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Abstract: Beyond conventional silicon, emerging semiconductor materials have been actively in-
vestigated for the development of integrated circuits (ICs). Considerable effort has been put into
implementing complementary circuits using non-silicon emerging materials, such as organic semicon-
ductors, carbon nanotubes, metal oxides, transition metal dichalcogenides, and perovskites. Whereas
shortcomings of each candidate semiconductor limit the development of complementary ICs, an
approach of hybrid materials is considered as a new solution to the complementary integration
process. This article revisits recent advances in hybrid-material combination-based complementary
circuits. This review summarizes the strong and weak points of the respective candidates, focusing on
their complementary circuit integrations. We also discuss the opportunities and challenges presented
by the prospect of hybrid integration.

Keywords: complementary inverter; thin-film transistors; material integration; organic semiconduc-
tors; metal oxides

1. Introduction

Over the past few decades, silicon-based transistor technology has been dominant
in the electronics industry because of the excellent electrical characteristics and scaling
technology, whereas the limitations of the fabrication process restricted large-scale fabrica-
tion and use on flexible substrates [1,2]. Thin-film transistors (TFTs) have been extensively
developed with great significance for large-area electronics [3–5]. Due to manufacturing
advantages, TFTs can be fabricated on a variety of substrates such as flexible plastics [6–8],
banknotes [9], skin [10,11], and even textiles [12–14]. Various TFTs are being explored,
targeting flexible (or stretchable) displays [15,16], functional photo- [17,18], gas- [19,20],
and bio-sensors [21,22], and healthcare electronics [23,24] as potential applications.

In TFTs, the semiconductor material usually determines the operational type (i.e.,
p-type or n-type), where p-type TFTs operate via negative gate-source voltage bias when
using materials known as p-type semiconductors, such as dinaphtho [2,3-b:2′,3′-f]thieno[3,2-
b]thiophene (DNTT) [25–27], cupric oxide (CuO) [28–30], carbon nanotubes [31–34], and
emerging perovskite materials [35–37]. In contrast, n-type TFTs operate via positive
gate-source voltage bias based on materials known as n-type semiconductors, such as
molybdenum disulfide (MoS2) [38–40], indium gallium zinc oxide (IGZO) [41–43], and
N,N‘ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13) [44,45]. As noted and
listed above, fabrication process combinations of different materials are required to build
complementary circuitry, composed of the respective p-type and n-type TFTs.

A complementary metal oxide semiconductor (CMOS) is based on a field-effect tran-
sistor (FET) manufacturing process that uses complementary and symmetric pairs of p-type
and n-type FETs. CMOS is built with a combination of a p-type transistor and an n-type
transistor, and switching the on/off state of the p-/n-transistor along with sweeping the
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input voltage produces a change in the signal corresponding to “0” and “1” states. A CMOS
inverter circuit has the n-/p-transistors connected to drain and gate electrodes, a supply
voltage (VDD) to the pull-up p-transistor, and ground (0 V) connected to the pull-down
p-transistor. The performance of a CMOS inverter is determined by the following parame-
ters: (1) voltage gain, (2) noise margin (the amount of the noise of the output voltage that
is affordable to withstand the operation failure), and (3) power consumption. Since the
symmetrically matched ID-VD curve of an n-/p- transistor can accompany the excellent
inverter behavior, modulating the shape of the ID-VD curve of each transistor is the crucial
factor. Furthermore, introduction of a high-k dielectric layer is useful to reduce the power
consumption by reducing the operation input voltage range [46].

For complementary technology, as a general approach, transistors are made using the
same material family, i.e., small molecules, polymers, oxides, and transition metal dichalco-
genides (TMDs). Another approach was attempted by implementing complementary
transistors using more than one different material family. Implementing complementary
behavior using these heterogeneous materials makes a hybrid complementary TFT. This
hybrid complementary approach offers advantages that compensate for the disadvantages
of each family of materials. Low temperature polysilicon oxide (LTPO) CMOS is proper
example to explain the possibility of a hybrid CMOS inverter. The combination of the
high mobility property from a p-channel low temperature polysilicon (LTPS) TFT and the
low off-current property from an n-channel a-IGZO TFT led to enhanced device perfor-
mance [47]. Furthermore, the hybrid materials combination approach can accompany the
simplification of the fabrication process. For example, polymer-based patterning processes
are mainly conducted to modify the dimension of TMD materials, causing defects during
the etching process or material contamination. In contrast, metal oxide or organic materials
are simply patterned with a shadow mask or inkjet printing method, which reduces the
complex patterning process [48].

In this context, we summarize here the recent progress in the development of hybrid
complementary TFTs. This review is motivated by the emergence of various thin-film
semiconducting materials enabling next-generation functionality in TFTs. This review
provides an overview of the recent contributions to hybrid complementary integrations
using emerging TFT materials: (1) 2D TMDs, (2) metal oxides, (3) organic semiconductors,
(4) perovskite materials, and (5) carbon nanotubes. Furthermore, we introduce a newly
investigated approach to heterogenous hybrid TFTs, presenting novel applications to
multi-valued logics and vertically stacked inverters.

2. Materials for Hybrid Inverters
2.1. Two-Dimensional Transition Metal Dichalcogenides Materials

Two-dimensional (2D) TMD material comprises multiple stacked layers with thick-
nesses in sub-nanometers [49–51]. The 2D structure aligns the electron transportation to
the plane while constraining the Z-axial direction, and each layer is coupled by a weak van
der Waals (vdWs) force. The structural specificity produces superior electrical and optical
properties, and induces a sharp contact condition with other materials [52,53]. Moreover,
because of their excellent mechanical properties such as flexibility and rigidity, 2D materials
have attracted a lot of attention as potential candidates for various applications such as
field-effect transistors (FET) [54,55], gas sensors [56], photo sensors [57,58] and flexible
or ubiquitous substrates [59,60]. The information of electrical properties and structure
dimension of 2D TMD materials was tabulated in Table 1. However, preparation of the
high-quality TMD materials for large-scale applications is still limited because of obvious
pros and cons for each method: (1) Exfoliation (pros—easy-to-fabricate process, cons—only
for flake-scale device), (2) hydrothermal synthesis (pros—mild synthesis condition and
layer-scale film, cons—low uniformity), and CVD growth (pros—good quality material
with large-scale, cons—limitations in usage flexible substrate) [61,62]. In 2015, Lee et al.
reported a hybrid CMOS logic inverter that is built with a top gate n-MoS2 nanosheet
and a bottom gate p-heptazole FET [63]. To match the ID-VD curve of the n-channel MoS2



Membranes 2021, 11, 931 3 of 20

FET symmetrically to that of the p-channel heptazole FET, the threshold voltage, mobility,
and drain current level were modified by controlling the thickness of the MoS2 layer and
inserting a CYTOP buffer layer between the MoS2 and insulate layers (Figure 1a). The
fabricated organic–inorganic hybrid inverter exhibited a significant voltage gain of 12 v/v
at a supplied voltage of 5 V with only a few hundred picowatts (pW) in power consumption
(Figure 1b). In 2017, Lee et al. fabricated a 2D nanosheet-oxide film hybrid inverter com-
prising a p-channel MoTe2 FET and an n-channel IGZO FET, as shown in Figure 1c [64]. By
using a 2D TMD semiconductor that possesses favorable optical and electrical properties
for inverter applications, the author achieved significant voltage gain as high as 40 v/v at a
drain voltage of 5 V with only a few nanowatts (nW) in scale power consumption. In 2016,
Das et al. reported a highly flexible and large-scale Si-MoS2 hybridcomplementary inverter
combining an n-channel MoS2 FET and a p-channel Si nanomembrane (NM) FET [65]. By
transferring the CVD-grown MoS2 and the Si NM, which showed proper flexibility on
a flexible polyimide substrate, a bendable Si-MoS2 hybrid complementary inverter was
implemented (Figure 1d). The voltage transfer curve of the n-MoS2 and p-Si NM hybrid
inverter showed a voltage gain of 12 v/v at a 5 V supply voltage with low power consump-
tion of 100 nW. In addition, the performance of the flexible hybrid inverter was maintained
under bending situations. During the variation of the bending radius (3.2 nm, 4.0 nm,
5.4 nm, 6.2 nm, flat), the maximum voltage gain and threshold voltage were 10.75 ± 2 v/v
and 2.34 ± 0.30 V, respectively. The normalized voltage gain within 5% and 20% and high
consistency of the threshold voltage during 100 bending cycles showed the performance
reliability of the proposed hybrid inverter.

Table 1. Electrical characteristics and structure dimensions of 2D TMD material.

Materials
Conduction

Type

Mobility (cm2/V·s) Band Gap (eV)

Multilayers
(>10 Layers) Monolayer Multilayers

(>10 Layers) Monolayer

2H-MoS2 n-type 60–200 >200 1.23 1.89
2H-MoSe2 n-type 160–260 50 1.09 1.57
2H-MoTe2 p-type 40 N/A 0.93 1.08
2H-WS2 n-type 20–100 0.2 1.35 1.98
2H-WSe2 p-type 120–150 30–180 1.20 1.66
1T’-WTe2 N/A 6000–44,000 20–21,000 Semimetal/metal

Materials
αInterlayer

Distance (Å)
βvdW Gap (Å)

MX2
Sandwich

Thickness (Å)

M-X Bond
Length (Å)

γM|M
Distance (Å)

2H-MoS2 6.15 2.98 3.17 2.42 3.16
2H-MoSe2 6.47 3.24 3.23 2.49 3.29
2H-MoTe2 7.28 3.68 3.60 2.72 3.52
2H-WS2 6.16 3.02 3.14 2.40 3.15
2H-WSe2 7.00 3.76 3.24 2.49 3.29
1T’-WTe2 7.02 3.80–3.90 3.50–4.00 2.71–2.82 2.86

α Distance the M atomic planes in two neighboring layers. β Closest distance between the X atomic planes in two
neighboring layers. γ Closest distance between two M atoms (also between two X atoms). Data collected from the
following references: [66–71].
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hybrid CMOS inverter under supply voltages of 1 V to 5 V. The dashed curve shows power consumption at 1 V (adapted 
from [63] with permission from John Wiley and Sons). (c) Patterned CMOS inverter arrays, an OM image of the hybrid 
inverter fabricated on glass, and a 3D schematic of the hybrid CMOS inverter (adapted from [64] with permission from 
the American Chemical Society). (d) A 3D illustration of an Si NM-MoS2-based complementary inverter built on a plastic 
substrate, and a photographic image of a large-area 5 × 5 array of a CMOS inverter patterned on PET, where the magnified 
panel shows the scanning electron microscope (SEM) image (adapted from [65] with permission from John Wiley and 
Sons). 
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Metal oxide semiconductors provide many opportunities in various application ar-

eas based on their great electrical properties and simple synthesis methods [72,73]. Be-
cause the large metal ns orbital of metal oxide sufficiently overlaps an adjacent metal s 
orbital without significant influence on the existing oxide [74], the metal oxide can main-
tain high electrical performance regardless of its shape and the bending of the material 
[75]. Additionally, metal oxide has a very mild synthesis condition, which is highly com-
patible with applications on a flexible substrate such as polyethylene terephthalate (PET) 
and polyimide (PI) [75,76]. However, the formation energy of the native acceptors is 
higher than that of the native donors such as oxygen vacancy, resulting in constraint on 
the hole generation. Further, the strong localization of the valence band maximum (VBM) 
to oxygen ions leads to a large hole effective mass and low mobility [77–79]. For this rea-
son, most metal oxide semiconductors are an n-type material, and even p-type metal oxide 
semiconductors such as CuO, SnO, and NiO show poor charge mobility [80]. Moreover, 
because most of the low-temperature deposition techniques of metal oxide 

Figure 1. (a) ID–VD output curve of n-MoS2 and p-heptazole channel FETs. (b) The voltage transfer characteristics of a
hybrid CMOS inverter under supply voltages of 1 V to 5 V. The dashed curve shows power consumption at 1 V (adapted
from [63] with permission from John Wiley and Sons). (c) Patterned CMOS inverter arrays, an OM image of the hybrid
inverter fabricated on glass, and a 3D schematic of the hybrid CMOS inverter (adapted from [64] with permission from
the American Chemical Society). (d) A 3D illustration of an Si NM-MoS2-based complementary inverter built on a plastic
substrate, and a photographic image of a large-area 5 × 5 array of a CMOS inverter patterned on PET, where the magnified
panel shows the scanning electron microscope (SEM) image (adapted from [65] with permission from John Wiley and Sons).

2.2. Metal Oxide Semiconductors

Metal oxide semiconductors provide many opportunities in various application areas
based on their great electrical properties and simple synthesis methods [72,73]. Because
the large metal ns orbital of metal oxide sufficiently overlaps an adjacent metal s orbital
without significant influence on the existing oxide [74], the metal oxide can maintain
high electrical performance regardless of its shape and the bending of the material [75].
Additionally, metal oxide has a very mild synthesis condition, which is highly compatible
with applications on a flexible substrate such as polyethylene terephthalate (PET) and
polyimide (PI) [75,76]. However, the formation energy of the native acceptors is higher
than that of the native donors such as oxygen vacancy, resulting in constraint on the
hole generation. Further, the strong localization of the valence band maximum (VBM) to
oxygen ions leads to a large hole effective mass and low mobility [77–79]. For this reason,
most metal oxide semiconductors are an n-type material, and even p-type metal oxide
semiconductors such as CuO, SnO, and NiO show poor charge mobility [80]. Moreover,
because most of the low-temperature deposition techniques of metal oxide semiconductors
have mainly considered n-type materials (for example, indium oxide (In2O3), indium
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zinc oxide (IZO), and IGZO), efforts to implement p-type metal oxide devices on flexible
substrates are still lacking [81,82]. In 2019, Luo et al. implemented a low-voltage, high-
performance complementary inverter with an n-channel IZO TFT and a p-channel chirality-
enriched (9,8) semiconducting single-walled carbon nanotube (SWCNT) FET using a partial
printing method [80]. Inkjet printing is a highly fascinating process for fabricating TFTs or
integrating CMOS circuits because of customizability based on patterned deposition and
a simple patterning process for a large-scale array. The author introduced IZO, a type of
metal oxide, as a candidate for ink material because of its excellent electrical characteristics
and environmental stability (Figure 2a). The hybrid CMOS inverter presented a high
voltage gain of 45 v/v with low-power consumption of 400 nW. Moreover, based on a
well-matched p-TFT and n-TFT, all noise margins showed more than 0.73 V (~73% of the
1/2 VDD). In 2015, Honda et al. demonstrated a temperature-response, vertically integrated
CNT and IGZO hybrid inverter, and evaluated it by integrating the temperature sensor on a
third layer [83]. The IGZO and CNT TFT were deposited on the first and second polyimide
layers, and each layer was stacked vertically. The proposed vertical hybrid inverter showed
a good voltage gain of 45 v/v with 6.9 nW mm−1 low-power consumption. Mechanical
flexibility in the vertical hybrid inverter was also evaluated by bending it, depending on
the curvature radius, from flat to 2.6 mm. The peak gain and the threshold voltage of
the hybrid inverter exhibited a uniform level of value, regardless of the curvature radius,
and showed stable performance and durability even in the 1000-cycle bending test, as
shown in Figure 2b. The IDS-VGS curves of the CNT and IGZO TFT changed in proportion
to the temperature variation, implementing a temperature-response hybrid inverter. As
temperature increased, the threshold voltage of the hybrid inverter decreased linearly. In
2020, Lee et al. integrated a hybrid inverter using n-IGZO and p-WSe2 applied to two circuit
models [84]: (1) a complementary metal oxide semiconductor with an n-channel IGZO
and a p-channel WSe2 (Figure 2c,d), and (2) a heterojunction p-WSe2/n-IGZO diode-load
inverter. Introducing a WSe2/IGZO diode instead of a WSe2 TFT increased the voltage
gain from 6.5 v/v to 14 V/V, and low power consumption of just a few nanowatts was
achieved. Moreover, the photo-response characteristic of the WSe2/IGZO diode allowed
variations in output voltage under illumination.

2.3. Organic Semiconductors

Organic semiconductors have many advantages such as flexibility, lightness, and elab-
orate control of material properties through molecular structure control. For this reason,
organic semiconductors are being actively utilized in applications such as flexible/wearable
displays and bio or chemical sensors. [85–88]. Moreover, because organic semiconductors
(i.e., pentacene, fused aromatic compound, and rubrene) are representative p-type mate-
rial, combination with the 2D material or oxide semiconductor can produce significant
synergistic effects [89,90]. However, many studies are still in progress to improve their
limited electrical properties, vulnerability to temperature, and instability in the surround-
ing environment [91]. In 2016, Jeong et al. introduced a photocurable polymer precursor,
zinc diacrylate (ZDA), to fabricate a patternable organic/inorganic hybrid inverter [46].
Organic- and metal oxide-based semiconductors are highly promising candidates because
of their low fabrication cost and simple patterning process. In a commercial application of
a solution processed ZnO, the author noticed two requirements for integrating a circuit:
(1) a simple patterning process without photolithography, and (2) low operating voltage
for device operational stability. This report presented zinc diacrylate-enabled synthesis of
a patterned ZnO with a simple UV polymerization and annealing process. Pentacene was
utilized as a p-type organic semiconductor in the organic/inorganic hybrid inverter. By
using high dielectric film, Al2O3/TiO2, to reduce the operation voltage, both organic and
inorganic TFTs exhibited great output (Figure 3a) and a transfer characteristic (Figure 3b)
under low operation voltages from −5 to 3 V. Moreover, the hybrid inverter showed a
voltage gain as high as 6.5 v/v (Figure 3c). In 2020, Ye et al. introduced a highly functional
inkjet printing method that can print zinc-tin oxide (ZTO) at a high-resolution nanoscale
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assisted by an applied electrostatic field [92]. By using electrohydrodynamic (EHD) inkjet
printing, a ZTO TFT was fabricated as an n-channel semiconductor after a simple an-
nealing process, whereas C18-DNTT was utilized as a p-channel semiconductor for the
organic/inorganic hybrid inverter (Figure 3d). The resulting inverter demonstrated a high
voltage gain of over 30 v/v at a drain voltage of 50 V (Figure 3e).
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Chemical Society). (d) Top view OM image of a hybrid inverter comprising a printed ZTO transistor and a C10-DNTT
transistor. (e) The voltage gains in the CMOS hybrid inverter under three VDD conditions (VDD = 30, 40, and 50 V) (adapted
from [92] with permission from MDPI).

2.4. Metal-Halide Perovskite

Metal-halide perovskites (MHPs) have been mostly utilized in photoelectric applica-
tions like solar cells and light-emitting diodes because of their strong absorption coefficient
and tunable optical bandgap [93–95]. MHP is an especially good p-type semiconductor,
and an excellent counterpart to an n-type inorganic semiconductor [96,97]. We additionally
provided electrical characteristics of representative p-type organic semiconductors and per-
ovskites in Table 2. However, satisfying good quality in the semiconductor material and for
mass production is still difficult, and ion migration makes MHP insensitive to gating [98].
For this reason, many attempts are still being made to fabricate MHP-based electronics.
In 2019, Len et al. introduced a straddling-gap (type-I) organic semiconductor/metal-
halide perovskite heterojunction to obtain state-of-the-art photogain of 15 v/v and tunable
photoresponsivity [98]. Straddling-gap (type-I) indicates that the bandgap of one semi-
conductor (in this case MHP) is completely included in that of another semiconductor
(in this case organic semiconductor). Type-I FA0.83Cs0.17PbI2.7Br0.3 (FACs)/C8-BTBT het-
erostructure makes it easy to preserve the hole majority of the photocarriers at the valence
band of the MHP. The preserved photocarriers were transported under the regime of
off-state of the FAC/C8-BTBT heterojunction phototransistors (HJPT) and changed the
on/off current ratio. To compare the photoresponsivity along with band structure, the
author investigated type-II FAC/C16-BTBT HJPT, and Type-I FAC/C8-BTBT HJPT exhib-
ited photoresponsivity at off-state. To access performance of the proposed phototransistor,
a PMOS-like photo-inverter was fabricated using two of the same FAC/C8-BTBT HJPTs.
When illuminated on a HJPT 1, as shown in Figure 4a, the voltage transfer curve showed a
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large output voltage of −10 V at the lowest intensity of light. The maximum voltage gain
remained at a relatively unchanged value of 15 v/v regardless of light intensity, but the
input voltage at maximum amplification (Ai,max) was shifted from −5 to −4 V as the light
intensity increase from 7 to 2821 µW·cm−2 (Figure 4b). In 2020, Zhu et al. synthesized a
highly reliable, lead-free perovskite-based TFT and investigated the feasibility of p-type
transistor as an inverter application (Figure 4c) [99]. The stubborn ion migration, making
it insensitive to the applied bias, inhibited the use of perovskite as the active material
for transistors. The author overcame poor synthesis quality with the following solutions:
(1) grain boundary passivation using extra PEAI, (2) introduction of Sn powder to reduce
oxidation of the Sn precursor, and (3) grain crystallization engineering through the addi-
tion of Lewis bases. As a result, the proposed (PEA)2SnI4 TFT achieved good electrical
performance (mobility = 3.5 cm2/V· s, on/off ratio = 3.4 × 106) in p-type current behavior.
The perovskite-based complementary inverter was fabricated using an n-type IGZO TFT
and p-type (PEA)2SnI4 TFT, which showed a large gain of 30 v/v with a high noise margin
of 70% at VDD of 14 V, and the performance reliability was confirmed through 100 devices
evaluation (Figure 4d–f).

2.5. Carbon Nanotubes

The carbon nanotube (CNT) is a highly promising p-type semiconductor material
because of its outstanding electrical and optical properties, which originate from a unique
one-dimensional structure [104]. Moreover, the inkjet printing method can produce a
patterned CNT on any kind of substrate, and much research has achieved remarkable
accomplishments in fabricating CNT FETs [105,106]. Combination with an n-type material
can extend the opportunity for applying the CNT p-type transistor to a CMOS inverter.
Nevertheless, the practicality of CNTs for CMOS inverters still needs further improvement
to resolve the inadequate air stability and limited tunability [107,108]. In 2020, Luo et al.
manufactured a radiation-hard and repairable complementary hybrid inverter using a
simple inkjet printing method [109]. The CNT and In2O3, which were regarded as favorable
candidates for printable conducting materials, were used as p-type and n-type transistors
for the proposed hybrid inverter (Figure 5a). Additionally, the PS-PMMA/[EMIM][TFSI]
covered two transistors as the gate dielectric layer and served to passivate from the strong
radiation. The hybrid inverter showed ultralow power consumption of 9.7 µW at a drain
voltage of 0.8 V. Moreover, the voltage gain increased to 11.5 v/v and a large noise margin of
75% was exhibited (Figure 5b). To confirm stability under radiation, probing of the voltage
transport curve was conducted, depending on an intensity of the Co-60 γ irradiation.
In 2018, Yoon et al. demonstrated an optimization process of hybrid integration of a
p-type carbon nanotube TFT and an n-type IGZO TFT (Figure 5c–e) [110]. Because the
CNT and IGZO are representative p-type and n-type materials, respectively, the difficulty
in manufacturing a homogenous complementary inverter using only the CNT or IGZO
was resolved by integrating a hybrid inverter. In this regard, the author optimized the
fabrication condition of the complementary microelectronic circuits by adjusting the CNT
deposition time and the oxygen flow rate during IGZO sputtering. The proposed hybrid
inverter exhibited an optimized voltage gain of 108 v/v at the oxygen flow rate of 0.1 sccm
and CNT deposition time of 5 min.

Table 2. The electrical properties of perovskite and organic semiconductors.

Materials Conduction
Type

On/off
Current Ratio

Mobility
(cm2/V·s)

Subthreshold
Swing (V·dec−1)

Threshold
Voltage (V) Ref.

(PEA)2SnI4 p-type 3.4 × 106 3.51 0.8 7.3 [99]
MAPbI3 p-type 2.5 × 104 23.2 0.14 −0.57 [100]

C10-DNTT p-type 108 4.3 68 −0.4 [101]
DNTT p-type 108 2.1 100 −1.4 [102]

Pentacene p-type 107 0.8 75 −0.6 [103]
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3. Applications
3.1. Multivalued Logics

By employing various semiconductors that possess different types of major carriers
with each other, the CMOS has overcome many limitations in terms of fabrication processes
and device performance enhancement. Furthermore, in some trials, an n-p heterojunction
transistor was utilized instead of one of the transistors in the CMOS, which showed a
reversed ambipolar I-V curve [26,111]. The integrated inverter produces the third state
of “1/2” excluding “1” and “0” at the voltage transport curve, which is called a ternary
inverter. Study of the ternary inverter is highly meaningful because of the high density
of the data and simplification of the circuit system [112], and there were attempts to
implement a hybrid ternary inverter. In 2020, Park et al. reported a photo-triggered ternary
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inverter using a rubrene nanosheet (NS) TFT and a rubrene/MoS2 n-p heterojunction anti-
ambipolar transistor (AAT) (Figure 6a,b) [113]. A largely unmatched threshold voltage of
the MoS2 and rubrene NS created a wide on-state voltage range in the middle of the voltage
sweeping range, which formed an anti-ambipolar shape in the I-V curve (Figure 6c,d).
Interestingly, the proposed AAT/rubrene NS hybrid inverter selectively showed ternary
inverter behavior under a specific wavelength of light. Under illumination at 455 nm and
530 nm wavelengths, the threshold voltages of the MoS2 (and especially the rubrene NS)
shifted, which extended the voltage range of the on-state in the AAT. The voltage range
variation in the AAT induced the third state, “1/2”, in the photo-responsive ternary inverter.
In 2020, Kim et al. fabricated a fully printable ternary inverter by employing a p-type CNT
TFT and an indium oxide/CNT n-p heterojunction–based AAT (Figure 6e) [114]. Since
the dimensions of the semiconductor significantly influence performance of the transistor,
the number of printings in the inkjet printing method is a crucial parameter for deciding
device performance. Therefore, the author modified the on-state range of the AAT by
controlling the number of printings, and clearly optimized the ternary inverter behavior at
four printings. As shown in the voltage transfer curve (Figure 6f), the output voltage value
at the “1/2” state nearby Vin = 0.5 V was gradually changed through an increase in the
number of printings. Further, by applying a three-valued input signals at Vin = 0, 1, and 2 V,
the dynamic operation of the proposed ternary inverter was investigated, and the result
demonstrated clear output signals at 0.21, 0.05, and 0 V, respectively. It is noted that the
further advanced ternary circuit such as two-stage cascaded circuit was implemented [115].

3.2. Vertically Stacked Complementary Inverter

To enhance the density of data in a single pixel, not only to increase number of logic
values, many studies also have tried to improve by structural modulation by stacking
the complementary inverter vertically [116,117]. Their three-dimensional (3D) stacked
structure can minimize the physical distance and increase the drivability of the electronic
circuits by resolving the interconnection lengths and parasitic resistances [118,119]. How-
ever, the fabrication process of the vertically stacked inverter is highly complicated and
difficult [120,121]. In 2010, Nomura et al. fabricated vertically stacked n-type IGZO transis-
tors and p-type poly-(9,9-dioctylfluorene-co-bithiophene) (F8T2) thin film transistors on a
flexible PET substrate as shown in Figure 7a,b [122]. Both transistors demonstrated low
off-current and huge on/off current ratio, and the positions of the threshold voltage of each
transistor certified the well-matched IDS-VGS characteristic of the p-F8T2 TFT and n-IGZO
TFT. The voltage transfer characteristic of the proposed vertical hybrid inverter showed
gain as high as 67 V/V. The high noise margin and low noise margin were 2.1 and 6.3 V at
VDD = 10 V and 10.4 and 18.3 V at VDD = 30 V. In 2011, Park et al. implemented vertically
stacked organic/oxide hybrid inverter by using p-channel pentacene TFT and n-channel
GaZnSn oxide (GZTO) TFT, as shown in Figure 7c [118]. The author investigated not only
performance as a function of inverter but also operation in photogating and ferroelectric
memory. The proposed hybrid vertical inverter exhibited clear inverter operation with high
voltage gains of 20, 25, and 52 v/v at supply voltage of 3, 5, and 8 V, respectively. Moreover,
the hybrid inverter operated with a response time of 5–40 ms under 5 V input pulse. The
response time of the proposed hybrid complementary inverter was yet not comparable
with the commercial product, so further efforts to improve device performance are still
necessary [123].
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4. Conclusions and Outlook

In this review, we present an overview of recent advances in hybrid-material combination-
based complementary circuits. Non-silicon materials are considered highly promising
material because their unique material properties help to implement CMOS inverters,
which obtain various functionality such as flexibility, transparency, and so on. However,
their intrinsic characteristics compromise the CMOS inverter by using similar types of
materials. Hybrid inverters provide solutions to many problems and allow implementation
of functional inverter devices. We listed five non-silicon semiconductors and summarized
the pros and cons of using them in hybrid inverters.

(1) Two-dimensional materials possess a layered structure based on van der Waals force,
which assigns excellent electrical performance, high material stability in the surround-
ing environment, and great mechanical properties. However, their unique structure is
mainly implemented with specific synthesis conditions, confining the compatibility
with certain kinds of substrate.

(2) Metal oxide semiconductors are highly promising because of their mild synthesis
condition, ease of fabrication for large-scale applications, and great electrical perfor-
mance. However, most metal oxide semiconductors are an n-type material, and even
p-type metal oxide semiconductors show poor charge mobility and a high annealing
temperature.

(3) Most organic semiconductors exhibit p-type characteristics, unlike 2D materials and
oxide semiconductors, which are very important to fabricate CMOS inverters. More-
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over, their simple synthesis process allows them to be fabricated on flexible devices.
However, vulnerability to temperature and instability in the surrounding environ-
ment still remain a challenge to overcome.

(4) Strong absorption coefficients and tunable optical bandgaps of MHPs contribute
to optoelectrical applications. Specifically, MHP is a good p-type semiconductor,
which is highly compatible to fabricate hybrid inverter with an n-type inorganic
semiconductor. Nevertheless, the practicality of perovskites for CMOS inverters still
needs further improvement for good electrical quality and mass production.

(5) CNT have attracted attention for their printable synthesis method and p-type semicon-
ductor characteristics. However, using CNT is still limited because of their inadequate
air stability and limited tunability.

Material characteristics and preparation process of each type of semiconductor materi-
als and their inverter performances were listed up in Tables 3 and 4.

Table 3. Performance comparison of the hybrid complementary inverter.

n-Type Material p-Type Material
NMOS

Mobility
(cm2/V·s)

PMOS
Mobility
(cm2/V·s)

Voltage
Gain (V/V)

Noise
Margin

Operation
Voltage (V)

Power Con-
sumption

(nW)
Ref.

MoS2 Heptazole 6 0.14 12 N/A 5 1 [69]
IGZO MoTe2 4.2 22.4 40 N/A 5 300 [70]
MoS2 Si NM N/A N/A 16 α NMT 80% 5 300 [71]

IZO SWCNT 3.01 3–5 45
β NMH 77%
γ NML 83%

2 400 [80]

IGZO CNT 4.93 2.19 45 N/A 5 0.69 [83]
IGZO WSe2 N/A N/A 6.5 N/A 3 N/A [84]

pWA:In-ZnO Pentacene 0.853 0.718 6.5 N/A 4 N/A [46]
ZTO C10-DNTT 1.35 N/A 31.2 N/A 50 N/A [92]

FACs/C8-BTBT FACs/C8-BTBT 0.52 0.52 15 N/A −10 N/A [98]
IGZO (PEA)2SnI4 N/A 3.16 30 NMT 70% 40 N/A [99]

In2O3 CNT 2.8 8.6 11.5 NMH 82%
NML 75% 0.8 9700 [109]

IGZO CNT 12.9 11.7 108.3 N/A 20 N/A [110]
GZTO Pentacene 1.2 0.4 52 N/A 8 N/A [118]

IGZO F8T2 3.2 1.7 × 10−3 67 NMH 10.4 V
NML 18.3 V 30 N/A [122]

α Total noise margin. β High noise margin. γ Low noise margin.

Table 4. Materials properties and preparation process of various semiconductor materials.

Materials Family Mobility
(cm2/V·s)

Conduction
Type Preparation Method Band Gap

(eV)
Material

Thickness (nm) Ref.

pentacene Organic semiconductor 0.718 p-type Organic molecular
beam deposition N/A 50 [46]

MoS2 TMD 6 n-type Exfoilation 1.8 2 [69]
MoTe2 TMD 22.4 p-type Exfoilation 0.94 4 [70]

IGZO Metal oxide 4.2 n-type DC magnetron
sputtering 2.7 50 [70]

IZO Metal oxide 3.01 n-type Inkjet printing >3.0 23 [80]
SWCNT Carbon nanotube 3–5 p-type Inkjet printing 0.67 1.17 [80]

(PEA)2SnI4 Perovskite 3.16 p-type Spin coating N/A N/A [99]
F8T2 Organic semiconductor 0.0017 p-type Inkjet printing N/A 50 [122]

Complementary inverters possess significant potential for application to not only
logic components but also various sensors (such as chemical sensors [124,125], optical
sensors [126], gas sensors [127], and temperature sensors [83]) and biomedical applications
(such as bioelectronics [128,129] and bio-signal amplifiers [119,130]). However, challenges
for integrating hybrid materials still exist; the fabrication process of p-type and n-type
materials and their devices requires the separate deposition, patterning, and optimization
of two heterogenous materials, increasing the complexity of the fabrication process with
the ad hoc process conditions. Therefore, it is important to deeply understand the material
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intrinsic properties and discover the desirable integration process of the hybrid materials
combination, and this paper is expected to provide useful guidelines for dealing with
hybrid complementary integrations.
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