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Abstract: In recent years, microfiltration (MF) has gained great interest as an excellent technique
for clarification of biological suspensions. This paper addresses a direct comparison of efficiency,
performance and susceptibility to cleaning of the ceramic and polymeric MF membranes applied for
purification of 1,3-propanediol (1,3-PD) fermentation broths and suspensions of yeast Saccharomyces
cerevisiae. For this purpose, ceramic, titanium dioxide (TiO2) based membranes and polypropylene
(PP) membranes were used. It has been found that both TiO2 and PP membranes provide sterile
permeate during filtration of 1,3-PD broths. However, the ceramic membrane, due to the smaller
pore diameter, allowed obtaining a better quality permeate. All the membranes used were highly
susceptible to fouling with the components of the clarified broths and yeast suspensions. The
significant impact of the feed flow velocity and fermentation broth composition on the relative
permeate flux has been demonstrated. Suitable cleaning agents with selected concentration and
duration of action effectively cleaned the ceramic membrane. In turn, the use of aggressive cleaning
solutions led to degradation of the PP membranes matrix. Findings of this study add to a growing
body of literature on the use of ceramic and polypropylene MF membranes for the clarification of
biological suspensions.

Keywords: 1,3-propanediol; ceramic membrane; clarification; fermentation broth; fouling; membrane
cleaning; membrane wetting; microfiltration; polymeric membrane; yeast suspension

1. Introduction

Microfiltration (MF) is one of the oldest membrane technologies [1], which is char-
acterized by operating pressure lower than 0.35 MPa and high permeate fluxes, mainly
between 10−4 and 10−2 m/s [2]. Over the last two decades, many attempts have been
made by researchers to comprehensively investigate the use of MF in the clarification
of fermentation broths [3–18] and yeast suspensions [19–32]. It is due to the fact that
separation of biological materials using conventional centrifugal methods is difficult and
expensive [33]. In turn, MF is an effective technique for turbidity removal [34] and offers
several remarkable advantages, such as low cost, easy operation and implementation, high
productivity, absence of phase transition, non-use of additional solvents and so on [8].

Nowadays, advanced clarification of biological suspensions can be performed using a
wide variety of commercially available MF membranes. Moreover, according to [35] the
global market of MF membranes should increase from $2.4 billion in 2018 to $3.7 billion by
2023. Nevertheless, predicting the most suitable membrane for the identified application
is a challenging task and requires a multi-criteria approach. Speed [36] has indicated that
among the most important factors in selecting the right membrane are mechanical strength,
resistance to cleaning chemicals, pore size and surface charge. Additionally, since the
decrease in permeate flux is one of the most important economic criterions for a given
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separation process, due attention should be paid to the membrane performance. It is well
established that the fouling phenomenon is a complex physicochemical phenomenon that
depends on the process operating parameters and the interactions between the membrane
and feed components. Moreover, it leads to the necessity of frequent membrane cleaning.
Consequently, the extensive knowledge of the membrane material and specification is a key
factor in successfully realizing an efficient and economically viable MF process. Moreover,
as it has been pointed out by Warsinger et al. [37], comparing different types of membrane
materials leads to an understanding of their advantages and disadvantages.

In recent years, research on the separation processes using ceramic membranes has
been receiving growing attention. Indeed, Li et al. [38] in the newly published review
article have demonstrated that the publications focused on ceramic membranes have been
expanding over the last 10 years, from less than 150 in 2007 to double that in 2018. It is due
to the distinguished merits of ceramic membranes over their polymeric counterparts. As
recognized in the literature [24,39–44], ceramic membranes offer mechanical strength and
resistance to harsh chemical conditions. In addition, they can withstand temperatures of
up to 500 ◦C [24]. The above-mentioned advantages of ceramic membranes enable their
specialized use in extreme operating conditions. For instance, they allow for aggressive
physical and chemical cleaning of the modules, which ensures the removal of irreversible
fouling, without the risk of damaging membrane integrity. Moreover, ceramic membranes
show excellent corrosion resistance [41] as well as inertness to microorganisms [24] and
organic media [45]. The high reliability of ceramic membranes decreases the cleaning
requirements, reduces the replacement of membrane modules and, thus, prolongs their
operational life expectancy. Nevertheless, ceramic membranes are more prone to breakage
than polymeric membranes [46], thus, they need to be handled carefully.

Nowadays, ceramic membranes are available in different configurations, among
which tubular-shaped clearly dominate the field [47]. Generally, ceramic membranes
have a multilayer structure consisting of one or more different inorganic materials. In
industry, the composition of ceramic membranes is usually based on alumina (Al2O3),
zirconia (ZrO2), titania (TiO2) or combination of these oxides [47] and their characteristics
depend on the materials involved. Since the surface groups of ceramic and polymeric
membranes are different, differences in their fouling are expected [46]. Indeed, ceramic
membranes are generally hydrophilic in nature which ensures a lower protein adhesion
than hydrophobic membranes, such as polypropylene and polyethylene [42]. Moreover,
they have relatively narrow pore size distribution and higher porosity, resulting in better
separation characteristics and a higher flux [46].

It is well recognized that the high prices of raw materials and manufacturing are iden-
tified as the main disadvantages of ceramic membranes. Indeed, Issaoui and Limousy [44]
have noted that the price of an α-alumina porous tubular ceramic membrane with average
pore diameters in the range from 1000 to 6000 nm ranges between $500 and $1000/m2. Def-
initely, the cost of ceramic membranes is the main limiting factor in their large-scale indus-
trial applications. In light of this, polymeric membranes can be considered an alternative.

The most commonly used polymers in membrane production are polypropylene
(PP), polyvinylidenefluoride (PVDF), polyacrylonitrile (PAN), polyethersulfone (PES),
cellulose acetate (CA), polyamide (PI) and polyvinylpyrrolidone (PVP) [48]. Among the
main advantages of polymeric membranes are the low cost of production and possibility
to synthesize novel polymers with well-defined structures [49]. In addition, they show
minimal interaction with organic compounds [50]. However, due to their nature, they
are characterized by a reduced chemical stability to high and low pH, which limits the
possibilities of the chemical cleaning used [51]. It is an important issue which must
be considered, since for cleaning membranes fouled by bacterial suspensions, the most
commonly used are aggressive cleaning agents, such as: sodium hydroxide (NaOH) and
sodium hypochlorite (NaOCl) [5]. Indeed, it has been widely reported [52–59] that chemical
cleaning of polymeric membranes may lead to modification of their hydraulic performances,
mechanical properties and physical structures. For instance, Malczewska and Żak [54]
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have investigated the impact of NaOH, hydrochloric acid (HCl) and NaOCl solutions on
the properties of a flat sheet PES ultrafiltration membrane. The authors have demonstrated
that NaOCl led to degradation of the membrane most quickly. In addition, they found
changes in the membrane surface properties, morphology and hydraulic performance
caused by NaOCl, indicating that it could cause ageing of the membrane after a prolonged
exposure. In turn, in [56] it has been shown that NaOCl may lead to ageing on the PVDF
membrane after prolonged exposure and significant changes in its mechanical properties,
hydraulic performance and chemical groups as well as physical structures.

As stated before, the membrane material is considered as one of the major factors
playing a role on the membrane fouling phenomenon. Hence, in the last years, an important
research effort has been made on the comparison of performance of ceramic and polymeric
membranes used in various pressure driven separation processes, such as: MF of milk [51],
surface water [46] and algal rich water [60], MF and ultrafiltration (UF) of ground water [61]
and real produced water [62], UF of synthetic feedwater [63,64], oil-in-water emulsion [65]
and cadmium(II) ions from aqueous solutions [49] as well as nanofiltration (NF) of trace
organic chemicals [66] and acid mine waters [67]. For instance, Vatai et al. [65] have
demonstrated the comparison of a ceramic ZrO2 membrane (nominal pore size of 20 nm)
with a polyaryletherketone (PAEK) membrane (MWCO of 100 kDa) applied for UF of
oil-in-water emulsion. The authors have pointed out that, although oil rejection of a
ceramic membrane was not satisfactory, its advantage over a polymer membrane in terms
of productivity has been found. Moreover, the necessity of conducting the filtration process
under optimal operating conditions, especially in the case of ceramic membranes, was
emphasized. Also, the authors have highlighted their better mechanical, thermal and
chemical stability. In turn, Kenari et al. [63] have investigated the UF process of synthetic
water with using two types of membranes: a ceramic tubular membrane made of ZrO2
and a support of α-Al2O3 (MWCO of 150 kDa) and a polymeric hollow fiber membrane
composed of a blend of PVP and PES (MWCO of 200 kDa). The authors have shown that,
although both membranes used were similarly fouled during the investigation process, the
physical cleaning was more effective for a ceramic membrane than a polymeric one.

It is essential to mention that in the available literature studies comparing the perfor-
mance of polymeric and ceramic membranes used for clarification of biological suspensions
have not been found. Therefore, much effort should be devoted to comparing performances
of ceramic and polymeric membranes applied for MF of 1,3-propanediol (1,3-PD) fermenta-
tion broths and suspensions of yeast Saccharomyces cerevisiae. The motivation lies in the fact
that 1,3-PD is one of the most important organic chemical materials which is being exten-
sively applied in a range of industrial applications. For instance, it is used for synthesis of a
biodegradable polymer known as polytrimethylene terephthalate (PTT) as well as produc-
tion of detergents, cosmetics, composites and lubricants [23,68–71]. However, fermentation
broths of 1,3-PD are complex media which, apart from the desired product, contain water,
microbial cells, residual carbon source (e.g., glycerol) and various by-products (e.g., acetic
acid, lactic acid, ethanol and 2,3-butanediol) [72]. Hence, in order to obtain the pure main
product, the clarification of post-fermentation solution as the first step of downstream
processing is required. In subsequent stages, metabolites are separated by the nanofiltration
(NF) and reverse osmosis (RO) [73]. The spiral wound structure of membrane modules
used in these processes requires careful removal of turbidity (Silt Density Index < 5) and
sterility of the obtained MF permeate.

In turn, interest in the yeast filtration is related to the fact that Saccharomyces cere-
visiae is the most intensively studied unicellular eukaryote and one of the main industrial
microorganisms [74]. Indeed, its cytoplasm is a rich source of various bioproducts (e.g.,
proteins, polysaccharides and cytoplasmic enzymes) that are valuable in a massive variety
of fields, such as the beverage and food industry, biotechnology and pharmacology [23].
Furthermore, Saccharomyces cerevisiae is one of the hosts for synthetic biology [20]. Impor-
tantly, this microorganism has well-defined granulometric properties, its suspension is
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easily prepared feed and, hence, it is an excellent model system for studying the behavior
and treatment of biological materials [21,24].

Given the background described above, this work addresses the direct comparison
of efficiency, performance and susceptibility to cleaning of the ceramic and polymeric
microfiltration membranes applied for clarification of 1,3-propanediol fermentation broths
and aqueous suspensions of dry distillery yeast Saccharomyces cerevisiae-Bc 16a. For this
purpose, the membranes made of TiO2 and PP in different module configurations (tubular
and capillary) were tested.

2. Materials and Methods
2.1. Feed Suspensions

The glycerol fermentation was carried out in a LiFlusGX bioreactor (Biotron Inc.,
Korea), using Citrobacter freundii and Lactobacillus casei bacteria isolated and characterized
in Department of Biotechnology and Food Microbiology, Poznań University of Life Science
(Poland). The process has been described in detail in our previous works [72,75]. The
obtained 1,3-PD post-fermentation solutions were subsequently used as feed in the studied
MF processes. Their compositions are presented in Table 1.

Table 1. The compositions of post-fermentation broths with Lactobacillus casei and Citrobacter freundii
bacteria.

Component [g/L] Lactobacillus casei Citrobacter freundii

wetted mass 21.6–27.9 28–32.5
meat extract 8 1.5
yeast extract 5 2
peptone K 10 2.5
lactic acid 13.5–15.2 2.1–3.5

1,3-propanediol - 18.9–22.5
glycerol 3–4.7 1.7–3.8

acetic acid 2–3.6 1.2–2.3
formic acid 0.25–0.3 0.8–1.22

succinic acid - 0.7–2.13
amonium citrate 2 -
K2HPO4·3H2O 0.6 3.4

KH2PO4 - 1.3
MgSO4·7H2O 0.4 0.9

(NH4)2SO4 - 2
CH3COONa 1.5 -
CaCl2·2H2O - 0.01
CoCl2·6H2O 0.004 0.002

Suspensions of commercially available distillery yeast Saccharomyces cerevisiae-Bc 16a
(Wytwórnia Drożdży Maszewo Lęborskie, Poland) were also used as feed in this study.
The yeast concentrations of 0.1, 0.16 and 0.5 g/L were prepared by mixing dry yeast cells
and distilled water at room temperature for 30 min.

2.2. Microfiltration Set-Up and Process Parameters

Microfiltration experiments were carried out in the installations (Figure 1), the schemes
of which were described in detail in our previous studies [5,76].

In the present research, four different modules with MF membranes were used
(Table 2). Modules M1 and M2, without an external shell, were tested in the installa-
tion shown in Figure 1a. In each of these modules, the four capillary membranes made of
polypropylene were assembled. In turn, in the pilot installation presented in Figure 1b,
tubular modules (diameter 12 mm) with the polypropylene membrane (module M3) or
ceramic membrane (M4) were tested.
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Figure 1. Experimental installations: (a) Laboratory trial: 1—polypropylene (PP) module, 2—per-
meate tank, 3—feed tank, 4—peristaltic pump, 5—valve, 6—balance, P—manometer; (b) pilot 
plant: 1—tubular module, 2—feed tank, 3—pump, 4—rotameter, 5—measurement cylinder, 6—
temperature and rpm (pump) regulator, 7—electrical heater, 8—water cooling, 9—backflushing 
system, P—manometer. 
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Figure 1. Experimental installations: (a) Laboratory trial: 1—polypropylene (PP) module, 2—
permeate tank, 3—feed tank, 4—peristaltic pump, 5—valve, 6—balance, P—manometer; (b) pilot
plant: 1—tubular module, 2—feed tank, 3—pump, 4—rotameter, 5—measurement cylinder, 6—
temperature and rpm (pump) regulator, 7—electrical heater, 8—water cooling, 9—backflushing
system, P—manometer.

Table 2. Characteristics of the MF membranes used in the experiments—manufacturers data.

Module Manufacture Membrane d1

[µm]
D2

[mm]
Length

[cm]
Wall
[mm]

Area
[cm2]

M1, M2 Membrana GmbH,
Germany Accurel PP S6/2 0.20 1.8 95 0.4 21.5

M3 Membrana GmbH,
Germany Accurel PP V8/2 HF 0.20 5.5 22 1.5 38.0

M4 Tami Ind., France TiO2 0.14 5.6 22 2.0 38.7
1 Pore diameter. 2 Capillary membrane inner diameter.

Due to the hydrophobic properties of polypropylene, water does not wet PP mem-
branes, while water penetration into the pores (Liquid Enter Pressure—LEP) occurs under
the pressure of 0.2–0.3 MPa. Therefore, prior to the MF experiments, a membrane wetting
operation was required. For this purpose, the Accurel PP S6/2 membranes assembled in
the modules M1 and M2 were submerged into ethanol for 15 min, and then the filtration
of ethanol (100 mL) was conducted. Subsequently, in order to remove residual ethanol,
the membranes were flushed by distilled water (2 L) and the permeate flux J as a function
of transmembrane pressure (TMP) was determined. Then, the filtration of distilled water
under TMP equal to 0.03 MPa for 4 h was performed. Due to the instability of the recorded
permeate flux values, the next day water was removed from the system, the membranes
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were immersed in ethanol and the filtration was conducted for 15 min. Then, alcohol
was rinsed with water and the relationship J = f(TMP) was studied. Subsequently, water
filtration was continued under TMP of 0.03 MPa for 2 h. Then, water was replaced with
ethanol and the above-described operation was repeated two times. Since the obtained
relationship between the permeate flux and TMP was repeatable, the studies on MF of
biological suspensions were started. In turn, the Accurel PP V8/2 HF membrane assembled
in the M3 module was wetted by filling the outer space of the module with ethanol and
filtering it for 15 min. Subsequently, the water filtration was carried out for 30 min. In the
next step, the water flux as a function of TMP was determined using a pressure ranging
from 0.04 to 0.1 MPa. Finally, the water filtration was continued for several hours, obtaining
a constant relationship J = f(TMP), independent of the feed flow rate.

Microfiltration experiments of 1,3-propanediol fermentation broths and yeast Saccha-
romyces cerevisiae suspensions have been carried out at constant temperature of 30 ◦C and
across a wide range of process parameters. The TMP ranging from 0.02 to 0.08 MPa was
used. In turn, the applied feed flow velocity VF was from 0.8 to 11 m/s.

The permeate flux J was calculated based on the measured volume of collected perme-
ate according to Equation (1), as follows:

J =
∆V
S∆t

(1)

where ∆V is the permeate volume (L) collected over ∆t period (h), S is the total active
membrane area (m2).

Fouling intensity was determined by measuring the relative permeate flux, defined
as the ratio between the actual permeate flux J and maximum permeate flux J0 for a clean
membrane.

Cleaning efficiency was estimated from the ratio of water permeate fluxes after mem-
brane cleaning to the maximum flux, obtained under the same operational conditions
(temperature, transmembrane pressure and feed flow velocity).

2.3. Analytical Methods

Permeate and feed samples were analyzed in terms of compounds content, turbidity
and number of bacteria. The analytical methods used for this purpose were described in
detail in our previous work [5]. The morphology of the membrane surface was examined
by scanning electron microscopy (SEM) (SU-70 and SU-8000, Hitachi High Technologies
Co., Tokyo, Japan).

3. Results
3.1. Membranes Morphology and Maximum Performance

The polypropylene membranes used for the present studies were formed via TIPS
method. It has been determined that, due to the interaction with the gelling bath, the
porosity of the membrane surface (Figure 2a) slightly differs from that observed inside the
wall (Figure 2b). In turn, the ceramic membrane manufactured by Tami Ind. had both a
support layer and a thin active layer made of TiO2 (Table 2). The structure of these layers
was crystalline, ranging from a small size in the surface active layer (Figure 2c) to over
20 µm in the support layer (Figure 2d).

As reported in Section 2.2, an operation of wetting the PP membranes with ethanol
was carried out prior to the MF experiments. Subsequently, in order to remove the solvent,
the membranes were shortly rinsed with distilled water. However, the performed operation
was not effective since the membranes regained their hydrophobic properties. Probably,
the new PP membrane, after washing the ethanol with water, shows a strong tendency to
push the water out of the pores and part of its volume is again filled by air, which blocks
the flow of water through the pores. Indeed, after 2–3 h of the water filtration a rapid
decline in the permeate flux was observed. For instance, for TMP equal to 0.05 MPa, a
decrease in the M2 module performance from 630 to 112 L/m2h was reported.
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An important point which should be noted is that stable modules performance
(Figure 3, lines L2) was obtained after 2–3 days of the rinsing, during which the oper-
ation of membrane wetting was repeated several times. Moreover, the results presented in
Figure 3 show that the PP membranes performance after wetting depends on the pumping
pressure of the rinse water. The M3 module (V8/2 HF membrane) was rinsed under much
higher pressure (0.04–0.1 MPa) than the S6/2 membranes assembled in M1 and M2 mod-
ules (0.01–0.05 MPa). Probably, the use of higher TMP values prevents water from being
pushed out of the pores and re-creating the gas phase in them, hence, the performance
drop of the M3 module was much lower.

In turn, the performance of the ceramic membrane used was more stable. The mem-
brane was conditioned by rinsing with distilled water for two days, with fluctuations of
the permeate flux up to 30%. Finally, the performance of the M4 module stabilized after
washing the membrane with 3% NaOH solution for 60 min, and then for the same period of
time with 3% H3PO4 solution. It is worth noting that under the same operating conditions,
the maximum permeate flux noted for the ceramic membrane (M4) is lower than that
for the V8/2 membranes (M3) (Figure 3). This observation is related to the fact that the
V8/2 membranes have a larger pore size (0.20 µm) than the ceramic membrane (0.14 µm)
(Table 2). Obviously, membranes with larger pore size are more porous, which means they
provide a higher permeate flux [31].

Figure 3 shows the stabilized performances obtained for the tested modules fed with
distilled water. Unfortunately, the permeate flux decreases significantly during filtration of
real solutions. Importantly, the intensity of the flux decline, apart from the properties of
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membranes (hydrophilic or hydrophobic), is significantly influenced by the composition of
the feed. For this reason, in order to investigate the intensity of the fouling phenomenon, in
subsequent stages of the research, in addition to yeast suspension, real broths with different
compositions (Table 1) were used.
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Figure 3. The maximum permeate flux as a function of transmembrane pressure (TMP): 1—after
one operation of membrane wetting, 2—stabilized J0 values after several operations of membrane
wetting.

3.2. Filtration of Fermentation Broths with Citrobacer freundii Bacteria

The glycerol fermentation process was carried out for 48 h. Once the process run
was complete, the obtained 1,3-propanediol post-fermentation solution was clarified using
the MF membranes. Figure 4 shows the changes in the relative permeate flux of the M1
module during the filtration of solution with Citrobacter freundii bacteria. The process
under TMP equal to 0.03 MPa and VF of 0.8 m/s was conducted. It has been demonstrated
that the permeate flux systematically decreased over 120 min. Obviously, it was caused
by the membrane fouling, defined as “the accumulation of substances on the membrane
surface and/or within the membrane pores, which results in deterioration of membrane
performance” [77]. Subsequently, the solution was drained from the tank and the membrane
module was flushed with 2 L of distilled water (TMP = 0). Then, the performance of the
membrane for distilled water was controlled. It has been reported that the permeate flux
during the MF of distilled water increased slightly, indicating that the presented method of
the membrane cleaning was not efficient. Then, the MF process of the broth was resumed.
It can be clearly observed that after three series of filtration, followed by systematically
carried out water filtration, the maximum performance of the membrane module decreased
by nearly 50%.

One membrane from the M1 module was collected and the surface morphology of the
selected membrane was examined using scanning electron microscopy (SEM). Meanwhile,
three membranes remaining in the M1 module were rinsed with 1% NaOH solution for 30
min. It is important to note that this operation allowed to almost completely recover the
maximum permeate flux (Figure 4, CR point). The high effectiveness of NaOH solution
is related to the fact that at caustic conditions, large organic particles (e.g., colloids and
microbes) can be disintegrated into fine particles and soluble organic matters, while organic
matters (e.g., proteins and carbohydrates) can be hydrolyzed and solubilized into small
molecules [78]. It is worth noting that in the study [10], NaOH solution was successfully
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used as a cleaning agent for microfiltration membranes made of CA and PVDF and a PES
ultrafiltration membrane fouled with Bacillus thuringiensis fermentation broth.
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PD) fermentation broth with Citrobacter freundii. Module M1, TMP = 0.03 MPa, VF = 0.8 m/s,
CR—chemical cleaning (1% NaOH).

Considering the application of NF/RO processes for MF permeate separation, the
sterility and turbidity of filtered fermentation broths control the efficiency of the MF
process. Therefore, in the present study these quality attributes of the obtained permeate
were continuously controlled. It has been found that both the ceramic and PP membranes
used provided a sterile permeate. Indeed, although the number of bacteria in the feed was
of an order of 12 log CFU (colony-forming units-CFU/mL), no bacteria was detected in the
permeate samples.

Regarding turbidity, during the MF process with the M1 module, the broth was
recirculated through the system, which resulted in a continuous concentration of the feed
and, consequently, an increase in its final turbidity to about 8000 NTU (Figure 5). Despite
such a high value, the turbidity-free filtrate was obtained. It is worth noting that during the
first series of measurements with the new membranes, the permeate turbidity increased
to 3 NTU, while in the third series it stabilized at 1 NTU. The observed decrease of the
NTU values during the MF process indicated the phenomenon of membranes fouling,
which was confirmed by the observed decrease in module performance (Figure 4). Roughly
speaking, the membrane efficiency can be increased due to the cake formation, as particles
with diameters smaller than the pore size of the membrane are more susceptible to being
captured by the cake [79]. An apparent decrease in the turbidity of permeate samples
during the pressure driven separation processes of fermentation broths has also been
reported in several previous studies [5,7,72,80].

Figure 6 shows the SEM image of the PP S6/2 membrane surface after the MF process
of fermentation broth with Citrobacter freundii performed under TMP of 0.03 MPa and
VF of 0.8 m/s. It can be clearly observed that the surface of the membrane tested was
completely covered by deposit in which the Citrobacter freundii cells can be seen. As it has
been described in [81] they are rod shaped and typically range from 1 to 5 µm in length.
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Figure 6. SEM image of PP S6/2 membrane (module M1) surface covered by deposit after MF process
of fermentation broth with Citrobacter freundii. Deposit formed during 6 h of MF process.

It is well known that the adverse effects caused by fouling may be reduced by oper-
ating the filtration process under an increased shear rate near the membrane. Generally,
enhanced hydrodynamic conditions are applied in the systems equipped with ceramic
membranes. Indeed, the increase of the permeate flux with increase of the shear rate has
been reported in several previous works [5,7,8,27,80,82–84] where the use of ceramic MF
and UF membranes in clarification of various biological suspensions has been studied.
A similar pattern of results was obtained in the present work. In our research, the effect
of the feed velocity during the MF of 1,3-PD fermentation broth with using the ceramic
membrane (module M4) under TMP equal to 0.08 MPa has been investigated. It was found
that increasing the feed flow velocity from 5.5 to 11 m/s allowed the increase of the steady
state permeate flux from 180 to 228 L/m2h. It clearly indicates that two-fold increase of
the feed velocity led to an increase of the relative flux from 0.3 to 0.38 (Figure 7). This
observation can be explained by the fact that the higher feed crossflow velocity led to a
reduction of the deposited particles and consequently an increase in the permeate flux.
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However, it should be mentioned that in industry, the use of high crossflow velocities leads
to high pressure losses and increased process costs [51].
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Figure 7. Effect of feed flow velocity on the relative permeate flux during MF of 1,3-PD fermentation
broth with Citrobacter freundii. Module M4, TMP = 0.08 MPa, J0 = 311 l/m2h.

Figure 8 shows the changes in the feed and permeate turbidity during the MF of
1,3-PD fermentation broth with Citrobacter freundii using the ceramic membrane.
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Figure 8. Changes in feed and permeate turbidity during MF of 1,3-PD fermentation broth with
Citrobacter freundii. Module M4, TMP = 0.08 MPa.

It has been found that, likewise to the process with using the PP membranes, the
obtained permeate was sterile and its turbidity decreased over the MF time. It has been
demonstrated that the ceramic membrane used provided obtaining the permeate charac-
terized by the turbidity equal to 0.2 NTU at the end of the trial. The most conspicuous
observation to emerge from the data comparison was the quality of permeate obtained
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during the MF with ceramic and polypropylene membranes. Indeed, the value mentioned
above is significantly lower than that recorded during the MF process with the PP mem-
branes (Figure 5). It is due to the fact that, as presented in Table 2, the ceramic membrane
used had a nominal pore size (0.14 µm), smaller than the PP membranes (0.20 µm). These
results offer vital evidence that the permeate quality is directly correlated to the membrane
pore size. The similar relation between diameters of the MF membranes pore size and
filtrate quality has been found in previous studies [79,85]. For instance, Mora et al. [85]
investigated the MF process of a grape marc extract characterized by the turbidity equal to
640.44 ± 380.32 NTU. The authors have shown that the use of ceramic membranes with
the pore sizes of 0.14 and 0.80 µm provided the permeate with 3.8 NTU and 4.8 NTU,
respectively. On the other hand, our results differ from those of Ciu et al. [86] who studied
the filtration process of seawater collected from a seawater desalination reverse osmosis
plant. For this purpose, the authors have used ceramic membranes with pore sizes equal
to 50, 200, 500 and 800 nm. They have indicated that the pore size of membranes has
insignificant effects on the obtained permeate turbidity.

Moreover, results obtained in the present study (module M4) have shown that the
turbidity of the permeate was independent of the feed flow velocity (Figure 8), indicating
that the separation improvement was mainly due to internal membrane fouling.

Membrane chemical cleaning is considered the most effective method to recover the
permeate flux. However, its efficacy depends on several factors, such as: the membrane
and fouling type, choice of cleaning agents and their concentration as well as cleaning
conditions (e.g., temperature, pressure, cross-flow velocity, pH, time) [78]. However, as
stated before, prolonged exposure to chemical cleaning agents may lead to physical and
chemical degradation of polymeric membranes, resulting in a change in their performance
and selectivity. Therefore, in order to investigate the impact of multiple cleaning cycles on
the polypropylene membranes’ properties, the long-term MF process of 1,3-PD fermenta-
tion broth with Citrobacter freundii with periodically rinsing the module with 1% NaOH
solution has been conducted (Figure 9).
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Figure 9. Changes in relative permeate flux during the long-term MF process of 1,3-PD fermentation
broth with Citrobacter freundii, with periodically cleaning the module with 1% sodium hydroxide
(NaOH) solution. Module M1, TMP = 0.03 MPa, VF = 0.8 m/s, CR—chemical cleaning.

The clarification process under TMP of 0.03 MPa and VF equal to 0.8 m/s has been
conducted. Results obtained in our research revealed that cleaning allowed the recovery of
the initial permeate flux in 60–80%. Importantly, the performance of MF with distilled water,
conducted in the next step, allowed the complete recovery of the maximum permeability of
the membranes. This noteworthy result suggests that the NaOH solution did not completely
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remove the deposit but allowed a part of it to be loosened. Hence, the water filtration
provided to cleanse the deposit, especially, that accumulated in the membrane’s pores.

It is necessary to mention that, although the multiple cleaning cycles have been
performed, the recorded permeate turbidity for the last two measurement series (Figure 9)
was lower than 1 NTU (Figure 10). What becomes apparent from the discussed results is
that in the end of the process a better separation efficiency was obtained (Figure 5).
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The SEM analysis showed slight surface degradation of the PP membranes (Figure 
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mented (Figure 10), it can be concluded that the cleaning with NaOH solution changed 
the top layer of membranes, while the pores were not significantly enlarged. However, in 
comparison with Figure 2a, an increase in the porosity of the membrane surface can be 
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Figure 10. Changes in feed and permeate turbidity during the last two measurement series of the MF
of 1,3-PD fermentation broth with Citrobacter freundii. Module M1, TMP = 0.03 MPa, VF = 0.8 m/s.

The SEM analysis showed slight surface degradation of the PP membranes (Figure 11).
Since maintaining the good separation properties of membranes has been documented
(Figure 10), it can be concluded that the cleaning with NaOH solution changed the top layer
of membranes, while the pores were not significantly enlarged. However, in comparison
with Figure 2a, an increase in the porosity of the membrane surface can be observed. It
could facilitate the penetration of the foulants deeper into the membrane wall, which has
resulted in an increase in the decline of relative flux observed for the last two measurements
series, shown in Figure 9.
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In regards to the ceramic membrane, it has been reported that its cleaning after the
filtration of 1,3-PD fermentation broths with Citrobacter freundii (Figure 7, TMP = 0.08 MPa,
VF = 5.5 m/s) with only 1% NaOH did not provide satisfactory results. Indeed, it has
been found that recovering the initial performance of the module required a more complex
cleaning procedure (Figure 12). In order to determine the minimum cleaning time required
to recover the maximum permeate flux, cycles of 5–10 min were performed.
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order to increase the cleaning efficiency, 3% NaOH solution was used. It has been found 
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its maximum value. However, the subsequent membrane rinsing and water filtration for 
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Figure 12. The efficiency of cleaning the ceramic membrane after the MF of 1,3-PD fermentation
broth with Citrobacter freundii (VF = 5.5 m/s. TMP = 0.08 MPa). Operation time: water—30 min,
NaOH—5 min, backwash—5 min, acid—10 min.

It has been demonstrated that the membrane rinsing with distilled water for 30 min
allowed to recover the maximum membrane permeability in 40% (Figure 12). Then, in
order to increase the cleaning efficiency, 3% NaOH solution was used. It has been found
that after five cycles of caustic rinsing, the M4 module performance increased to 86% of
its maximum value. However, the subsequent membrane rinsing and water filtration for
30 min did not allow improving the cleaning efficiency. This result is different from that
obtained for PP membranes, where, after rinsing with NaOH solution, additional water
filtration ensured the recovery of initial membranes permeability (Figure 9). In turn, the
efficiency of the M4 module slightly increased after backwashing (25 min total, Figure 12,
operations 10–14) and only membrane rinsing with 3% H3PO4 solution for 50 min allowed
recovery of the initial module performance (Figure 12, operation 15–20).

The cleaning time determined for individual rinsing solutions (Figure 12) was applied
for the procedure of the M4 module cleaning (Figure 13) after the filtration was performed
at the feed flow velocity equal to 11 m/s (Figure 7). The efficiencies obtained for each
stage of membrane cleaning, presented in Figure 13, were similar to the previous ones
(Figure 12). However, the rinsing of the membrane with 3% NaOH solution for 25 min
provided a lower recovery of the membrane performance, equal to 69% of its maximum
value (instead of 86%). In turn, after 25 min of backwash, 71% of the maximum permeate
flux has been noted. It has been determined that final cleaning with H3PO4 solution for
50 min ensured the complete recovery of the maximum module performance (Figure 13,
operation 4).
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Figure 13. The efficiency of cleaning the ceramic membrane after the MF of 1,3-PD fermentation
broth with Citrobacter freundii (VF = 11 m/s. TMP = 0.08 MPa). Operation time: water—30 min,
NaOH—25 min, backwash—25 min, acid—50 min.

The use of the developed membrane cleaning procedure allowed to maintain the
steady-state relative permeate flux equal to 0.2 for repeated MF process (Figure 14). A
slight decrease in the initial permeate flux was observed, which was reduced by increasing
the cleaning temperature from 30 ◦C to 45 ◦C and extending the contact time with the
cleaning solutions (NaOH and H3PO4) to 60 min (Figure 14, series S6 and S7).
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Figure 14. Changes in relative permeate flux during the long-term MF process of 1,3-PD fermentation
broth with Citrobacter freundii. Module M4, TMP = 0.02 MPa, VF = 5.5 m/s, CR—chemical cleaning.

Summarizing, results obtained in the present study demonstrated that ceramic mem-
branes can be effectively cleaned by suitable cleaning agents with selected concentration
and duration of action. In turn, the use of aggressive solutions could cause rapid degrada-
tion of the polypropylene membrane matrix.
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3.3. Filtration of Fermentation Broths with Lactobacillus casei Bacteria

It is well known that the intensity of membrane fouling depends on the composition
and properties of a feed solution. Therefore, for comparative purposes, in the next step
of our research, the MF of 1,3-PD fermentation broth with Lactobacillus casei was investi-
gated. This feed contained more protein components than the broth with Citrobacter freundii
(Table 1). It has been found that during the MF process of broth with Lactobacillus casei the
reported relative flux was equal to 0.2 (Figure 15, S1 and S2). Thus, it was 10 percentage
points lower than that obtained during the MF of broth with Cirobacter freundii (Figure 7),
performed under the same values of TMP and VF, equal to 0.08 MPa and 5.5 m/s, respec-
tively. These results indicate that increasing the concentration of foulants, such as meat
and yeast extracts as well as peptone K in a feed, led to more intensive membrane fouling.
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Figure 15. Changes in relative permeate flux during the long-term MF process of 1,3-PD fermentation
broth with Lactobacillus casei with periodically cleaning the module. Module M4, TMP = 0.08 MPa,
VF = 5.5 m/s, CR—chemical cleaning.

As expected, cleaning the M4 module with distilled water did not significantly affect
the performance of the process and the relative permeate flux remained at the value equal
to 0.2 (Figure 15, S1 and S2).

A much higher module performance, with the stabilization of the relative permeate
flux of 0.25, was obtained as a result of cyclic cleaning of the module with NaOH and acid
solutions (Figure 15, Series 3–5). However, despite an extensive cleaning procedure, the
performance of the M4 module only increased to 0.83 of its maximum value (Figure 16).

A similarly significant decline in the MF process performance with using PP mem-
branes has been noted (Figure 17). Although the new M2 module for this investigation was
used, the relative permeate flux was stabilized at 0.05 (Figure 17, S1). Membrane cleaning
with distilled water led to a slight increase of the flux, however, the continued process of
broth clarification led to the decline in relative flux again to the value of 0.05 (Figure 17, S2).
For the next cleaning, 1% NaOH solution for 30 min was used, which allowed the recovery
of the initial membrane performance. As a consequence, a lower decrease in the permeate
flux during the next series of the MF process was obtained (Figure 17, S3).
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Figure 16. The efficiency of cleaning the ceramic membrane after the MF (TMP = 0.08 MPa,
VF = 5.5 m/s) of 1,3-PD fermentation broth with Lactobacillus casei. Operation time: water—30 min,
backwash—5 min, NaOH—60 min, acid—60 min.
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Figure 17. Changes in relative permeate flux during the long-term MF process of 1,3-PD fermenta-
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noticed that rinsing the module with distilled water caused a slight increase in the mem-
brane performance, while the use of chemical cleaning agents (1% NaOH for 20 min and 
0.5% H3PO4 for 20 min) led to an increase of the relative flux to 0.8. However, continuation 
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in the performance, below 0.04 of the maximum permeate flux (Figure 18, S2). It is worth 
noting that, typically, yeast cells are 5–10 µm in diameter [87,88], hence, they are retained 
by the membranes used in our research. However, the prepared feed solution, apart from 
yeast cells, contained other substances, e.g., proteins, which formed a deposit layer on the 

Figure 17. Changes in relative permeate flux during the long-term MF process of 1,3-PD fermentation
broth with Lactobacillus casei with periodically cleaning the module. Module M2, TMP = 0.05 MPa,
VF = 1.5 m/s, CR—chemical cleaning (NaOH).

A series of MF experiments conducted allowed for comparison the performances of
polypropylene membranes used for the clarification of fermentation broths with Citrobacter
freundii (module M1, Figure 9) and Lactobacillus casei (module M2, Figure 17). It was found
that although the more favorable operating conditions were used for the process with the
M2 module, a decrease in the permeate flux was greater. This finding confirmed the above-
mentioned result indicating that the broth composition plays a key role in the intensity
of membrane fouling, and the increased concentration of protein components in the feed
leads to a greater reduction of the filtration process performance.
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3.4. Filtration of Yeast Suspensions

It is well known that the design of the module and the turbulence of the feed low affect
the intensity of the membrane fouling phenomenon. Hence, in the present study, the M3
and M4 modules with the same design and similar membranes diameters (Table 2) were
applied for clarification of Saccharomyces cerevisiae yeast suspensions in the pilot installation
(Figure 1b). It ensured investigating the M3 and M4 modules performance under similar
hydrodynamic conditions.

Although the high flow velocities (Re number = 12,000) for the process with using the
M3 module have been applied, during the MF process of the solution containing 0.1% yeast,
the relative permeate flux decreased to a value below 0.06 (Figure 18, S1). It was noticed
that rinsing the module with distilled water caused a slight increase in the membrane
performance, while the use of chemical cleaning agents (1% NaOH for 20 min and 0.5%
H3PO4 for 20 min) led to an increase of the relative flux to 0.8. However, continuation of
the MF process with the membrane cleaned by this method resulted in a greater decline
in the performance, below 0.04 of the maximum permeate flux (Figure 18, S2). It is worth
noting that, typically, yeast cells are 5–10 µm in diameter [87,88], hence, they are retained
by the membranes used in our research. However, the prepared feed solution, apart from
yeast cells, contained other substances, e.g., proteins, which formed a deposit layer on the
surface of the membranes (Figure 19). The presence of additional components resulted
from the fact that freeze-dried distiller’s yeast was used in the study.
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Figure 18. Changes in relative permeate flux during the long-term MF process of yeast suspension.
Module M3, TMP = 0.08 MPa, VF = 5.5 m/s.

In order to reduce the intensity of membrane fouling, backwash (1 min) every 10
min was performed. As a result, a two-fold increase in MF process performance was
obtained (Figure 18, S3–S5). The discontinuation of backwash resulted in a significant drop
in the module performance (Figure 18, S6). Increasing the yeast content in the feed led
to a decrease of the process performance, although for both 0.16% and 0.5% solutions the
declines in permeate flux were similar (Figure 18, S7 and S8). This finding is in agreement
with that presented by Hassan et al. [20] who indicated that during the MF of Saccharomyces
cerevisiae yeast suspensions, the steady-state permeate flux is independent from the cell
initial concentration in the range from 6 to 10 g/L.
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Figure 19. SEM image of PP S6/2 membrane (module M3) surface covered by biological deposit with
yeast cells after MF process of yeast suspensions.

To limit decrease in the flux, backwashing again was applied which resulted in a slight
increase in the performance (Figure 18, S8–S10). Indeed, the observed increases were not as
significant as for the series S3–S5, also for the solution containing 0.1% yeast (Figure 18, S10).
It should be emphasized that after each chemical cleaning, the module performance was
recovered, which was even greater than the initial performance (Figure 20, CR1–CR5). SEM
studies showed that such an increase could be due to slight degradation of the membrane
matrix. Likewise to the previous finding (Figure 11), it was determined that the membrane
surface porosity increased significantly. Indeed, the surface pores of 2–5 µm were observed
(Figure 21a). In this case, after starting the MF process, the pores quickly filled with filtered
biomass, which also resulted in a rapid decline in the permeate flux. Indeed, the penetration
of biomass into the pores was confirmed by the observations of the membrane cross-section
(Figure 21b). Despite the use of cleaning the membrane with alkaline and acid solutions,
deposits were still found inside the pores up to a depth of 2 µm.
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Figure 20. Effect of chemical membrane cleaning on the maximum permeate flux. Module M3.
CR—chemical rinsing.
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Figure 20. Effect of chemical membrane cleaning on the maximum permeate flux. Module M3. 
CR—chemical rinsing. 
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Figure 21. SEM images of PP membranes after cyclic chemical rinsing. (a) membrane surface, (b) membrane cross-section
with deposit inside surface pores.

Regarding the ceramic membrane used, its performance was also very low. The noted
relative permeate flux, similar to the PP membrane, was equal to 0.045 (Figure 22, S2).
Although ceramic membranes exhibit good chemical resistance, it must be recognized
that the use of the same chemical agents as for PP membrane (NaOH and H3PO4) was
not efficient and led to a decline in the module performance after the first cleaning cycle
(Figure 23, 1–3). Hence, additional operations were required. Finally, the initial membrane
performance by cleaning with the HNO3 solution as a final step was recovered.
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Figure 22. Changes in relative permeate flux during the MF process of yeast suspension with peri-
odically cleaning the module. Module M4, TMP = 0.08 MPa, VF = 5.5 m/s, CR—chemical cleaning. 
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Figure 22. Changes in relative permeate flux during the MF process of yeast suspension with
periodically cleaning the module. Module M4, TMP = 0.08 MPa, VF = 5.5 m/s, CR—chemical cleaning.

Cleaning of the ceramic membrane carried out after the second series of MF mea-
surements (Figure 22 S2) showed that HNO3 solution is not sufficient to effectively clean
the membrane, since its double use allowed to obtain the relative permeate flux equal to
0.7 (Figure 24). On the other hand, the use of NaOH solution with hypochlorite allowed
increasing the value to 0.8, while the complete recovery of the membrane permeability was
obtained after repeated cleaning with NaOH and H3PO4 solutions.
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Figure 23. The efficiency of cleaning the ceramic membrane after the MF of yeast suspension (the first
series of measurements). Operation time: water—30 min, 2% NaOH—40 min, 1% H3PO4—40 min,
2% HNO3—30 min.
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To sum up, our investigations have shown that fermentation broth components
from ethanol production led to the intense membranes fouling, the removal of which
required multi-step cleaning. It has been indicated that ceramic membranes, contrary
to PP membranes, can be cleaned with aggressive solutions without any damage to the
membrane matrix.
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4. Conclusions

This paper outlines a direct comparison of efficiency, performance and susceptibility
to cleaning of the ceramic and polymeric MF membranes applied for clarification of 1,3-
propanediol fermentation broths and suspensions of yeast Saccharomyces cerevisiae. For this
purpose, ceramic membrane made of TiO2 (hydrophilic) and polypropylene (hydrophobic)
membranes, in different modules configurations (tubular and capillary), were tested. The
MF experiments were carried out at a constant temperature of 30 ◦C and a wide range of
process parameters. The transmembrane pressure ranging from 0.02 to 0.08 MPa was used.
In turn, the applied feed flow velocity was from 0.8 to 11 m/s.

Both the ceramic and PP membranes have demonstrated a very high efficiency in
purifying the biological suspensions. Although the number of bacteria in the feed was of
an order of 12 log CFU, the membranes ensured sterile permeate during the filtration of
1,3-PD post-fermentation solutions. Although during the broths separation the turbidity of
the feed increased to 8000 NTU, the turbidity of the obtained permeate was in the range of
1–3 NTU.

Moreover, the results obtained in the present study offer vital evidence that the
permeate quality is directly correlated to the membrane pore size. Indeed, since the ceramic
membrane had a nominal pore size (0.14 µm) smaller than the PP membranes (0.20 µm), it
allowed obtaining the permeate characterized by a lower turbidity, equal to 0.2 NTU.

It has been shown that all the membranes used were very susceptible to fouling, both
by the components of 1,3-PD fermentation broths and yeast suspensions. The significant
impact of the feed flow velocity and the composition of the fermentation broths on the
relative permeate flux has been pointed out. It has been demonstrated that the membrane
properties (hydrophobic/hydrophilic) did not significantly affect the intensity of the fouling
phenomenon. The obtained data show that the decrease in process performance was mainly
dependent to the properties of the filter cake formed on the membranes surface. For the
ceramic membrane, internal fouling also had a significant influence on the permeate flux
decline.

Moreover, much attention has been paid to the development of effective and com-
prehensive cleaning procedures for the membranes used. It has been demonstrated that
suitable cleaning agents with selected concentration and duration of action effectively
cleaned both the ceramic and PP membranes. However, the use of aggressive solutions led
to degradation of the PP membranes matrix.

Findings of this study add to a growing body of literature on the use of ceramic
and polypropylene MF membranes for the clarification of biological materials. However,
it should always be taken into account that the fermentation broths are very complex
medium, the composition of which strictly depends on the carbon source, bacteria strain
and fermentation conditions as well as several other factors. Therefore, the results of the
presented work give an overall view of the MF process efficiency for biological suspensions,
however, all the characteristic dependencies should be examined individually.
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Abbreviations

CA cellulose acetate
CR chemical cleaning (rinsing)
J actual permeate flux
J0 maximum permeate flux
MF microfiltration
NTU nephelometric turbidity units
PAN polyacrylonitrile
PAEK polyaryletherketone
PES polyethersulfone
PI polyamide
PP polypropylene
PTT polytrimethylene terephthalate
PVDF polyvinylidenefluoride
PVP polyvinylpyrrolidone
NF nanofiltration
SEM scanning electron microscopy
TMP transmembrane pressure
UF ultrafiltration
VF feed flow velocity
1,3-PD 1,3-propanediol
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