Next Issue
Volume 4, December
Previous Issue
Volume 4, June
From the start of 2016, the journal uses article numbers instead of page numbers to identify articles. If you are required to add page numbers to a citation, you can do with using a colon in the format [article number]:1–[last page], e.g. 10:1–20.

Vaccines, Volume 4, Issue 3 (September 2016) – 11 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
Article
Ag85A DNA Vaccine Delivery by Nanoparticles: Influence of the Formulation Characteristics on Immune Responses
Vaccines 2016, 4(3), 32; https://0-doi-org.brum.beds.ac.uk/10.3390/vaccines4030032 - 12 Sep 2016
Cited by 13 | Viewed by 2986
Abstract
The influence of DNA vaccine formulations on immune responses in combination with adjuvants was investigated with the aim to increase cell-mediated immunity against plasmid DNA (pDNA) encoding Mycobacterium tuberculosis antigen 85A. Different ratios of pDNA with cationic trimethyl chitosan (TMC) nanoparticles were characterized [...] Read more.
The influence of DNA vaccine formulations on immune responses in combination with adjuvants was investigated with the aim to increase cell-mediated immunity against plasmid DNA (pDNA) encoding Mycobacterium tuberculosis antigen 85A. Different ratios of pDNA with cationic trimethyl chitosan (TMC) nanoparticles were characterized for their morphology and physicochemical characteristics (size, zeta potential, loading efficiency and pDNA release profile) applied in vitro for cellular uptake studies and in vivo, to determine the dose-dependent effects of pDNA on immune responses. A selected pDNA/TMC nanoparticle formulation was optimized by the incorporation of muramyl dipeptide (MDP) as an immunostimulatory agent. Cellular uptake investigations in vitro showed saturation to a maximum level upon the increase in the pDNA/TMC nanoparticle ratio, correlating with increasing Th1-related antibody responses up to a definite pDNA dose applied. Moreover, TMC nanoparticles induced clear polarization towards a Th1 response, indicated by IgG2c/IgG1 ratios above unity and enhanced numbers of antigen-specific IFN-γ producing T-cells in the spleen. Remarkably, the incorporation of MDP in TMC nanoparticles provoked a significant additional increase in T-cell-mediated responses induced by pDNA. In conclusion, pDNA-loaded TMC nanoparticles are capable of provoking strong Th1-type cellular and humoral immune responses, with the potential to be further optimized by the incorporation of MDP. Full article
(This article belongs to the Special Issue Nanoparticles to Co-Deliver Immunopotentiators and Antigens)
Show Figures

Graphical abstract

Review
Neutrophils and Granulocytic MDSC: The Janus God of Cancer Immunotherapy
Vaccines 2016, 4(3), 31; https://0-doi-org.brum.beds.ac.uk/10.3390/vaccines4030031 - 09 Sep 2016
Cited by 47 | Viewed by 5339
Abstract
Neutrophils are the most abundant circulating blood cell type in humans, and are the first white blood cells recruited at the inflammation site where they orchestrate the initial immune response. Although their presence at the tumor site was recognized in the 1970s, until [...] Read more.
Neutrophils are the most abundant circulating blood cell type in humans, and are the first white blood cells recruited at the inflammation site where they orchestrate the initial immune response. Although their presence at the tumor site was recognized in the 1970s, until recently these cells have been neglected and considered to play just a neutral role in tumor progression. Indeed, in recent years neutrophils have been recognized to play a dual role in tumor development by either assisting the growth, angiogenesis, invasion, and metastasis or by exerting tumoricidal action directly via the secretion of antitumoral compounds, or indirectly via the orchestration of antitumor immunity. Understanding the biology of these cells and influencing their polarization in the tumor micro- and macro-environment may be the key for the development of new therapeutic strategies, which may finally hold the promise of an effective immunotherapy for cancer. Full article
(This article belongs to the Special Issue Mechanisms of Tumor Escape from Host Immunity)
Show Figures

Figure 1

Review
T-Regulatory Cells and Vaccination “Pay Attention and Do Not Neglect Them”: Lessons from HIV and Cancer Vaccine Trials
Vaccines 2016, 4(3), 30; https://0-doi-org.brum.beds.ac.uk/10.3390/vaccines4030030 - 05 Sep 2016
Cited by 14 | Viewed by 3184
Abstract
Efficient vaccines are characterized by the establishment of long-lived memory T cells, including T-helper (effectors and follicular) and T-regulatory cells (Tregs). While the former induces cytotoxic or antibody responses, the latter regulates immune responses by maintaining homeostasis. The role of Tregs in inflammatory [...] Read more.
Efficient vaccines are characterized by the establishment of long-lived memory T cells, including T-helper (effectors and follicular) and T-regulatory cells (Tregs). While the former induces cytotoxic or antibody responses, the latter regulates immune responses by maintaining homeostasis. The role of Tregs in inflammatory conditions is ambiguous and their systematic monitoring in vaccination along with effector T-cells is not instinctive. Recent studies from the cancer field clearly showed that Tregs suppress vaccine-induced immune responses and correlate with poor clinical benefit. In HIV infection, Tregs are needed during acute infection to preserve tissue integrity from an overwhelmed activation, but are not beneficial in chronic infection as they suppress anti-HIV responses. Current assays used to evaluate vaccine-induced specific responses are limited as they do not take into account antigen-specific Tregs. However, new assays, such as the OX40 assay, which allow for the simultaneous detection of a full range of Th-responses including antigen-specific Tregs responses, can overcome these issues. In this review article we will revise the role of Tregs in vaccination and review the recent work performed in the field, including the available tools to monitor them, from novel assays to humanized mouse models. Full article
(This article belongs to the Special Issue T Cell Memory to Vaccination)
Review
Monitoring of the Immune Dysfunction in Cancer Patients
Vaccines 2016, 4(3), 29; https://0-doi-org.brum.beds.ac.uk/10.3390/vaccines4030029 - 02 Sep 2016
Cited by 13 | Viewed by 3859
Abstract
Immunotherapy shows promising clinical results in patients with different types of cancer, but its full potential is not reached due to immune dysfunction as a result of several suppressive mechanisms that play a role in cancer development and progression. Monitoring of immune dysfunction [...] Read more.
Immunotherapy shows promising clinical results in patients with different types of cancer, but its full potential is not reached due to immune dysfunction as a result of several suppressive mechanisms that play a role in cancer development and progression. Monitoring of immune dysfunction is a prerequisite for the development of strategies aiming to alleviate cancer-induced immune suppression. At this point, the level at which immune dysfunction occurs has to be established, the underlying mechanism(s) need to be known, as well as the techniques to assess this. While it is relatively easy to measure general signs of immune suppression, it turns out that accurate monitoring of the frequency and function of immune-suppressive cells is still difficult. A lack of truly specific markers, the phenotypic complexity among suppressive cells of the same lineage, but potentially with different functions and functional assays that may not cover every mechanistic aspect of immune suppression are among the reasons complicating proper assessments. Technical innovations in flow and mass cytometry will allow for more complete sets of markers to precisely determine phenotype and associated function. There is, however, a clear need for functional assays that recapitulate more of the mechanisms employed to suppress the immune system. Full article
(This article belongs to the Special Issue Mechanisms of Tumor Escape from Host Immunity)
Show Figures

Figure 1

Review
Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting
Vaccines 2016, 4(3), 28; https://0-doi-org.brum.beds.ac.uk/10.3390/vaccines4030028 - 06 Aug 2016
Cited by 263 | Viewed by 8593
Abstract
Recent years have seen significant efforts in understanding and modulating the immune response in cancer. In this context, immunosuppressive cells, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), have come under intense investigation for their proposed roles in suppressing tumor-specific immune [...] Read more.
Recent years have seen significant efforts in understanding and modulating the immune response in cancer. In this context, immunosuppressive cells, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), have come under intense investigation for their proposed roles in suppressing tumor-specific immune responses and establishing an immunosuppressive tumor microenvironment, thus enabling tumor immune evasion. Additionally, recent evidence indicates that Tregs comprise diverse and heterogeneous subsets; phenotypically and functionally distinct subsets of tumor-infiltrating Tregs could contribute differently to cancer prognosis and clinical outcomes. Understanding Treg biology in the setting of cancer, and specifically the tumor microenvironment, is important for designing effective cancer therapies. In this review, we critically examine the role of Tregs in the tumor microenvironment and in cancer progression focusing on human studies. We also discuss the impact of current therapeutic modalities on Treg biology and the therapeutic opportunities for targeting Tregs to enhance anti-tumor immune responses and clinical benefits. Full article
(This article belongs to the Special Issue Mechanisms of Tumor Escape from Host Immunity)
Show Figures

Figure 1

Article
Highly-Immunogenic Virally-Vectored T-cell Vaccines Cannot Overcome Subversion of the T-cell Response by HCV during Chronic Infection
Vaccines 2016, 4(3), 27; https://0-doi-org.brum.beds.ac.uk/10.3390/vaccines4030027 - 02 Aug 2016
Cited by 26 | Viewed by 3499
Abstract
An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV) infection, as an adjunct to newly developed directly-acting antivirals (DAA), or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A [...] Read more.
An effective therapeutic vaccine for the treatment of chronic hepatitis C virus (HCV) infection, as an adjunct to newly developed directly-acting antivirals (DAA), or for the prevention of reinfection, would significantly reduce the global burden of disease associated with chronic HCV infection. A recombinant chimpanzee adenoviral (ChAd3) vector and a modified vaccinia Ankara (MVA), encoding the non-structural proteins of HCV (NSmut), used in a heterologous prime/boost regimen induced multi-specific, high-magnitude, durable HCV-specific CD4+ and CD8+ T-cell responses in healthy volunteers, and was more immunogenic than a heterologous Ad regimen. We now assess the immunogenicity of this vaccine regimen in HCV infected patients (including patients with a low viral load suppressed with interferon/ribavirin therapy), determine T-cell cross-reactivity to endogenous virus, and compare immunogenicity with that observed previously in both healthy volunteers and in HCV infected patients vaccinated with the heterologous Ad regimen. Vaccination of HCV infected patients with ChAd3-NSmut/MVA-NSmut was well tolerated. Vaccine-induced HCV-specific T-cell responses were detected in 8/12 patients; however, CD4+ T-cell responses were rarely detected, and the overall magnitude of HCV-specific T-cell responses was markedly reduced when compared to vaccinated healthy volunteers. Furthermore, HCV-specific cells had a distinct partially-functional phenotype (lower expression of activation markers, granzyme B, and TNFα production, weaker in vitro proliferation, and higher Tim3 expression, with comparable Tbet and Eomes expression) compared to healthy volunteers. Robust anti-vector T-cells and antibodies were induced, showing that there is no global defect in immunity. The level of viremia at the time of vaccination did not correlate with the magnitude of the vaccine-induced T-cell response. Full-length, next-generation sequencing of the circulating virus demonstrated that T-cells were only induced by vaccination when there was a sequence mismatch between the autologous virus and the vaccine immunogen. However, these T-cells were not cross-reactive with the endogenous viral variant epitopes. Conversely, when there was complete homology between the immunogen and circulating virus at a given epitope T-cells were not induced. T-cell induction following vaccination had no significant impact on HCV viral load. In vitro T-cell culture experiments identified the presence of T-cells at baseline that could be expanded by vaccination; thus, HCV-specific T-cells may have been expanded from pre-existing low-level memory T-cell populations that had been exposed to HCV antigens during natural infection, explaining the partial T-cell dysfunction. In conclusion, vaccination with ChAd3-NSmut and MVA-NSmut prime/boost, a potent vaccine regimen previously optimized in healthy volunteers was unable to reconstitute HCV-specific T-cell immunity in HCV infected patients. This highlights the major challenge of overcoming T-cell exhaustion in the context of persistent antigen exposure. Full article
(This article belongs to the Special Issue T Cell Memory to Vaccination)
Show Figures

Figure 1

Review
Leptin-Induced JAK/STAT Signaling and Cancer Growth
Vaccines 2016, 4(3), 26; https://0-doi-org.brum.beds.ac.uk/10.3390/vaccines4030026 - 26 Jul 2016
Cited by 71 | Viewed by 4673
Abstract
Growth factor and cytokine signaling can influence the development of several cancer types. One of the key players in the development of cancer is the Janus kinas (JAK) signal transducer of activators of transcription (STAT) signaling pathway. The majority of growth factors and [...] Read more.
Growth factor and cytokine signaling can influence the development of several cancer types. One of the key players in the development of cancer is the Janus kinas (JAK) signal transducer of activators of transcription (STAT) signaling pathway. The majority of growth factors and cytokine interactions with their membrane-bound receptors trigger JAK-STAT activation. The influential relationship between obesity and cancer is a fact. However, there is a complex sequence of events contributing to the regulation of this mechanism to promote tumor growth, yet to be fully elucidated. The JAK-STAT pathway is influenced by obesity-associated changes that have been shown to impact cancer growth and progression. This intricate process is highly regulated by a vast array of adipokines and cytokines that exert their pleiotropic effects on cancer cells to enhance metastasis to distant target sites. Leptin is a cytokine, or more precise, an adipokine secreted mainly by adipose tissue that requires JAK-STAT activation to exert its biological functions. Leptin is the central regulator of energy balance and appetite. Leptin binding to its receptor OB-R in turn activates JAK-STAT, which induces proliferation, angiogenesis, and anti-apoptotic events in normal cells and malignant cells expressing the receptor. Leptin also induces crosstalk with Notch and IL-1 (NILCO), which involves other angiogenic factors promoting tumor growth. Therefore, the existence of multiple novel classes of therapeutics that target the JAK/STAT pathway has significant clinical implications. Then, the identification of the signaling networks and factors that regulate the obesity-cancer link to which potential pharmacologic interventions can be implemented to inhibit tumor growth and metastasis. In this review, we will discuss the specific relationship between leptin-JAK-STAT signaling and cancer. Full article
(This article belongs to the Special Issue Cytokine JAK-STAT Signaling in Immunity)
Show Figures

Graphical abstract

Review
Immunological Evaluation of Recent MUC1 Glycopeptide Cancer Vaccines
Vaccines 2016, 4(3), 25; https://0-doi-org.brum.beds.ac.uk/10.3390/vaccines4030025 - 26 Jul 2016
Cited by 39 | Viewed by 4917
Abstract
Aberrantly glycosylated mucin 1 (MUC1) is a recognized tumor-specific antigen on epithelial cell tumors. A wide variety of MUC1 glycopeptide anti-cancer vaccines have been formulated by many research groups. Some researchers have used MUC1 alone as an immunogen whereas other groups used different [...] Read more.
Aberrantly glycosylated mucin 1 (MUC1) is a recognized tumor-specific antigen on epithelial cell tumors. A wide variety of MUC1 glycopeptide anti-cancer vaccines have been formulated by many research groups. Some researchers have used MUC1 alone as an immunogen whereas other groups used different antigenic carrier proteins such as bovine serum albumin or keyhole limpet hemocyanin for conjugation with MUC1 glycopeptide. A variety of adjuvants have been used with MUC1 glycopeptides to improve their immunogenicity. Fully synthetic multicomponent vaccines have been synthesized by incorporating different T helper cell epitopes and Toll-like receptor agonists. Some vaccine formulations utilized liposomes or nanoparticles as vaccine delivery systems. In this review, we discuss the immunological evaluation of different conjugate or synthetic MUC1 glycopeptide vaccines in different tumor or mouse models that have been published since 2012. Full article
(This article belongs to the Special Issue Glycopeptide-based and Related Vaccines)
Show Figures

Figure 1

Article
Factors that Influence the Immunological Adjuvant Effect of Lactobacillus fermentum PC1 on Specific Immune Responses in Mice to Orally Administered Antigens
Vaccines 2016, 4(3), 24; https://0-doi-org.brum.beds.ac.uk/10.3390/vaccines4030024 - 19 Jul 2016
Cited by 7 | Viewed by 2404
Abstract
This study examined the influences of the dosage of the adjuvant, the nature of the antigen and the host genetics on the capacity of L. fermentum PC1 (PC1) to function as an oral adjuvant. BALB/c and DBA/1 mice were vaccinated with either ovalbumin [...] Read more.
This study examined the influences of the dosage of the adjuvant, the nature of the antigen and the host genetics on the capacity of L. fermentum PC1 (PC1) to function as an oral adjuvant. BALB/c and DBA/1 mice were vaccinated with either ovalbumin (OVA) or Salmonella Typhimurium on days 0 and 14, Mice were also dosed with the PC1 (108 CFU or 1011 CFU per dose per mouse) with the antigens (days 0 and 14) and alone (days −1 and 13). The higher PC1 dose elicited a greater specific serum IgG2a response than IgG1 for both antigens and mice strains, indicating a Th1-biased humoral immune response. The Th1 bias was also observed at the cellular level with greater specific IFN-γ levels than IL-4 and IL-10 with both antigen types and mouse strains. With the particulate antigen, the lower dose of PC1 elicited a Th1 bias at the cellular level, but a balanced Th1/Th2 response at the systemic humoral level. With the soluble antigen, a strong Th1-biased response occurred at the cellular level while the systemic humoral response was Th2-biased. In conclusion, PC1 at the higher dose was an excellent Th1 adjuvant, which was unaffected by the nature of the antigen or the host’s genetic background. Full article
Show Figures

Figure 1

Review
Viral Inhibition of the IFN-Induced JAK/STAT Signalling Pathway: Development of Live Attenuated Vaccines by Mutation of Viral-Encoded IFN-Antagonists
Vaccines 2016, 4(3), 23; https://0-doi-org.brum.beds.ac.uk/10.3390/vaccines4030023 - 29 Jun 2016
Cited by 66 | Viewed by 6213
Abstract
The interferon (IFN) induced anti-viral response is amongst the earliest and most potent of the innate responses to fight viral infection. The induction of the Janus kinase/signal transducer and activation of transcription (JAK/STAT) signalling pathway by IFNs leads to the upregulation of hundreds [...] Read more.
The interferon (IFN) induced anti-viral response is amongst the earliest and most potent of the innate responses to fight viral infection. The induction of the Janus kinase/signal transducer and activation of transcription (JAK/STAT) signalling pathway by IFNs leads to the upregulation of hundreds of interferon stimulated genes (ISGs) for which, many have the ability to rapidly kill viruses within infected cells. During the long course of evolution, viruses have evolved an extraordinary range of strategies to counteract the host immune responses in particular by targeting the JAK/STAT signalling pathway. Understanding how the IFN system is inhibited has provided critical insights into viral virulence and pathogenesis. Moreover, identification of factors encoded by viruses that modulate the JAK/STAT pathway has opened up opportunities to create new anti-viral drugs and rationally attenuated new generation vaccines, particularly for RNA viruses, by reverse genetics. Full article
(This article belongs to the Special Issue Cytokine JAK-STAT Signaling in Immunity)
Show Figures

Figure 1

Review
The IL-8/IL-8R Axis: A Double Agent in Tumor Immune Resistance
Vaccines 2016, 4(3), 22; https://0-doi-org.brum.beds.ac.uk/10.3390/vaccines4030022 - 24 Jun 2016
Cited by 175 | Viewed by 6846
Abstract
Interleukin-8 (IL-8, CXCL8) is a pro-inflammatory chemokine produced by various cell types to recruit leukocytes to sites of infection or tissue injury. Acquisition of IL-8 and/or its receptors CXCR1 and CXCR2 are known to be a relatively common occurrence during tumor progression. Emerging [...] Read more.
Interleukin-8 (IL-8, CXCL8) is a pro-inflammatory chemokine produced by various cell types to recruit leukocytes to sites of infection or tissue injury. Acquisition of IL-8 and/or its receptors CXCR1 and CXCR2 are known to be a relatively common occurrence during tumor progression. Emerging research now indicates that paracrine signaling by tumor-derived IL-8 promotes the trafficking of neutrophils and myeloid-derived suppressor cells (MDSCs) into the tumor microenvironment, which have the ability to dampen anti-tumor immune responses. Furthermore, recent studies have also shown that IL-8 produced by the tumor mass can induce tumor cells to undergo the transdifferentiation process epithelial-to-mesenchymal transition (EMT) in which tumor cells shed their epithelial characteristics and acquire mesenchymal characteristics. EMT can increase metastatic dissemination, stemness, and intrinsic resistance, including to killing by cytotoxic immune cells. This review highlights the dual potential roles that the inflammatory cytokine IL-8 plays in promoting tumor resistance by enhancing the immunosuppressive microenvironment and activating EMT, and then discusses the potential for targeting the IL-8/IL-8 receptor axis to combat these various resistance mechanisms. Full article
(This article belongs to the Special Issue Mechanisms of Tumor Escape from Host Immunity)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop