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Abstract: In this paper, we present an empirical modeling procedure to capture gate bias dependency
of amorphous oxide semiconductor (AOS) thin-film transistors (TFTs) while considering contact
resistance and disorder effects at room temperature. From the measured transfer characteristics
of a pair of TFTs where the channel layer is an amorphous In-Ga-Zn-O (IGZO) AOS, the gate
voltage-dependent contact resistance is retrieved with a respective expression derived from the
current–voltage relation, which follows a power law as a function of a gate voltage. This additionally
allows the accurate extraction of intrinsic channel conductance, in which a disorder effect in the IGZO
channel layer is embedded. From the intrinsic channel conductance, the characteristic energy of the
band tail states, which represents the degree of channel disorder, can be deduced using the proposed
modeling. Finally, the obtained results are also useful for development of an accurate compact TFT
model, for which a gate bias-dependent contact resistance and disorder effects are essential.

Keywords: amorphous oxide semiconductor; thin-film transistor; degree of disorder; bias-dependent
contact resistance; compact transistor model; empirical modeling; transfer characteristics

1. Introduction

Amorphous semiconducting materials such as amorphous Silicon and amorphous
oxide semiconductors (AOSs) have been widely used as the channel layer for thin-film
transistors (TFTs) [1–3]. In particular, it is believed that the AOS TFT has become one
of the most promising candidates for futuristic electronics due to its high transparency
and low temperature processability [3–5]. With a low temperature process, the AOS film
is more likely to be in amorphous phase; thus, the inevitable presence of localized traps
(e.g., deep and tail states) is associated with structural disorder in the amorphous phase [2,6].
This additionally alludes to a poor quality of metal contacts at the source and drain [1,2,7].
It is known that these non-ideal properties have a significant influence on the electrical
performances of the AOS TFTs [2,3,8]; for example, the field-effect mobility of AOS TFTs
is inversely proportional to the density of the localized tail states, while poor contact can
lead to a higher contact resistance, and thus a lower mobility [9]. In addition, the contact
resistance is typically extracted with a transmission line method (TLM), yielding a constant
value without a gate-bias dependency [10]. Therefore, it is necessary to analyze and model
the correlation between the transistor characteristics and those parasitic properties which
include gate bias-dependent contact resistance.

In this paper, to capture gate bias-dependent contact resistance (RC) and Intrinsic
channel conductance (Gint) in the AOS TFT, an empirical method is proposed based on
transfer characteristics measured for the two different AOS TFTs, as the parasitic effects are
reflected in the current-voltage characteristics of the transistors. For this, we examine three
fabricated In-Ga-Zn-O (IGZO) TFTs. From them a pair of TFTs, chosen from three examined
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TFTs (i.e., three pairs are available as three combinations made from three examined TFTs),
is used to retrieve the gate voltage-dependent RC and Gint while applying an analytical
expression derived from the current–voltage relations of TFTs. Based on the retrieved trend
of the RC vs. VGS, which is modelled with a power law, the Gint can also be accurately
extracted and modelled, yielding the characteristic energy of band tail states as a measure
of disorders (assuming the dominance of the trap-limited conduction). From these results,
it is found that the gate-bias dependencies of both RC and Gint are well explained with
a power-law function. Finally, it is believed that the presented results could be useful for
an accurate compact TFT model, where the gate-bias dependencies of the contact resistance
and disorder effects are crucial.

2. Materials and Methods

In this work, we examined AOS TFTs where amorphous IGZO is incorporated as
the AOS material, with disorder in the amorphous phase (see Figure 1). Following a typ-
ical bottom-gate TFT process as reported in [11,12] for the deposition of the IGZO layer
on a glass substrate, an IGZO ceramic target was employed for RF sputtering with Ar
plasma. During this sputtering process, the oxygen partial pressure was kept at a low
level (e.g., 5%), followed by backend processes such as thermal annealing, patterning, met-
allization with Mo for the electrodes (i.e., source, drain, and gate), and passivation. Using
this process, we prepared three IGZO TFTs with three different channel lengths (L1, L2, L3).
Here, the channel widths for those TFTs remain the same (W = W1 = W2 = W3).
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Figure 1. Schematic cross-sectional view of the examined IGZO TFT describing the contact resistance
(RC) and disorder (traps) within the IGZO channel layer.

Using the three fabricated TFTs (TFT-1, TFT-2, TFT-3), the transfer characteristics, i.e., the
drain current (IDS) vs. gate voltage (VGS), were measured at room temperature (300 K),
which formed the basis for the proposed empirical modeling. The channel geometrical
details of the examined TFTs are summarized for the three possible combinations out of
three TFTs in Table 1. Along with the examined TFTs, empirical modeling was performed
with relevant mathematical formulations, as explained in the following sections.

Table 1. Summary of channel geometrical details of three examined IGZO TFTs.

Examined IGZO TFTs Channel Length (L) Channel Width (W)

TFT-1 L1 = 10 µm W = 50 µm (common)
(W = W1 = W2 = W3)TFT-2 L2 = 20 µm

TFT-3 L3 = 30 µm

3. Results
3.1. Mathematical Formulations for AOS TFTs

Considering the channel disorder and contact resistance, the transfer characteristics in
the linear regime, i.e., IDS vs. VGS, of n-channel AOS TFTs can be represented as follows:

IDS = Kn
W
L
(VGS −VT)

1+αcm(VDS − 2RC IDS). (1)
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where Kn is a pre-factor, VT is the threshold voltage, αcm is an exponent related to the
conduction mechanisms (e.g., trap-limited conduction or percolation conduction), VDS is
the drain voltage, and RC is the contact resistance. Note that in Equation (1), the physical
meaning of αcm can be changed when the dominant conduction mechanism is determined
from the trap-limited conduction (αcm ≡ αt, a trap-related exponent) or the percolation con-
duction (αcm ≡ αp, a percolation-related exponent) [13–15]. For example, depending on the
position of the Fermi level (EF), the dominant conduction mechanism is determined [13,15].
In the present study, we presume that the EF is well below the EC for the given range of the
VGS [15]. Thus, assuming that the trap-limited conduction is dominant, αcm in Equation (1)
can now be related to the traps, thus αcm = αt. Based on this assumption, Kn and αt are
further defined, respectively, as follows:

Kn = µn
C1+αt

ox

Qαt
re f

, (2)

αt =
kTt

kT
or

Tt

T
, (3)

where µn is the electron mobility, Cox is the gate insulator capacitance per area, Qref is
a reference charge-density per area, kTt is the characteristic energy of tail states, and kT is
the thermal energy (Here, k is Boltzmann’s constant). Note that for a given temperature (T),
Equation (3) can be rewritten as kTt = αt kT or Tt = αt T. Here, a larger value of kTt or Tt
means a higher degree of disorder at a fixed T [15,16]. As can be seen in Equations (1)–(3),
the formula for the drain current is strongly related to both the contact resistance and
the disorder through αt as a function of kTt at a given temperature (T). In other words,
Equation (1), where αt is included, is more general compared to the textbook, where an
ideal case with RC = αt = 0 is only covered for a perfect crystalline semiconductor; hence,
the universality of Equation (1).

With Equation (1), the measured transfer characteristics in the linear regime (i.e.,
VGS–VT >> VDS = 0.1 V) can be explained rather than using the ideally linear equation for
RC = αt = 0. Indeed, as can be seen in Figure 2, the curvature in the above threshold region
(at VGS > VT) looks somewhat like a root function; thus RC 6= 0 and αt 6= 0. Note that VT is
extracted with the second derivative method rather than a linear extrapolation [16]. This
suggests the presence of contact resistance and disorder (i.e., tail states); thus, the RC and αt
should be extracted in order to capture that behavior, as seen in Figure 2. In the following
two sub-sections, the retrieval procedure for RC and αt is shown in detail.
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3.2. Contact Resistance and Transfer Characteristics of two TFTs

To extract the contact resistance (RC), we need to derive the respective formula based
on Equation (1). For the first combination with TFT-1 and TFT-2, for example, referring to
Table 1, the current-voltage relations are as follows:

IDS1 = Kn
W1

L1
(VGS −VT)

1+αt(VDS − 2RC IDS1), (4)

IDS2 = Kn
W2

L2
(VGS −VT)

1+αt(VDS − 2RC IDS2). (5)

Here, it is notable that IDS changes with varying W/L, while other parameters, includ-
ing RC, are given or constant regardless of W/L. Note that the terms (VDS − 2RC IDS1) and
(VDS − 2RC IDS2) in Equations (4) and (5) are called effective drain voltage, which can also
be extracted using RC. From Equations (4) and (5), we can take their ratio as

IDS1

IDS2
=

W1L2(VDS − 2RC IDS1)

W2L1(VDS − 2RC IDS2)
. (6)

Equation (6) can be expressed for the RC as follows:

RC =
(W1L2 IDS2 −W2L1 IDS1)

2IDS1 IDS2(W1L2 −W2L1)
VDS [Ω]. (7)

Note that Equation (7) is an analytical expression of the RC for the first pair of TFTs
(i.e., TFT-1 and TFT-2). If W1 = W2, Equation (7) is reduced as

RC =
(L2 IDS2 − L1 IDS1)

2IDS1 IDS2(L2 − L1)
VDS [Ω]. (8)

Similarly, for the second combination, TFT-2 and TFT-3 for W2 = W3, Equation (8) is
rewritten as

RC =
(L3 IDS3 − L2 IDS2)

2IDS2 IDS3(L3 − L2)
VDS [Ω]. (9)

As the third pair, Equation (8) for TFT-3 and TFT-1 for W3 = W1 is reconstructed as

RC =
(L3 IDS3 − L1 IDS1)

2IDS1 IDS3(L3 − L1)
VDS [Ω]. (10)

Note that Equations (8)–(10) can also be normalized with the given channel width (W),
giving the normalized contact resistance (rc) as rc = RCW [Ω·cm].

Now, Equations (8)–(10) can be applied to obtain RC for those three combinations,
respectively, along with the measured transfer characteristics seen in Figure 2. Figure 3
shows RC as a function of VGS-VT, along with the modeled plots. As can be seen, they
show good agreement for all three difference cases. For these modelings, we employed
a power-law function:

RC = AC(VGS −VT)
−αc [Ω], (11)

where AC is a pre-factor and αc is an exponent. As indicated in Figure 3, the extracted values
of AC and αc for all three cases are approximately 1.8 × 105 Ω/V−αc and 0.81, respectively.
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Figure 3. The retrieved RC as a function of VGS-VT for three possible combinations, which are the three cases: (a) TFT-1 and
TFT-2; (b) TFT-2 and TFT-3; (c) TFT-3 and TFT-1. Here, the modeled results indicating the values of the model parameters
(AC and αc) for each case are also shown.

3.3. Intrinsic Channel Conductance and Tail States

First, the ratio between the IDS and (VDS − 2RC IDS) of Equation (1) is normalized
with W/L. From this, an empirical expression of the intrinsic channel conductance (Gint) is
given while replacing the term RC with Equation (11), as follows:

Gint =
IDS(

VDS − 2AC(VGS −VT)
−αc IDS

)
(W/L)

. (12)

The remaining term in the right-hand-side of Equation (1) is then given independently as

Gint = Kn(VGS −VT)
1+αt . (13)

By applying Equation (12) using the results seen in Figures 2 and 3, Gint vs. VGS-VT
can be extracted; meanwhile, Equation (13) is applied separately, yielding the values of Kn
and αt, respectively (see Figure 4). Note that in Figure 4 the Gint is provided with the RC
effect removed and the channel geometry (W/L) normalized, and is thus common to all
examined TFTs.
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In particular, the αt is 0.18; thus, kTt ≈ 4.7meV (i.e., Tt ≈ 54 K).

4. Discussion

As mentioned in the Section 3.1, the measured transfer characteristics of the AOS TFTs
can be explained with Equation (1) rather than the ideally-linear equation for RC = αt = 0.
Indeed, as can be seen in Figure 2, it was found that the curvature in the above-threshold
region (at VGS > VT) looks slightly like a root function, implying the presence of contact
resistance and disorder (i.e., RC 6= 0 and αt 6= 0).

Regarding the effects of contact resistance, RC was extracted, as seen in Figure 3,
by applying Equations (8)–(10) to the transfer characteristics of three pairs of TFTs (see
Figure 2). As can be seen in Figure 3, it is obvious that the extracted results have been
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well-matched with the proposed model using a power-law. Here, it was found that it
decays with increasing VGS. This is because the contact resistance is reduced by narrowing
of the Schottky barrier due to a higher gate bias [2,17]. In keeping with this, the results
modeled using Equation (11) showed good agreement in all three cases. The retrieved
values of the RC model parameters are listed in the first row of Table 2. As can be seen in
Figure 3 and Table 2, the values of the AC and αc for all three cases are approximately very
similar to each other, with discrepancy negligible at less than 1%. This suggests that the RC
extraction method proposed here is accurate and consistent. Note that the extracted RC
trend for different pairs of TFTs should be the same in principle, and very similar practically
as long as the same initial fabrication process was applied and the same ambient conditions
were maintained.

Table 2. Summary of model equations and parameters for the same W at T = 300 K.

Non-Ideal Effects Model Equations Model Parameters

Contact Resistance

RC = (L2 IDS2−L1 IDS1)
2IDS1 IDS2(L2−L1)

VDS

(for example of TFT-1 and TFT-2)
RC = AC(VGS −VT)

−αc [Ω]
rc = RCW [Ω·cm]

AC ≈ 1.8 × 105 Ω/V−αc

for W = 50 µm

αc ≈ 0.81

Disorder (Traps)
Gint ≡ IDS

(VDS−2RC IDS)W/L

Gint = Kn(VGS −VT)
1+αt .

Kn ≈ 8.29 × 10−8 S/V1+αt

αt ≈ 0.18
kTt ≈ 4.7 meV
i.e., Tt ≈ 54 K

Using the retrieved model parameters for RC, the intrinsic channel conductance (Gint)
was then accurately extracted using Equation (12). In other words, we were able to remove
the effect of RC for accurate extraction of Gint. As seen in Figure 4, it is clear that good
agreement between the extracted and modeled results was achieved. Here, it was found
that Gint increased without any root-function behavior. However, it exhibited slightly
parabolic behavior, with an exponent > 1 using the power law. From this result, it was
found that the trend of Gint could be modelled with a power law with the exponent 1.18 (i.e.,
Equation (13) with 1 + αt for αt = 0.18). While the crystalline material-based transistor has
the exponent of unity, in our case, the retrieved value of the exponent, i.e., 1.18, was found
to be slightly greater than unity. This implies that the channel material is non-crystalline,
and thus a disorder. As seen in Table 2, kTt is 4.7 meV < kT at 300 K, which is consistent
with the literature [16,18]. This suggests that the degree of disorder is less than amorphous
Silicon, with kTt > kT. As for a physical interpretation, the conduction band of the AOS, e.g.,
IGZO, is composed of spherical orbitals (i.e., s orbitals) of metal cations; thus, the AOS is
insensitive to the bonding angle disorder, whereas amorphous Silicon has strong bonding
directivity due to the sp3 orbitals of its conduction band [18–20]. However, the AOS still
has a bonding distance error in the amorphous phase, alluding to the existence of localized
traps associated with band tail states, which can be estimated using extraction methods
based on the current-voltage and capacitance-voltage characteristics [18,21]. In order to
minimize these localized traps, process conditions can be optimized in terms of the AOS
target compositions for the sputtering process, oxygen partial pressure, and annealing
temperature [1,3,22].

Consequently, the presented empirical model for the transfer characteristics, in which
the gate-bias dependencies of the contact resistance and disorder effects are considered,
could be easily added into a compact TFT model thanks to its simplicity.

5. Conclusions

In this paper, we provided an empirical model to explain gate bias-dependent contact
resistance and disorder effects in AOS TFTs at room temperature. As an intermediate
outcome, we were also able to obtain the gate-bias dependency of the intrinsic channel
conductance where the disorder effects were viewed after removal of the parasitic effect
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due to the contact resistance. As the first step, from the measured transfer characteristics
of a pair of the IGZO TFTs, the contact resistance was extracted as a function of gate
voltage. Here, its analytical expression, derived from the current–voltage relations of two
TFTs (i.e., a pair of TFTs), was derived and applied for its retrieval. Interestingly, it was
found to follow a simple power law, giving the values of the pre-factor and exponent.
In addition, these values were found to be approximately the same for all three pairs
examined here. This allowed accurate extraction of the gate bias-dependent intrinsic
channel conductance as modelled using a power law. From this analysis, assuming the
domination of trap-limited conduction, it was shown that the characteristic energy and
temperature of the band tail states could be estimated as a measure of the degree of disorder,
which is consistent with the literature. Consequently, the presented results could be useful
for the development of an accurate compact TFT model, in which the gate bias-dependent
behaviors of the contact resistance and disorder effects are crucial.
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