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Abstract: Viral vectors are promising tools for gene therapy and vaccines. Viral vector-based 

vaccines can enhance immunogenicity without an adjuvant and induce a robust cytotoxic T 

lymphocyte (CTL) response to eliminate virus-infected cells. During the last several 

decades, many types of viruses have been developed as vaccine vectors. Each has unique 

features and parental virus-related risks. In addition, genetically altered vectors have been 

developed to improve efficacy and safety, reduce administration dose, and enable large-scale 

manufacturing. To date, both successful and unsuccessful results have been reported in 

clinical trials. These trials provide important information on factors such as toxicity, 

administration dose tolerated, and optimized vaccination strategy. This review highlights 

major viral vectors that are the best candidates for clinical use. 
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1. Introduction  

Viral vectors are regarded as potential tools for gene therapy and vaccines. Their utility is based on 

the ability of viruses to infect cells. In general, the advantages of viral vectors are as follows: (a) high 

efficiency gene transduction; (b) highly specific delivery of genes to target cells; and (c) induction of 

robust immune responses, and increased cellular immunity. 

The concept of viral vector vaccines is different from that of subunit vaccines, as the latter help 

prevent infectious diseases by eliciting a humoral response. Recombinant viral vectors have potential 

for therapeutic use because they enable intracellular antigen expression and induce a robust cytotoxic 
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T lymphocyte (CTL) response, leading to the elimination of virus-infected cells. Despite their efficacy, 

viral vectors present unavoidable problems that need to be addressed. In the near future, viral vector-based 

vaccines may be increasingly used to fight major diseases, such as HIV-1 and malaria. In some 

vectors, stable expression of the interesting gene is achieved via viral integration mechanisms. 

Integration into the host genome can lead to cancer. Another obstacle to the clinical use of viral vectors 

is the presence of pre-existing immunity against the vector. This is caused by previous exposure to the 

virus and the production of neutralizing antibodies that reduce vaccine efficacy.  

The development of viral vectors requires a high biological safety level in order to gain public 

acceptance. Therefore, non- (or low-) pathogenic viruses are often selected. In most cases, viruses are 

genetically engineered to reduce or eliminate pathogenicity. Additionally, most viral vectors are 

replication-defective. For example, in adenovirus-based vectors, the E1A and E1B encoding regions, 

which are needed for replication in infected cells, are deleted and replaced with the target gene. 

When using a viral vector, it is important to assess the potential implications by understanding the 

epidemiological and virological characteristics. In this review, we describe several representative viral 

vectors with respect to risk and benefit, optimized vector-design attempts, and clinical results. 

Moreover, we discuss the combined use of viral vectors in prime-boost vaccination regimens.  

2. Summary of Viral Vectors 

The concept of the viral vector was introduced in 1972. Jackson et al. created recombinant DNA 

from the SV40 virus by genetic engineering [1]. Subsequently, Moss et al. reported the use of vaccinia 

virus as a transient gene expression vector in 1982 [2,3]. Several types of viral vectors have been 

developed, and they have been used in animal studies and clinical trials. 

The specific properties of a vector are determined by the virus from which it derives. Each vector 

has distinct advantages and disadvantages (Table 1). Vaccinia virus and adenovirus are the most 

widely used vectors because they can induce a robust immune response, specifically involving CTL, 

against the expressed foreign antigens. Generally, viral vectors achieve high immunogenicity without 

an adjuvant. Viral components stimulate the innate immune response, leading to the production of 

interferons and inflammatory cytokines [4]. 

Viral vector-based vaccines require assessment of efficacy and safety, including immunogenicity, 

genetic stability, ability to evade pre-existing immunity, replication deficiency or attenuation, and 

genotoxicity. Additionally, the cost-effectiveness must also be evaluated because infectious diseases 

are a problem in developing countries. Thus, it is necessary to consider the large-scale manufacturing 

of viral vectors. Typically, the manufacturing of viral vectors involves propagation in suitable cell lines. 

The European Medicines Agency (EMA) recently provided guidelines on quality for non-clinical 

and clinical aspects [5]. These guidelines offer useful recommendations for the effective administration 

of live, recombinant viral vector-based infectious vaccines. 
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Table 1. Advantages and disadvantages of major viral vectors. 

Virus Advantages Disadvantages 
Major Clinical/Preclinical 

Studies 

Retrovirus Long-term gene expression 

Generation of  

replication-competent virus 

Potential for tumorigenesis 

Infects dividing cells only 

[6] 

Lentivirus 

Long-term gene expression 

Infects non-dividing and  

dividing cells 

Generation of  

replication-competent virus 

Potential for tumorigenesis 

[7,8] 

Vaccinia virus 

High immunogenicity 

Safety: used as a smallpox vaccine 

High titer production 

Pre-existing immunity [9] 

Adenovirus 

High immunogenicity 

Safety: used in many clinic trails 

High titer production 

Pre-existing immunity [10] 

Adeno-associated 

virus 

Long-term gene expression 

Non-pathogenic virus 
Low titer production [11] 

Cytomegalovirus 

Induces a unique CTL response 

Protects against SIV infection in 

an animal model 

Pre-existing immunity 

Risk of pathogenesis in specific 

individuals 

[12] 

Sendai virus High immunogenicity Pre-existing immunity [13] 

3. Viral Vectors 

3.1. Poxviruses as Vaccine-vectors 

Vaccinia virus, a member of the poxvirus family, is a large, complex, enveloped virus. The virus is 

traditionally used for the smallpox vaccine, and its efficacy and safety have been demonstrated. During 

vaccine development, highly attenuated vaccinia virus strains have been generated, including 

replication-competent (LC16m8) and replication-deficient (NYVAC, ALVAC, TROVAC and MVA) 

strains. These strains are most frequently used for vaccinia virus vector production, although numerous 

strains of vaccinia virus exist in humans and animals. 

Modified vaccinia Ankara (MVA) is a highly attenuated strain derived from the vaccinia strain 

Ankara. MVA has lost the 15% of the vaccinia genome and the ability to replicate in mammalian cells. 

MVA has been safely administered to over 120,000 individuals as a smallpox vaccine [14]. For 

priming, 1 × 10
6
 infectious units (IU)/dose of MVA was administered. LC16m8 is derived from the 

Lister strain, which has a narrow host range for replication. LC16m8 has been evaluated in 50,000 

children without severe side effects [15]. NYVAC is generated from the Copenhagen strain by genetic 

deletion. ALVAC and TROVAC are derived from the canarypox and fowlpox viruses, respectively.  

Vaccinia virus has a linear, double-stranded DNA genome approximately 190 kb in length. Because 

of its large size, the viral genome has a high capacity for foreign gene insertion. Indeed, the vector 

accepts approximately 25 kb of foreign genetic material. 
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The first vaccinia virus-based gene expression vector was described in 1982 [2,3]. Since then, many 

studies have shown that vaccinia virus vector-based vaccines can induce a robust immune response 

against foreign antigens because of high transgene expression [16,17]. In additional, the vectors 

activate a strong innate immune response mediated by Toll-like receptors (TLRs) and the inflammasome, 

resulting in an adjuvant effect [18,19]. 

Currently, many clinical trials are evaluating the use of vaccinia virus vectors. Various diseases are 

targets for vaccines, such as HIV-1 [20–22], hepatitis [23], influenza [24], malaria [25,26], tuberculosis 

(TB) [27], and cancer [28]. Most of the vaccines are intended to induce a robust CTL response  

against foreign antigen. In clinical trials, vaccinia virus vectors were well tolerated, although severe 

adverse events were observed in some studies when the MVA vector was administered at a dose  

over 10
8
 pfu [29]. In 2009, a Phase III ALVAC-based HIV-1 vaccine demonstrated a modest 

protective effect. This trial was the first to provide evidence for the efficacy of an HIV-1 vaccine in a 

large-scale study [9]. 

Another advantage of vaccinia virus is that a large-scale manufacturing method was established for 

the production of the smallpox vaccine. For example, Bavarian Nordic A/S produced 20 million doses 

of smallpox vaccine (named IMVAMUNE
®

), which were delivered to the U.S. government for 

emergency use [30]. For large-scale manufacture, the MVA vector is generally produced in chick 

embryo fibroblast (CEF) cells. Specifically, the plasmid with the recombinant transgene is transfected 

into CEF cells using vaccinia virus. The recombinant vectors that propagate in the CEF cells are 

purified by centrifugation. Recently, AGE1.CR [31] and EB66 [32] cell lines have been developed for 

improved MVA production.  

A presumed disadvantage of vaccinia virus vectors is the limited immunogenicity observed in 

smallpox-vaccinated individuals. Pre-existing immunity against the poxvirus may reduce the vaccine’s 

efficacy [33]. According to some clinical trials, the effect of pre-existing immunity is moderate [34,35]. 

Today, efforts to improve vaccinia virus vectors continue. To improve immunogenicity, the 

development of stronger promoters and the removal of immunomodulatory MVA genes have been 

reported [36,37].  

Ultimately, vaccinia virus vectors have the potential to be employed as highly immunogenic  

and well-tolerated vaccines. Their use has historical precedent in the smallpox vaccine, and a 

manufacturing process has been established.  

3.2. Adenovirus Vectors 

Approximately 50 human adenovirus (Ad) serotypes have been identified. Among them, human Ad 

serotype 5 (Ad5) has been widely investigated as a gene delivery vector because it can be easily 

produced in high titers. Ad5 contains a 36-kb double-stranded, linear DNA genome; it has a capsid 

shell with hexon and penton structures and no envelope. Because the Ad fiber protein mediates  

Ad binding to the coxsackievirus and Ad receptor (CAR), it is a major determinant of viral  

tropism. Various clinical syndromes are causes by Ad infection, including acute respiratory disease, 

pharyngoconjunctival fever, and gastroenteritis. 
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Recombinant Ad vectors are widely used because of their high transduction efficiency, high  

level of transgene expression, and broad range of viral tropism. They can infect both dividing and  

non-dividing cells.  

Most Ad vectors are replication-defective because of deletion of the E1A and E1B viral gene region. 

Often, the E3 genes are also deleted to provide space for the transgene. A popular method for Ad vector 

production involves two steps. First, the Ad vector plasmid is transfected into E1-complementing cell 

lines (the 293 cell lines are frequently used). The Ad vector then propagates in the infected 293 cells in 

culture. Second, the vector is collected from infected cells and purified by ultracentrifugation. 

Because most people have been exposed to an Ad serotype, the presence of pre-existing anti-Ad 

immunity is a disadvantage of the Ad vector. Ad contains three main structural proteins, hexon, 

penton, and fiber. These proteins are the major targets of the humoral and cellular immune responses 

against Ad5 [38,39]. Antibodies against the hypervariable regions (HVRs) of the hexon protein 

dominate the neutralizing responses [40]. Modification of these HVRs and the fiber knob domain has 

been investigated as a way to evade pre-existing immunity [41–43]. 

Although replication-defective Ad has reduced its overall virulence, a further improvement in the 

clinical safety profile of Ad vectors is required. For example, because CAR is expressed at a high level 

in hepatocytes, Ad5-based vectors have a strong tropism for liver parenchymal cells, which increases 

hepatotoxicity [44]. Modification of the fiber protein of Ad can alter its tropism and reduce liver 

toxicity [45]. Another approach is modulation of the host immune response by reducing viral gene 

expression. Deletion of the E2 and E4 viral gene regions lowers toxicity by reducing the vector-derived 

immune response in infected cells. This vector is called a 2nd generation Ad vector [46]. 

Modification of the Ad fiber protein also improves the efficiency of gene transduction because fiber 

protein determines the virus’s tropism. The RGD-fiber Ad vector, which incorporates an Arg-Gly-Asp 

(RGD) peptide into the fiber knob domain, enhances transduction into T cells and dendritic cells [47]. 

Our group generated a highly immunogenic chimeric Ad5 vector that expresses the Ad35 fiber 

protein [45]. 

Recombinant Ad vector-based vaccines have been examined in clinical trials against HIV-1 [48,49], 

influenza [50], and solid tumors [51]. Ad vectors are well tolerated, and a Phase I study of an HIV-1 

vaccine identified 10
10

 virus particles (VP) as the best-tolerated dose [52]. Despite these efforts, a 

major Phase IIb trial failed, as the Ad vector further amplified a pre-existing immune response against 

Ad5, during a STEP Study [10]. This result revealed that vector-based vaccines such as the above 

could provide conducive environments for HIV-1 replication, thereby contradicting the clinical safety 

outcomes of a previous HIV-1 study [53]. On the contrary, a Phase I Ad5-based TB vaccine 

demonstrated immunogenic efficacy, in spite of a pre-existing anti-Ad immunity [54]. In order to 

evaluate the safe use of Ad-based vectors, a better understanding of the host immune response against 

different antigens seems necessary. 

3.3. Adeno-Associated Virus Vectors 

Adeno-associated virus (AAV) is a small, single-stranded DNA virus that lacks an envelope.  

AAV is a nonpathogenic viral vector; the virus has low immunogenicity and has never shown any 

pathogenicity. The AAV genome integrates into the human genome at a specific site on chromosome 
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19q. The integration involves the Rep region and inverted terminal repeats (ITR) at both ends of the 

viral genome. Thus, AAV vectors provide long-term transgene expression. The virus can infect both 

dividing and non-dividing cells and has broad tropism for many different cell types.  

Twelve AAV serotypes in humans and more than 100 AAV serotypes in diverse animal species, 

including nonhuman primates, canines, and fowl, have been found. AAV2 is commonly used as a 

vector in preclinical and clinical studies. Each serotype has unique receptors, and the tissue specificity 

is determined by the capsid serotype. For instance, AAV-1 and AAV-7 are best for the transduction of 

skeletal muscle [55,56]. AAV6 and AAV5 infect airway epithelial cells efficiently [57,58]. The AAV 

vector also efficiently transfers transgenes into the brain [59], muscle [60], lung [61], gut [62],  

liver [63], and eye [64]. 

Generally, recombinant AAV vectors are generated by deletion of the Rep and Cap coding regions 

between the ITRs. These regions are used for endogenous transgene expression. Owing to the deletion 

of these regions, AAV vectors cannot integrate into the host genome, and their DNA also persists in an 

episomal form. This preferable feature in the AAV vectors boosts their safety profile, by preventing 

the onset of tumorigenesis. The AAV vector has a transgene capacity of approximately 4.5 kb,  

which is lower than other viral vectors, including herpes virus (30 kb), adenovirus (8–10 kb),  

and retrovirus (7–8 kb). 

During manufacturing, AAV requires a helper virus to replicate. Thus, AAV vector production 

requires complementation of adenovirus regions VA, E1, E2, and E4. These proteins are provided 

either by plasmid co-transfection or by adenovirus infection of host cells. Compared to other viral 

vectors, the AAV vector has low-titer production efficiency. Therefore, high-efficacy and large-scale 

production methods have been developed. For example, the use of baculovirus system enhances AAV 

vector production [65]. Baculovirus systems easily provide helper functions for vector production and 

insect cell growth [66]. 

An alternative way to compensate for low-titer production is to reduce the administration dose. In 

human clinical trials, a dose of 10
12

–10
13

 genome copies/kg body weight of AAV is commonly 

administered. To reduce the dose, it is necessary to improve the transduction efficiency and increase 

the immunogenicity of the vector. To enhance AAV immunogenicity, capsid modification vectors 

have been developed. AAV comprises three structural capsid proteins, VP1, VP2, and VP3. 

Generating of mixture capsids from different serotypes can alter tropism and increase the efficiency of 

gene delivery to target cells or tissues [67]. 

When using AAV vectors, assessment of the risk of genetic toxicity is important because AAV 

vector may require host genome integration for viral gene expression. With regard to the tumorigenicity 

of AAV vectors, conflicting results have been reported in animal studies [68,69].  

Numerous clinical studies have investigated the use of AAV vectors for gene therapy in the 

treatment of Parkinson’s disease [70], Alzheimer’s disease [71,72], cardiac disease [73], and prostate 

cancer [74]. In 2012, the EMA approved an AAV1 vector to deliver the lipoprotein lipase (LPL) gene 

in patients with LPL deficiency [11]. Many animal studies have examined vaccine vectors against 

HIV-1 [75–77], influenza [78], and papillomavirus [79]. These animal studies indicate a potential for 

AAV-based vaccines. However, human clinical trials are rare because AAV vectors induce weak 

humoral and cellular immunity compared to other viral vectors (e.g., Ad, MVA). Moreover, infectious 

vaccines normally target a large population, healthy people, and a wide range of ages, including 
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children and adolescents. Thus, AAV vector-based vaccines require stronger safety measures and 

greater cost-effectiveness than AAV-based gene therapies. 

3.4. Retrovirus Vectors 

A retrovirus is an enveloped, single-stranded RNA virus that contains reverse transcriptase. 

Retrovirus vectors are typically replication-defective, and most are of murine or avian origin. Among 

them, the Moloney murine leukemia virus (MoMLV) has been widely investigated. Retroviruses 

require genome integration for gene expression. Thus, retrovirus vectors similar with AAV, provide 

long-term gene expression. The genome size is approximately 7–11 kb and the vector can easily  

harbor 7–8 kb long foreign DNA inserts. Retroviruses display low immunogenicity and most patients 

do not show any pre-existing immunity to retroviral vectors. However, retroviruses are associated with 

various diseases. For example, MoMLV causes leukemia and lymphoma, although it is species-specific. 

In clinical studies, retroviral vector-based gene therapy has been implemented in patients with an  

X-linked severe combined immunodeficiency (SCID-X1) or malignant glioma [6,80]. The therapy for 

SCID-X1 demonstrated high efficacy. However, four out of the 10 treated patients eventually 

developed lymphoma [81]. This safety issue also arose during preclinical trials [82,83]. The onset of 

tumorigenesis resulted from the integration of viral LTRs into proto-oncogenes. As retroviral vectors 

preferentially integrate near cellular gene promoters that regulate cell replication, non-integrating and 

self-inactivating (SIN) vectors could potentially reduce the risk of tumorigenesis [84,85]. SIN vectors 

contain partially deleted LTRs and are rendered inactive during vector production. Owing to this 

reason, SIN vectors have been recommended for clinical trials targeting SCID-X1 [86]. 

3.5. Lentivirus Vectors 

Lentiviruses constitute a subclass of retroviruses. Lentiviruses infect both non-dividing and dividing 

cells, whereas retroviruses only infect dividing cells. Thus, lentiviruses generally exhibit broader 

tropism than retroviruses. Several proteins such as tat and rev regulate the replication of lentiviruses. 

These regulatory proteins are absent in retroviruses. HIV is a well-known lentivirus that has been 

engineered into a transgene delivery vector. The advantages of lentiviral vector are similar to those of 

retroviral vectors. Although lentiviruses can potentially trigger tumorigenesis, the risk is lower than  

that of retroviral vectors, as the integration sites of lentiviruses are away from the sites harboring 

cellular promoters. 

As of now, several types of HIV-based vectors have been generated, by deleting the HIV viral 

envelope and some of the regulatory genes not required during vector production. Instead of parental 

envelope, several chimeric or modified envelope vectors are generated because it determines the cell 

and tissue specificity. For example, VSV/HIV-1-based vectors contain the envelope glycoprotein 

derived from the vesicular stomatitis virus (VSV), and are used during vaccination owing to the broad 

range tropism exhibited by VSV [87]. Envelopes derived from filovirus [88], MoMLV [89] and 

measles [90] have also been used in designing therapeutic vectors. An HIV-1 based vector called 

VRX496 (developed by VIRxSYS Corporation) was used for HIV-1 gene therapy during recent 

clinical trials. These trials demonstrated a favorable safety profile and a potential application in gene 

therapy [7,8]. 
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The virulence of HIV-1 raises serious concerns. Feline immunodeficiency virus (FIV)-based vectors 

have hence been developed, as the virulence of lentiviruses is highly species-specific [91]. FIV vector 

vaccines developed to combat HIV-1 and the Herpes simplex virus have demonstrated significant 

potential [92,93]. 

3.6. Cytomegalovirus Vectors 

Cytomegalovirus (CMV) is a member of the herpesviruses. Several species-specific CMVs have 

been identified. Among them, human CMV (HCMV), also known as human herpesvirus type 5, has been 

most thoroughly investigated. HCMV contains a 235-kb double-stranded linear DNA genome, which 

is surrounded by a capsid. The envelope contains the glycoproteins gB and gH, which bind to cellular 

receptors. CMV often goes unnoticed because its pathogenicity is mild in people who are immunologically 

healthy. Pathogenesis is a risk only in pregnant woman and immunocompromised individuals.  

Hansen et al. reported that a rhesus CMV (RhCMV) vector-based vaccine protected against SIV 

infection and eliminated SIV [12]. Interestingly, the RhCMV-based vaccine elicits a unique MHC 

class II-restricted CTL response that recognizes a broad range of antigen epitopes. Such features have 

not been observed with MVA- or Ad5-based vaccines [94]. This HCMV vector-based vaccine has 

been recently expected to one of the best effective vaccine against HIV infection. 

3.7. Sendai Virus Vectors 

Sendai virus (SeV) is an enveloped, single-stranded RNA virus of the family Paramyxovirus. It is 

also known as murine parainfluenza virus type 1 or hemagglutinating virus of Japan. SeV causes 

bronchopneumonia in mice, but is considered non-pathogenic in humans. However, as SeV is highly 

homologous to the human parainfluenza type 1 (hPIV-1) virus, a pre-existing immunity against hPIV-1 

also works against SeV. Hara et al. showed that SeV-specific neutralizing antibodies are detected in a 

majority of adult people [95]. The SeV genome encodes six protein and two envelope glycoproteins, 

HN and F proteins, that mediate cell entry. These proteins also determine its tropism. Thus, lack of F 

protein results in a replication-defective virus and improves the safety of the vector. The SeV vector 

produced in the packaging cell expresses the F protein. An F gene-deleted and transgene-inserted 

genome is transfected into the packaging cell. Additionally, SeV contains RNA dependent RNA 

polymerase and viral genome localizes to the cytoplasm. This ensures that fast gene expression occurs 

soon after infection and the genotoxic advantage of SeV. The SeV vector exhibits highly efficient gene 

transfer and transduces both dividing and non-dividing cells. The SeV vector efficiently transduces 

human airway epithelial cells, and it is often administered by a mucosal (oral and nasal) route. 

Intranasal administration can potentially reduce the influence of a pre-existing immunity to SeV, as 

compared to intramuscular administration [96]. Compared to other viral vectors, its transgene capacity 

(3.4 kb) is low, which limits the use of the SeV vector.
 
 

The SeV vector has been used for gene therapy and in a vaccine in human trials [13,97]. A clinical 

trial of an SeV vector-based HIV-1 vaccine is underway (NCT01705990). The trial is using a replicating 

SeV vector, rather than a non-replicating vector, in order to elicit a more effective immune response. 
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4. Combination Vaccine Regimens 

The prime-boost regimen is a common method for vaccination. As mentioned above, multiple 

vaccinations with a single viral vector are considered ineffective because of the induction of anti-vector 

immunity. To overcome this problem, a DNA prime and viral vector boost strategy is often used. 

Many studies have shown that this strategy induces a protective CTL response. Another approach is 

the combined use of different types of viral vectors. This approach has the potential to induce a more 

robust immune response than any other method. As a combination regimen, MVA and Ad vectors are 

generally used because both vectors have high immunogenicity. These vectors elicit a much higher 

immune response when using a prime-boost regimen [98,99]. However, our group found that  

co-administration of Ad and MVA vectors suppressed transgene expression via soluble factors 

secreted by virus-infected cells. In an in vitro experiment, the MVA vector was shown to infect cell 

culture supernatant suppressed Ad vector transgene expression [100].  

Another approach is to combine a viral vector with a currently available vaccine. For instance,  

the BCG vaccine, a live, attenuated vaccine against TB, induces limited protection, especially in 

adolescents and adults. The ability of an MVA85A boost regimen to enhance protective immunity 

following BCG vaccination was examined. A Phase IIb trial of MVA85A failed, but the use of viral 

vectors to enhance a priming immunization remains a possibility [27].  

5. Conclusions 

In conclusion, several viral vectors have been used in vaccine production and in gene therapy. In 

this review, we have described several candidate viral vectors with potential clinical applications. The 

MVA vector and the Ad vector are the most preferred therapeutic vectors against HIV-1. The CMV 

vector elicits a unique immune response, whereas the SeV vector can potentially induce mucosal 

immunity. Viral vector-based vaccines can be easily manufactured alongside traditional vaccines in 

large manufacturing units, and their safety profiles can be tested easily. The MVA virus, the 

poliovirus, and the measles virus, have all been investigated for viral vector use. 

The first clinical trial of a therapeutic retroviral vector took place in 1990. Subsequent clinical 

studies have raised serious concerns regarding genotoxicity, mainly due to possible viral genome 

integration. The AAV vector has the ability to express episomal genes without integrating itself into 

the host genome, and has hence been approved by the EMA for clinical use. 

Today, numerous viral vectors are being investigated. Each vector has unique advantages, as 

described above. Exploiting their advantages will increase their potential and hasten the clinical use of 

viral vector-based vaccines. These vaccines can potentially induce a robust immune response in tissues 

and cells and achieve targeted delivery. Early-phase trials show that they can be tolerated well in 

humans. Ongoing efforts to design and optimize vaccination regimens will eventually result into the 

development of new vaccines.  
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