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More than eight decades have passed since the development of the first vaccine in
the 1940s. During all those decades, the world has seen the availability and clinical use
of several dozen vaccines. Not only has the number of available vaccines increased, but
the pace and volume of vaccine availability have increased significantly [1]. The scale
on which vaccines were manufactured during the last few years was possible only due
to newer vaccine development platforms and the increased number of production units
spreading throughout the world [2]. Apart from conventional ways of vaccine development,
which include the attenuation and inactivation of associated pathogens, modern-day
vaccine formulation avoids the growth of pathogenic entities. Today’s vaccines, be they
subunit, conjugate, VLPs, or mRNA-based, are much safer as these vaccines use only a few
components of the pathogen, which rule out the possibility of vaccine-acquired infection
and attenuated pathogens used as an immunogen in the vaccine transforming into a move
infectious or virulent strain [3,4].

The use of newer platforms in vaccine formulation has also helped in the development
of vaccines against diseases that were previously thought impossible. For example, a
vaccine against malaria is possible only due to the use of a new platform for in-vaccine
formulation. The protozoan’s surface protein (acting as an immunogen) was cloned,
expressed, purified, and used as an immunogen to raise immunity [5]. It will be no surprise
that the world may also see vaccine availability against leprosy and tuberculosis, again, all
thanks to the modern-day practice of vaccine development [6]. Furthermore, the arrival of
the new platform in vaccine development helps develop vaccines preventing cancer. For
example, a VLPs-based vaccine formulation under the trade name Gardisal9 is in clinical
use against human papilloma. Apart from this, several other VLPs-based vaccines have
been approved for clinical use [7].

The most recent and newest addition in vaccine formulation is the use of nucleic
acid-based vaccines during the COVID-19 pandemic. The mRNA-based vaccine against
coronavirus introduced by Pfizer and Moderna towards the end of 2020 can be seen as one
of the most significant breakthroughs in vaccine development [8]. The worldwide use of
mRNA-based vaccines during the pandemic showed the technology’s safe and reliable
nature. This is important as it shows the public’s acceptance of technology and boosts more
research and development in mRNA-based vaccines [9]. Surprisingly, this technology has
gained significant importance in vaccine development. As a result, in a short span of a few
years, several mRNA-based vaccines have entered different phases of clinical trials [10].

Another important and likely platform for vaccine development and formulation is
the use of whole recombinant yeast as a micro container for the storage and delivery of
immunogen/drugs [11]. This platform offers several advantages, including the long-term
stability of immunogen at ambient temperatures and the stability of immunogen during
freeze and thaw processes. This whole recombinant yeast approach showed promising
results in both pre-clinical and clinical trials [12]. A further continuous rise in anti-fungal
resistance and global fungal burden pushed the requirement for an anti-fungal vaccine.
Even in this case, using inactivated whole yeast or recombinant yeast can significantly help.
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Several pre-clinical studies have shown the ability of inactivated yeast to raise a protective
immune response against fungal infection [13,14].

The deployment of new platforms in vaccine development and formulation allows
for the development of safe, effective, and large volumes of vaccines in a short duration.
Despite this, vaccines developed using different regimes suffer from common problems,
which include poor or short shelf life at ambient temperatures and the need for a continuous
cold chain during transportation, storage, and final distribution before final administra-
tion [15]. Therefore, the focus of vaccine formulation should also be on improving the
stability of vaccines and ways to prevent the need for a cold chain. Several methods have
been tested; some look promising [16–20]. Owing to new and modern challenges in the
form of geopolitics (wars, sanctions), vaccine manufacturers and developers should also
pay attention to these issues [21]. Whether a given approach is specific to a given vaccine
or formulation or suitable for different vaccine formulations must be tested [22].

Therefore, the world has come a long way in terms of vaccine characterization, formu-
lations, and development; however, there are still many challenges that need to be taken
care of if the world wants to make the best use of available vaccines in all socioeconomic set-
tings, communities, or societies. Further, all efforts should be made to ensure that vaccines
are available to each individual on the planet by keeping socioeconomic and geopolitics
issues separate. Issues like vaccine hoarding or vaccine monopoly should be dealt with in
a more appropriate way by keeping it more human-centric [23]. Therefore, apart from an
improvement in the manufacturing process, we need to work on other issues (mentioned
above) to make the best use of all the available vaccines.
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