Several significant vaccine development
platforms (including classical vaccine platforms and next-generation vaccine platforms) and
their working mechanisms are outlined below, some of which have not yet been employed in
the development of vaccines against animal coronaviruses (Figure 4) (Table 2).
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Figure 4. Vaccine development platforms of animal coronavirus. The left and right panels provide
a schematic overview of various coronavirus vaccine platforms, encompassing the live-attenuated
vaccine, inactivated vaccine, virus-like particles vaccine, recombinant subunit vaccine, viral vector
vaccine, DNA vaccine, RNA vaccine, and nanoparticle vaccine. The upper portion of the middle
panel represents the primary hosts of animal coronaviruses, while the lower portion depicts the
two main immune responses elicited by animal coronavirus vaccines in vivo: cellular and humoral
immune responses.
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Table 2. The types, platforms, and immunization routes of various trialed or generated animal
coronavirus vaccines.

Genus Targeted Viruses Vaccine Name/
Candidate Strains Vaccine Platform Immunization Route Reference

Alpha

CCoV Strain 257/98-3c Whole virus Intramuscular (IM) [142]

FCoV

FIPV-DF2 Live-attenuated virus Feline kidney (NLFK) cell/intranasal [143]

FIPV 79-1146 Live-attenuated virus FCWF/inoculated oronasally [144]

FIPV-M, FIPV-M
(VR1012-M, VR1012-N) DNA vaccine Plasmid injection [145]

PEDV

CV777, 83P-5 Live-attenuated virus Intramuscular (IM) [146,147]

SM98-1 Live-attenuated virus Intramuscular (IM) [148]

DR13 Live-attenuated virus Oral [149]

KNU-141112, Inactivated virus Intramuscular (IM) [150]

PEDV CO2013 Live-attenuated virus Intramuscular (IM) and oral [151]

USA/Colorado/2013 Live-attenuated virus Intragastric route [152]

AH2012/12 Inactivated virus Intranasal [153]

MZ0116-2/2013 Live-attenuated virus Intramuscular (IM) [154]

3B3scFv-pFc-PEDVsAg DNA vaccine Intramuscular (IM) [155]

ORFV-PEDV-S Recombinant virus Intramuscular (IM) [156]

S mRNA-LNP vaccine/
Sm mRNA-LNP mRNA vaccine Intramuscular (IM) [157]

pTriEx-S (S1) DNA vaccine Intramuscular (IM) [158]

rSF-COE-3D Recombinant virus Intramuscular (IM) [159]

rTGEV-RS-SPEDV Recombinant virus Oral [160]

TGEV TGE/Rota Recombinant virus Intramuscular (IM), oral [38]

Beta BCoV 438/06-TN Live-attenuated virus Intramuscular (IM) [161]

MHV TMV-5B19 DNA vaccine Intranasal or subcutaneous [162]

Gamma IBV
K2/01 Live-attenuated virus Eye drop [163]

pCAG-N DNA vaccine Intranasal (IN) [164]

Delta PDCoV

L. lactis NZ9000-S1 DNA vaccine Oral [165]

CZ2020 Live-attenuated virus Oral [166]

PDCoV-NH Inactivated virus Oral [61]

Classical vaccine platforms, such as live attenuated, inactivated, viral vector, subunit,
and virus-like particles (VLPs) vaccines, are widely used [167]. Live-attenuated vaccines
are derived from virulent virus strains and weakened through passages on host animals
or cells, or by genetic modifications. Inactivated vaccines are viral particles rendered
inactive through physical or chemical methods. Viral vector vaccines use modified viruses
to deliver antigens into cells. Adenovirus, retroviruses, and vaccinia viruses are the
primary viral vectors traditionally employed for this purpose [168]. Moreover, some
animal viruses, including porcine reproductive and respiratory syndrome virus (PRRSV),
swine pox virus (SPV), recombinant Newcastle disease virus (rNDV), and recombinant
chimeric TGEV-PEDV virus have also proven effective in expressing foreign genes from
animal viruses [169,170]. Additionally, genome editing methodologies, including CRISPR-
Cas9 and reverse genetic strategies, are extensively utilized in the development of viral
vector vaccines [171,172]. Subunit vaccines contain the essential immunogenic components
of a pathogen. VLPs mimic the virus structure without its genetic material, self-assembling
with viral proteins to resemble the native virus.

Apart from the classical vaccine platforms, the next-generation vaccine platforms,
such as nanoparticle vaccines and nucleic acid vaccines, are also wildly used in coronavirus
vaccine development. Nanoparticle vaccines are a novel type of vaccine that utilizes
the unique properties of nanoparticles to deliver antigenic proteins to immune cells in
the body. These vaccines consist of small particles, usually between 1–100 nm in size,
which are engineered to carry the antigenic proteins of the pathogen [173]. In addition,
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nucleic acid vaccines, including DNA and mRNA vaccines, utilize genetic material from a
pathogenic microorganism, coupled with gene injection technology, to elicit an immune
response against it. DNA vaccines are generated through the insertion of a gene that
encodes a specific or multivalent antigen into a bacteria-derived recombinant plasmid. This
plasmid must be controlled by a powerful promoter to elicit both cellular and humoral
responses [174]. An alternative to the DNA vaccine is the mRNA vaccine, which utilizes
a copy of the messenger RNA molecule to elicit an immune response [175,176]. These
mRNA vaccines come in two different forms: non-amplifying mRNA (conventional mRNA)
and self-amplifying mRNA. These two types differ in their mechanisms of action [177].
By harnessing the host cell machinery, mRNA vaccines facilitate in vivo translation of
mRNA into antigens, generating robust humoral and cellular immune responses that
resemble those of viral infections. For example, an mRNA lipid nanoparticle (mRNA-
LNP) vaccine created by Li’s group, which contains the complete PEDV spike (S) protein,
demonstrated the ability to stimulate strong PEDV-specific immune responses in piglets.
This vaccine not only effectively shielded actively immunized piglets from PEDV infection
but also imparted passive anti-PEDV immunity to neonatal piglets through the transfer of
colostrum-derived antibodies from immunized sows [157]. mRNA vaccines have shown
great efficacy in fighting novel coronavirus infections in humans. With their ability to
stimulate robust immune responses for both active and passive immunity, the design
strategies and application of these vaccines are now being integrated into the creation of
vaccines for animal coronaviruses.

In addition to the vaccine development platforms mentioned above, there is a new type
of vaccine development platform—plant-based vaccine expression platform. Currently, this
expression strategy is increasingly being applied in the development of animal vaccines. For
example, Xu et al. used rice to produce a super vaccine for swine fever [178]. This study
demonstrated the potential of the rice expression system to precisely express designed proteins
in vitro by expressing the “human-shaped” E2 dimer (ht-rE2 dimer) in rice. The expressed
E2 dimer exhibits the natural conformation of viral envelope proteins and high antigenic
activity, while also being safe, easy to produce on a large scale, and cost-effective. This research
provides a theoretical basis for using the rice expression system to produce animal vaccines.
Additionally, the same team proposed a universal “head-to-tail” dimeric vaccine antigen
model and successfully prepared a highly efficient recombinant antigen, Osr2HN, using
the rice endosperm expression system [179]. This antigen displays multiple epitopes with
appropriate distances, which can effectively activate B cells. Further animal challenge tests
have shown that this antigen design significantly enhances the immune response of subunit
vaccines, leading to a more efficient antibody-generation effect [179]. The effective utilization
of the plant-based vaccine development platform in creating swine fever and paramyxovirus
vaccines underscores the importance of expediting the investigation and utilization of this
platform for the development of animal coronavirus vaccines. This will aid in the timely
development of a highly effective animal coronavirus vaccine.

6. Status of Vaccine Development for Animal Coronaviruses

Ongoing efforts to develop effective vaccines against animal coronaviruses have made
significant progress in recent years. Notably, vaccines for porcine coronaviruses (e.g., TGEV
and PEDV) and avian coronaviruses (e.g., IBV) have demonstrated the highest level of
technical maturity and rapid advancement. TGEV and PEDV, which cause diarrhea in
pigs, have been addressed through the development and extensive use of inactivated
or attenuated virus-based vaccines that effectively prevent and control infections [180].
While vaccines for TGEV have long been available, those for highly virulent PEDV strains
continue to pose a challenge [65]. For example, G1a PEDV-based vaccines, including both
inactivated and live-attenuated forms, were effectively utilized to manage PEDV outbreaks
in Asia before 2010. A previous study demonstrated the development of an inactivated
vaccine derived from a cell-adapted CV777 strain, which yielded high protection rates
in piglets through the passive immunization of vaccinated sows [181]. Subsequently, a
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bivalent live-attenuated vaccine for PEDV was successfully created, providing passive
protection rates against the virus in China [182]. Significantly, Japan and South Korea
have also developed vaccines, with South Korea producing two attenuated virulent strains,
SM98-1 and DR13 [148,149]. Additionally, the Japanese strain 83P-5, attenuated through
serial passages in Vero cells, is commercially available as a live-attenuated vaccine [147].
These bivalent vaccines effectively curbed the spread of PEDV in China until the emergence
of highly virulent PEDV variants at the end of 2010. Since late 2010, China faced severe
PED outbreaks [183], necessitating vaccines targeting G2 strains. In 2015, China officially
approved and introduced two multivalent vaccines [184]. One is a trivalent vaccine derived
from attenuated strains of PEDV (the CV777 strain), TEGV, and porcine rotavirus. The other
is a bivalent attenuated vaccine comprising strains of TGEV and PEDV (the ZJ08 strain, G1b).
However, their effectiveness is debatable due to inadequate cross-protection against G1 and
G2 strains [185]. Given this situation, other candidate PEDV vaccine strains are also under
intense development. It has been reported that the deactivation of a potential PEDV vaccine
can stimulate a strong immune response and offer protection [186,187]. Additionally, it has
been demonstrated that deactivating both the 2′-O-MTase and the endocytosis signal of
the spike protein can be an effective approach in designing a promising live-attenuated
vaccine for PEDV [188]. Furthermore, the safety and effectiveness of two attenuated PEDV
vaccine candidates, specifically the emerging non-S INDEL PEDV strain PC22A at the
100th cell culture passage level and at the 120th passage level (P120), were previously
evaluated and showed promising effects in weaned pigs [189]. Effective and safe vaccines
for virulent PEDV strains still remain unavailable [190], as classical PEDV vaccines have
failed to combat these strains in Asia [191]. Presently, new-generation vaccine development
platforms have been established, including the PEDV vaccine platform utilizing a bacterial
artificial chromosome (BAC) and a genome recombination-resistant platform facilitated
by the RMT mutant [192,193]. However, further observation is necessary to evaluate its
efficacy in PEDV vaccine development.

With the emergence of other porcine coronaviruses, such as PDCoV and SADS-CoV,
the development of new vaccines against these viruses is crucial [38]. Therefore, recent
studies have focused on the development of new vaccines against PDCoV and SADS-CoV.
A study reported the development of a live-attenuated vaccine against SADS-CoV that
was shown to be safe and effective in protecting pigs against SADS-CoV infection [38].
Similarly, a study reported the development of a recombinant PDCoV spike protein vaccine
that was shown to be effective in inducing neutralizing antibodies against PDCoV [194].
These findings suggest that the development of new vaccines against pig coronaviruses is
feasible and can help to prevent and control the spread of these viruses.

The IBV vaccine stands as another example of animal coronavirus vaccines with well-
established technology and notable effectiveness. The vaccination has been shown to be a
safe and effective measure in protecting chickens against IBV, and the development and
ongoing assessment of live-attenuated vaccines further highlight the extensive and ongoing
efforts to optimize vaccine development in this field. Specifically, the utilization of the
H strain of avian infectious bronchitis virus represents a time-honored approach in IBV
vaccine development [195]. Furthermore, a live-attenuated vaccine targeting IBV has been
formulated and is presently undergoing rigorous clinical trials [196–198].

For feline coronavirus, the first vaccine for FIP was licensed in 1991 [199]. Presently,
a commercially available vaccine for this purpose exists in various countries [200–202].
Previous research has indicated that vaccination against feline coronavirus infections in
cats presents both advantages and disadvantages, as a modified live FIP vaccine was
demonstrated to be safe and effective under field conditions [143]. However, certain kit-
tens who were infected with naturally occurring feline coronavirus exhibited adverse
reactions to the vaccine, with three cats developing FIP within the first month after vac-
cination [203]. These findings underscore the need for the development of new vaccines
targeting epidemic/variant strains. Researchers are currently exploring the feasibility of
developing a vaccine for feline coronavirus utilizing a small molecule, XM-01, as an inacti-
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vated vaccine [204]. Other veterinary vaccines designed to combat animal coronaviruses
are commercially obtainable in the European countries, including vaccines developed to
prevent shipping fever in young calves from bovine coronavirus infection and to curb
canine enteric coronavirus infections in dogs [201,205]. Despite these advancements, vac-
cines currently available on the market have demonstrated limited efficacy against canine
coronavirus [206].

7. Main Targets for Animal Coronavirus Vaccine Development

Understanding the role of different target proteins in the coronavirus life cycle is an
important area of ongoing research for the development of effective vaccines against coron-
aviruses. The following figure highlights several target proteins used for the development
of coronavirus vaccine (Figure 5).
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7.1. S protein

Due to its ability to induce neutralizing antibodies against the pathogen, the spike
(S) protein is a crucial target for most coronavirus vaccines, including those developed for
COVID-19. The S protein consists of two subunits. The S1 subunit recognizes the receptor
through its receptor-binding domain (RBD), while the S2 subunit facilitates the fusion of the
virus with the membrane, enabling entry into the cell [120]. The S protein plays a pivotal
role in the virus’s endocytosis by binding to the corresponding viral receptor, making it a
prime target for the institution of the subunit vaccine [207]. The S1 subunit, encompassing
both the RBD and the NTD, plays a pivotal role in binding to host receptors and serves as a
prominent target in vaccine design [207]. Vaccination with RBD elicits specific antibodies
that hinder receptor recognition, thus effectively blocking viral entry [120]. Notably, a
majority of coronavirus subunit vaccines in development target the RBD. Moreover, the
NTD of S proteins from diverse animal coronaviruses have demonstrated carbohydrate
receptor-binding activity, as observed in TGEV and IBV [208,209]. Recent studies have
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also indicated further mutations in the antigenic site S1◦ and COE of the PEDV S protein,
making it a main candidate target for animal vaccine development [209].

7.2. N Protein

Coronavirus contains a highly conserved N protein, which is the most abundant
protein in the virus, with a molecular weight of approximately 50 kDa. This protein serves
multiple functions, including the formation of nucleocapsids, virus budding, RNA replica-
tion, and mRNA transcription [210]. Although vaccine development has primarily focused
on the S protein, the N protein has also been studied due to its major target for antibody
responses and T-cell epitopes [211]. Research has demonstrated that vaccines targeting
the N protein can induce robust T-cell responses and offer protection against coronavirus
infections [125,212]. For instance, in vaccinated C57BL/6 mice, a DNA vaccine encoding the
SARS-CoV N protein stimulated potent N-specific humoral and cellular immune responses,
effectively reducing the viral titer of the challenging vaccinia virus [213]. Notably, studies
on the avian infectious bronchitis virus revealed that the N protein is associated with the
induction of cytotoxic T lymphocytes (CTLs), which correlated with decreased clinical
signs and viral clearance from the lungs [214,215]. This suggests the crucial role of cellular
responses in N protein-mediated protection. Furthermore, N-specific antibodies have
been observed to confer protection against mouse hepatitis virus by engaging Fc-mediated
effector functions [216]. However, it is worth noting that the N protein is generally less
immunogenic compared to the S protein, and vaccines targeting the N protein may not be
as effective as those targeting the S protein [125,212]. The issue of balancing viral clearance
and immunopathogenesis complicates the development of N protein-based vaccines for
COVID-19. As a result, no N protein-based vaccine has been reported thus far.

7.3. M Protein

The M protein is a structural protein that resides in the envelope of coronaviruses
and is responsible for shaping the viral particle, as well as for virus assembly and release.
During viral entry, the M protein plays a critical role in the interaction between the viral
envelope and the host cell membrane. Recent research has highlighted the potential of the
M protein as a target for the development of animal coronavirus vaccines, owing to its high
level of conservation across different coronaviruses [217]. Immunogenic and structural
analyses have revealed a T-cell epitope cluster within the transmembrane domain of the
M protein, capable of eliciting a robust cellular immune response [218]. Moreover, studies
have reported the efficient induction of neutralizing antibodies in SARS patients upon
immunization with the full-length M protein [219]. Collectively, these findings underscore
the potential candidacy of the M protein as a target for the development of vaccines against
animal coronaviruses. Nonetheless, further research is needed to determine the most
effective vaccine formulation and delivery strategy for M protein-based vaccines, as well as
to evaluate their efficacy and safety in various animal species.

7.4. E Protein

In comparison to the spike (S), nucleocapsid (N), and membrane (M) proteins, the
envelope (E) protein is not suitable as an immunogen due to its small ectodomains for
immune cell recognition and small molecular sizes [220]. One reason for this inadequacy
is that E proteins in different coronaviruses possess channel activity, which restricts their
immunogenicity. Additionally, the E protein is a small membrane protein that is consider-
ably less effective in generating an immune response compared to the S protein [221,222].
Experimental studies have demonstrated that sera from vaccinated donors, which received
a vaccine employing a virus vector expressing the E protein, did not provide protection
against SARS-CoV-2 infection [220]. Nevertheless, a more recent study demonstrated that
SARS-CoV-2 E-protein had a stronger connection with the MHCs and lower solvent acces-
sibility, which suggests the potential of the E protein as a target for SARS-CoV-2 vaccine
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development [223]. Consequently, further research is required to establish whether the E
protein is a feasible target for the development of coronavirus vaccines.

7.5. Non-Structural Proteins (NSPs)

The non-structural proteins (NSPs) are emerging as promising targets for the devel-
opment of coronavirus vaccines, as they are intricately involved in the virus’s replication
and evasion of the host immune response. Despite being less studied than the struc-
tural proteins, the NSPs play a critical role in the virus’s behavior and pathogenesis [69].
Among the various NSPs, the papain-like protease (PLpro), the RNA-dependent RNA
polymerase (RdRp), and the 3-chymotrypsin-like protease (3CLpro) have been identified
as potential targets for vaccine development [224–226]. The RdRp, an enzyme responsi-
ble for replicating the virus’s RNA genome, holds promise as a target for both antiviral
drugs and vaccines [227–229]. Similarly, the PLpro and 3CLpro are proteases that cleave
viral polyproteins into functional NSPs, making them attractive targets for vaccine de-
velopment [230,231]. Inhibiting these proteases could potentially prevent the virus from
replicating and aid in therapeutic intervention. Currently, numerous vaccine candidates tar-
geting NSPs are undergoing preliminary trials, necessitating further research to determine
their efficacy [232,233].

7.6. The Entire Virus as a Target

The entire virus vaccines, including inactivated virus and live-attenuated virus vac-
cines, use the whole virus as vaccine targets. Along with structural proteins, such as
the spike (S), nucleocapsid (N), and membrane (M) proteins [220,222,234,235] and non-
structural and accessory proteins, they are another target for animal coronavirus vaccine
development. They can provide a broader range of viral antigens for the immune system
to recognize, which could lead to more effective protection against different strains of the
virus [220]. Animal vaccines containing live-attenuated viruses have received licensing for
IBV, TGEV, BCoV, and FIPV [211]. Nevertheless, researchers have shown that immunity
tends to decrease over time following IBV and BCoV vaccines [211], raising concerns about
the longevity of the immune response generated by vaccines that use the entire virus. Addi-
tionally, developing whole virus vaccines requires careful consideration of safety concerns,
such as ensuring that the virus is sufficiently attenuated or inactivated to prevent disease,
while still eliciting an effective immune response [235]. Hence, although entire virus vac-
cines hold promise for the development of coronavirus vaccines for animals, additional
investigation and evaluation are necessary to ensure their safety and effectiveness.

8. Challenges in the Development of Vaccines against Animal Coronavirus

In light of the COVID-19 pandemic, significant advancements have been made in the
realm of coronavirus vaccines. However, it is essential to acknowledge the presence of
novel challenges in the domain of animal coronavirus vaccine research and development.
The following section highlights the main challenges encountered in the development of
coronavirus vaccines.

8.1. High Mutation Rates and Viral RNA Quasispecies

Animal coronaviruses have been implicated in several outbreaks, notably SARS-CoV,
MERS-CoV, and SARS-CoV-2. The formidable hurdle in vaccine development arises from
the heightened mutation rates observed in these viruses, rendering the efficacy of vaccines
susceptible to the presence of viral genome mutations [236]. With each mutation, different
strains may exhibit varying antigenic profiles, thereby complicating the identification
of specific antigens for targeted vaccine development [236]. This challenge is due to
the high genetic diversity of coronaviruses, resulting from the high mutation rate and
recombination events during viral replication, which generates related but distinct viral
RNA sequences, known as quasispecies [237]. RNA quasispecies can cause antigenic drift,
altering the effectiveness of vaccines that target specific epitopes of the virus, making it
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challenging to develop a vaccine that can provide long-term protection [238]. Additionally,
RNA quasispecies can lead to the emergence of novel virus strains, necessitating the
development of new vaccines [237,239]. Therefore, successful animal coronavirus vaccine
development requires a comprehensive understanding of the viral quasispecies present
in the target population, as well as the ability to predict and monitor the evolution of the
virus in response to vaccine-induced immune pressure.

8.2. Lack of Suitable Cell Lines Capable of High Yield Production

The lack of suitable cell lines capable of producing high viral yields presents a sig-
nificant challenge in the development of vaccines for animal coronaviruses. The isolation
and cultivation of several animal coronaviruses in vitro have not yet been successful due
to the inadequacy of suitable cell lines, which makes it arduous to isolate and study the
viruses, thereby impeding vaccine development. Even in cases where cell lines, such as
those utilized for the IBV, are deemed suitable, the viral yield often remains suboptimal,
necessitating the addition of exogenous trypsin to the culture medium to support viral
growth and propagation [240]. These circumstances underscore the considerable distance
these cell lines must traverse before they can be employed for large-scale vaccine produc-
tion in manufacturing facilities. Moreover, the use of serum-free culture medium for mass
vaccine production is a crucial consideration from a production cost perspective. Therefore,
researchers must cultivate these cell lines that are not inherently capable of virus growth
and increase the speed of animal coronavirus vaccine development.

8.3. “Off-Target” Antibody Responses

Antibodies are an essential component of the immune response and play a vital role
in neutralizing viral infections. However, antibodies can also target unintended antigens,
leading to “off-target” antibody responses [241]. One challenge related to “off-target”
antibody responses in animal coronavirus vaccine development is that the antibodies
produced in response to a vaccine may not be specific to the target virus. Instead, the
antibodies may recognize and bind to other viruses or even the body’s own cells, leading
to unintended effects such as autoimmune reactions. This can be a particular concern
with coronavirus vaccines, as the viruses are highly variable and can mutate rapidly,
potentially leading to the production of non-specific antibodies [236,237]. Thus, developing
vaccines that elicit a highly specific and effective immune response, while minimizing
the risk of off-target effects, is an important challenge in animal coronavirus vaccine
development. Recently, we have suggested two potential solutions to address this issue:
(1) One approach is to focus on the development of vaccines that stimulate neutralizing
antibody responses while minimizing the production of non-neutralizing antibodies. This
approach can be achieved through the use of adjuvants that stimulate the production of
neutralizing antibodies, or through the use of protein subunits that are less likely to elicit
non-neutralizing antibodies; (2) Careful selection of vaccine candidates and monitoring
of immune responses during clinical trials is essential to reducing the risk of “off-target”
antibody responses. Vaccine candidates should be chosen based on their ability to stimulate
neutralizing antibody responses while minimizing the production of non-neutralizing
antibodies. Monitoring immune responses during clinical trials can provide insight into
the production of non-neutralizing antibodies and guide modifications to vaccine design to
reduce their production.

8.4. Antibody-Dependent Enhancement (ADE)

Antibody-dependent enhancement (ADE) is a phenomenon where specific virus-
related antibodies, via the Fc-receptor pathway, aid the entry of viruses into host cells,
causing an increase in virus infection [242,243]. While ADE may positively impact viral
entry under certain conditions, it may also exacerbate clinical diseases. In the realm of
vaccine development, ADE can occur when vaccine-generated antibodies are insufficient in
quantity or lack neutralizing properties, resulting in heightened binding efficacy of virus-
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antibody complexes to cells bearing Fc receptors. Instances of ADE have been documented
in vaccines targeting dengue, HIV, and coronaviruses [203,244,245]. While direct evidence
of ADE in SARS-CoV-2 remains elusive, clinical investigations of SARS-CoV vaccine
candidates have suggested potential disease exacerbation attributable to ADE [246,247].
For animal coronaviruses, ADE has already been observed in cats vaccinated against the
FIPV, where the vaccine generated non-neutralizing antibodies that led to more severe
symptoms upon FIPV exposure [248].

8.5. Vaccine-Associated Enhanced Diseases (VAED)

Vaccine-associated enhanced disease (VAED) is a phenomenon characterized by the
exacerbation of disease following subsequent infection with the associated pathogen due to
prior vaccination [249]. VAED has been documented in several viral infections, including
those caused by animal coronaviruses. The underlying mechanisms driving VAED remain
incompletely understood, but two potential mechanisms have been proposed. The first
mechanism is antibody-dependent enhancement (ADE), where non-neutralizing antibod-
ies elicited by vaccination can facilitate viral entry into cells, resulting in increased viral
replication and disease severity. The other likely mechanism is cell-mediated immunity,
where the vaccine-induced immune response may result in immunopathology upon expo-
sure to the pathogen. In some cases, the development of animal coronavirus vaccines is
hindered by VAED. However, there are strategies available to minimize these risks, such
as optimizing vaccine formulations to produce neutralizing antibodies, using adjuvants
to boost the immune response, and conducting thorough clinical assessments of vaccine
safety and effectiveness. Through precise development of vaccines, the use of adjuvants,
and comprehensive assessment of safety and efficacy, the negative effects of VAED can be
successfully reduced in the creation of animal coronavirus vaccines.

8.6. Recombination Events between Human and Animal CoV Strains

CoVs possess a large RNA genome that is prone to frequent mutations and recombina-
tion, leading to the emergence of strains with distinct antigenic properties. Recombination
events occur when different strains infect the same host cell, resulting in the creation of
novel genotypes/serotypes and variants, and the exchange of genetic material [250,251].
These new strains may evade the protection offered by existing vaccines as they possess
different antigenic profiles. The limited understanding of virus evolution and recombi-
nation hinders progress in coronavirus vaccine research [252]. Moreover, the increasing
incidence of spillback to other animal species, as observed with SARS-CoV-2, emphasizes
the need for the development of effective vaccines against animal coronaviruses [253]. The
challenge of recombination events extends to animal coronavirus vaccine development,
underscoring the necessity of creating vaccines that offer broad protection against multiple
CoV strains. The rapid evolution and emergence of new variants in certain CoVs, such
as PEDV, can compromise the effectiveness of existing vaccines by evading the immune
response. To address these obstacles, one approach involves developing recombination-
resistant coronaviruses as vaccines for animal coronaviruses [254]. Another strategy entails
the development of broadly protective vaccines capable of conferring immunity against
multiple strains, including those resulting from recombination events.

In general, creating vaccines for animal coronaviruses is a complex process that
demands a deep understanding of how the virus spreads, evolves, and causes disease. It
also requires substantial resources and the ability to overcome obstacles in order to move
the project forward. Despite these challenges, the veterinary community has achieved
major advancements in developing animal coronavirus vaccines for pigs, dogs, and cats,
demonstrating that it is feasible to create effective vaccines for animal coronaviruses.
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9. Urgent Need to Develop a “Dual-Effect” Vaccine Capable of Inducing Both Cellular
and Humoral Immune Responses

In the field of immunology, cellular immunity and humoral immunity are essen-
tial components of the immune response. Cellular immunity, or cell-mediated immu-
nity, is carried out by T cells and natural killer cells. In contrast, humoral immunity,
or antibody-mediated immunity, involves the production and function of antibodies to
fight off pathogens. It is important to recognize that these two types of immunity are
interconnected and collaborate to defend the body against harmful invaders [255,256].
Consequently, it can be suggested that a “dual-effect” vaccine capable of stimulating
both cellular and humoral immune responses holds great potential for clinical applica-
tions. A “dual-effect” animal coronavirus vaccine would be beneficial for several reasons:
(1) It would provide broader protection against different viral strains. A humoral response
alone is not sufficient to combat highly variable viruses such as coronaviruses because they
frequently mutate, leading to antigenic variation. A cellular response is required to target
conserved regions of the virus that are less likely to change during evolution. Therefore, a
“dual-effect” vaccine could provide more effective protection against new and emerging
strains of coronaviruses; (2) A “dual-effect” vaccine could be more cost-effective than sepa-
rate vaccines. Currently, there are no licensed vaccines for many animal coronaviruses, and
developing individual vaccines for each strain would be time-consuming and expensive. A
single “dual-effect” vaccine could provide broad protection against multiple coronaviruses,
streamlining the vaccination process; (3) It could also help reduce the risk of zoonotic
transmission. Many coronaviruses infect animals, and some, including SARS-CoV-2, can
jump to humans, causing severe disease. A vaccine that induces both cellular and humoral
responses in animals would not only protect them but also reduce the likelihood of zoonotic
transfer [256]; (4) It could lead to better herd immunity. The combination of cellular and
humoral responses would create a stronger defense against viral infections, reducing the
chance of an outbreak occurring and limiting its spread if it does. This would be especially
important in farm settings, where animals are often housed in close quarters and can spread
infections rapidly.

Hence, the ideal vaccine against coronaviruses should elicit the generation of neutraliz-
ing antibodies that impede viral attachment and entry into host cells, along with provoking
cellular immune responses capable of eliminating infected cells. In light of the limited
extent of research in this field, the imperative for the development of a “dual-effect” ani-
mal coronavirus vaccine that can effectively stimulate both cellular and humoral immune
responses has emerged within the realm of vaccine advancement [82]. Presently, most
vaccines developed for animal coronaviruses mainly stimulate the production of virus-
neutralizing antibodies, resulting in humoral immune responses [257]. However, there is
an increasing awareness of the significance of inducing cellular immunity to achieve opti-
mal protection against viral infections [258]. Consequently, numerous avenues are under
exploration to foster the creation of “dual-effect” vaccines, encompassing live-attenuated
vaccines, inactivated vaccines, subunit vaccines, and DNA/RNA-based vaccines [259].
These approaches have exhibited promising outcomes in preclinical investigations, demon-
strating their capacity to elicit robust cellular and humoral immune responses against
animal coronaviruses.

10. Concluding Remarks and Future Perspectives

It is acknowledged that developing effective vaccines necessitates a comprehensive
understanding of viral protein biology [69], and the development of animal coronavirus
vaccines is critical in preventing future outbreaks and mitigating their impact on public
health. Although understanding the coronavirus’s biology is fundamental to designing
animal coronavirus vaccines, it is only the beginning of a long process that leads to an
effective vaccine. Our understanding of pathogenic mechanisms, genetic evolution patterns,
and vaccine development for different coronaviruses still has gaps, despite significant
progress. To overcome these challenges, future research should focus on several areas:
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(1) There is a need for interdisciplinary collaboration between virologists, immunologists,
and cell biologists to investigate the pathogenic mechanisms of different coronaviruses
and their interactions with host cells; (2) Novel vaccine strategies that provide “one shot
to prevent multiple diseases” vaccine must be developed. This means that innovative
approaches such as viral vector-based vaccines, mRNA vaccines, nanotechnology vaccines,
and multi-epitope vaccines must be explored; (3) Collaboration and communication among
researchers and industry stakeholders must be prioritized to ensure that research findings
are translated into effective interventions that can benefit both animal and human health;
(4) It should be noted that the majority of CoV vaccine candidates target the spike protein,
which exhibits high variability, posing a challenge in providing long-term protection
against newly emerging CoV strains; (5) In order to achieve the optimal immune effect
of vaccines, new vaccine delivery routes, adjuvants, and novel approaches for the design,
delivery, and administration of vaccine technologies should be continuously explored and
applied [260,261].

In summary, the development of animal coronavirus vaccines is crucial for controlling
the spread of the virus and minimizing the threat it poses to human health. Although there
have been notable advancements in vaccine research and development, there is still much to
be done. Future research should focus on identifying more animal coronaviruses, developing
more effective vaccine delivery methods, and improving vaccine efficacy and safety. Through
continued research and collaboration, it is possible to develop vaccines that effectively control
the spread of animal coronaviruses and reduce their impact on human health.
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