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Abstract: Membranes are essential to cellular organisms, and play several roles in cellular protection
as well as in the control and transport of nutrients. One of the most critical membrane properties is
fluidity, which has been extensively studied, using mainly single component systems. In this study, we
used Fourier transform infrared spectroscopy to evaluate the thermal behavior of multi-component
supported lipid bilayers that mimic the membrane composition of tumoral and non-tumoral cell
membranes, as well as microorganisms such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus
aureus. The results showed that, for tumoral and non-tumoral membrane models, the presence of
cholesterol induced a loss of cooperativity of the transition. However, in the absence of cholesterol,
the transitions of the multi-component lipid systems had sigmoidal curves where the gel and fluid
phases are evident and where main transition temperatures were possible to determine. Additionally,
the possibility of designing multi-component lipid systems showed the potential to obtain several
microorganism models, including changes in the cardiolipin content associated with the resistance
mechanism in Staphylococcus aureus. Finally, the potential use of multi-component lipid systems in
the determination of the conformational change of the antimicrobial peptide LL-37 was studied. The
results showed that LL-37 underwent a conformational change when interacting with Staphylococcus
aureus models, instead of with the erythrocyte membrane model. The results showed the versatile
applications of multi-component lipid systems studied by Fourier transform infrared spectroscopy.

Keywords: lipid model membranes; supported lipid bilayers; LL-37; thermal behavior; membrane
fluidity; infrared spectroscopy

1. Introduction

All cellular organisms have a thin, fluid, and flexible membrane based on lipids that
define them as units, separates them from their surroundings, and participates in several
physiological processes [1]. Biological membranes have diverse functions and compositions;
however, they have a common and critical property called fluidity [2–4]. Membrane fluidity
is a complex concept that from a physicochemical view is an elastomechanical property.
However, it includes several parameters such as structure, composition and disposition of
membrane lipids that contribute to the state of the membrane. The complex diversity of
lipid types creates a delicate balance that regulates the structural properties of biomem-
branes, and therefore the environment for proteins and other membrane components, and
this is associated with the flexibility needed for cellular morphological transformation
including division, differentiation, and general adaptation for each kind of membrane [5,6].
These processes are associated with molecular motion within a lipid bilayer and activity
regulation of other molecules, including membrane-bound proteins. It was reported that
abnormalities in the physical properties of cell membranes may underlie the defects that
are strongly linked to hypertension, stroke and other cardiovascular diseases [7,8], diabetes
mellitus [9], and Alzheimers [10]. Therefore, studies of the relationships between fluidity
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and phase transitions in membranes are relevant. For this reason, there has been a great
interest in the use of artificial model lipid membranes with a simplified composition to
study membrane properties, structure, and activity of natural or synthetic compounds [11].

There are several techniques used for studying a wide variety of temperature-induced
transitions in biological systems such as Differential Scanning Calorimetry (DSC) [12]. DSC
is a non-perturbing thermodynamic technique that measures the heat exchange associated
with cooperative lipid phase transitions in model and biological membranes. This technique
is useful not only in determining thermotropic phase behavior (Tm) and energy, but also
in obtaining information on the cooperativity of the transitions [13]. The most important
parameters obtained by DSC are the change in the main phase transition temperature, the
width of the main transition peak (cooperativity) and the enthalpy change (∆H) associated
with the process. One of the most common techniques used for studying a membrane state
is fluorescence spectroscopy. The technique is based on the use of membrane probes such
as 6-dodecanoyl-2-dimethylaminonaphthalene (laurdan) and 1,6-diphenyl-1,3,5-hexatriene
(DPH) [14,15]. The Laurdan fluorescent spectrum is sensitive to polarity (hydration level),
dipolar dynamics of the environment and the phase state of phospholipid bilayers [16].
Therefore, laurdan provides information about molecular dynamics at the level of the
glycerol backbone and can distinguish whether a membrane is in a gel or liquid-crystalline
state. The laurdan molecule is strongly anchored in the hydrophobic core of the bilayer
by hydrophobic interactions between its lauric acid tail and the lipid alkyl tails while the
fluorescent moiety is located at the glycerol level of the phospholipid headgroups [17]. The
fluorescent probe DPH was widely used to study the structure and dynamic properties of
the model and natural membranes. DPH was originally proposed as a probe to estimate
the microviscosity of cell membranes and the rigidity of binding sites on proteins [14].

Another technique extensively used in the study of membrane properties is Fourier
transform infrared spectroscopy (FT-IR). Chemical bonds undergo different forms of vibra-
tions such as stretching, twisting and rotating. The energy of most molecular vibrations
corresponds to the infrared region of the electromagnetic spectrum. Infrared spectroscopy
measures these vibrations and provides information about molecular structure and struc-
tural interactions. One of the most important advantages of FT-IR spectroscopy is that
experiments with biomolecules and without the addition of probes can be performed in
diverse environments such as water, thin films, organic solvents, detergent micelles and
lipid bilayer matrix [18]. Applications such as attenuated total reflection (ATR) provide
rapid and sensitive monitoring of one of the most important physicochemical parameters
of membranes, fluidity. If an exogenous molecule interacts with the phospholipid bilayer,
changes can be detected and monitored [18].

However, the simplification of model membranes used in these techniques was exten-
sively questioned on the basis that it does not represent the membrane properly, especially
the fluidity, charge, and lipid headgroup complexity [19]. For this reason, the aim of
this study was to use multi-component lipid systems in order to understand the direct
relationship of membrane lipid composition to fluidity, and how these complex systems
represent a better approximation between Gram-negative and Gram-positive bacteria and,
in eukaryotes, between cancer and non-cancer cell membranes. Additionally, we used two
multi-component lipid systems that represent the bacterial and erythrocyte cell membranes
to study the conformational change undergone by a recognized peptide such as LL-37.
Human cathelicidin LL-37 is a well-studied peptide with a + 6 charge at pH 7.4 that has
several physiological roles in the body, being recognized for its antimicrobial, antifungal
and antiviral activities [20–23]. When the peptide interacts with membranes it assumes an
α-helical structure that was reported by circular dichroism [24,25].

2. Materials and Methods
2.1. Chemical Reagents

1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG, Lot. 140PG-167),
1’,3’-bis [1,2-dimyristoleoyl-sn-glycero-3-phospho]-glycerol sodium salt (CL, Lot. 750332P-
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200MG-A-030), 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE, Lot. 140PE-63),
1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, Lot. 160PC-318), Sphingomyelin Egg
Chicken (SM, Lot. 860061P-25MG-A-116), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine
(DPPE, Lot. 160PE-106), 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (sodium salt),
(DPPS, Lot. 840037P-500MG-A-078CL750332P-200MG-A-030) and Cholesterol (CH, Lot.
CH-92) were purchased from Avanti Polar Lipids (Alabaster, AL, USA). Breast cancer cell
line MCF-7 (HTB-22™) was purchased from ATCC® (Manassas, VA, USA). HPLC-grade
methanol and chloroform were purchased from Merck (Kenilworth, NJ, USA). HEPES was
purchased from Sigma-Aldrich (St. Louis, MO, USA), NaCl from Carlo Erba (Val de Reuil,
NOR, FR) and EDTA from Amresco (Solon, OH, USA).

LL-37 peptide (LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES, Lot. V1440EE070/
PE1324) was purchased from GenScript (Piscataway Township, NJ, USA) and synthesized
according to the sequence by solid-phase method. The purity of the peptide was deter-
mined to be higher than 95% by analytical HPLC, TFA removal was performed, and the
molecular weight was confirmed with MALDI-TOF mass spectrometry.

2.2. Cell Cultures and Lipid Extraction

MCF-7 breast cancer cell line (ATCC HTB-22™) was cultured in Dulbecco’s modified
Eagle’s medium (DMEM), supplemented with 5% fetal calf serum, 100 µg/mL penicillin
and 100 µg/mL streptomycin. The cells were grown at 37 ◦C in a humidified incubator
with 5% CO2/95% air. Cell cultures were examined under a microscope for correct mor-
phology, adherence, and exponential growth. To extract the lipids, cells were trypsinized,
pelleted, washed with 2 mL of water and re-centrifuged at 6000 rpm for 15 min at 4 ◦C
in 15 mL polyethylene centrifuge tubes. The supernatant was discarded, while the pel-
let was freeze-dried (Chamber temperature −60 ◦C, SP Scientific, Gardiner, NY, USA,
pressure < 7 × 10−1 mbar).

Lipid extraction was performed according to the two-step Bligh and Dyer lipid ex-
traction method suitable for samples in incubation medium, tissue or cell suspensions [26].
A total of 65 mg of MCF-7 cells were weighed in a clean test tube and resuspended in
5 mL deionized water, and the mixture was then vortexed for homogenization. The cell
suspension was quantitatively transferred into a clean glass separatory funnel. The tube
was rinsed with 5 mL deionized water. A total volume of 96 mL of solvent consisting
of chloroform, methanol and water (1:2:0.8; v/v/v) was then added. The samples were
shaken for 20 s immediately after the solvent had been added and allowed to stand for
about 18 h, with occasional shaking. Phase separation of the biomass–solvent mixtures in
the separatory funnels involved adding chloroform and water to each separation funnel to
obtain a final chloroform–methanol–water ratio of 1:1:0.4 (v/v/v). The chloroform phase
was transferred into a clean 50 mL flask bottle to remove the solvent and concentrate the
samples, which were then washed 3 times at the same volume of 0.9% NaCl (w/v). The
organic phase containing the lipid extract was collected and concentrated by evaporating
the solvent under a stream of nitrogen.

2.3. Phase Transition Measurements by Infrared Spectroscopy

Supported lipid bilayers (SLBs) were prepared in situ in a BioATR II cell. The unit
was integrated with a Tensor II spectrometer (Bruker Optics, Ettlingen, Germany) with
a liquid nitrogen MCT detector using a spectral resolution of 4 cm−1 and 120 scans per
spectrum. The desired temperature was set by a Huber Ministat 125 computer-controlled
circulating water bath (Huber, Offenburg, Germany) with an accuracy of ±0.1 ◦C. First,
the background was taken using 20 mM HEPES buffer, 500 mM NaCl and 1 mM EDTA
in the same temperature range. Subsequently, to coat the silicon crystal, stock solutions
of the different lipid systems were dissolved in chloroform. The preparation of stock
solutions was carried out depending on the lipid system to analyze. For non-tumoral
and tumoral membrane composition this was DPPC/SM/DPPE 4.35:4.35:1 (w/w) and
DPPC/SM/DPPE/DPPS/3.85:3.85:0.8:1.5 (w/w), respectively [27,28]. For Escherichia coli
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(E. coli) lipid system it was PE:PG:CL 75:20:5 [29]. For Pseudomonas aeruginosa (P. aeruginosa)
lipid system it was PE:PG:CL 65:23:12 (w/w) [30]. Finally, for Staphylococcus aureus (S. aureus)
lipid system it was DMPG:CL 80:20 (w/w) [31].

The cell was filled with 20 µL of the lipid stock solution, and the chloroform was
evaporated, resulting in a lipid multilayer film. For in situ measurements the cell was
subsequently filled with 20 µL of buffer or peptide solution and incubated over the phase
transition temperature for 10 min. To determine the position of the vibrational band in the
range of the second derivative of the spectra, all the absorbance spectra were cut in the
2970–2820 cm−1 range, shifted to a zero baseline and the peak picking function included in
OPUS software. The results were plotted as a function of the temperature. To determine the
transition temperature (Tm) of the lipids, the curve was fitted according to the Boltzmann
model to calculate the inflection point of the obtained thermal transition curves using the
OriginPro 8.0 software (OriginLab Corporation, Northampton, MA, USA).

2.4. Determination of the Secondary Structure of LL-37 Using Multi-Component Lipid Systems

LL-37 Peptide solution was prepared at 1mM concentration in buffer (10 mM HEPES,
500 mM NaCl, 1 mM EDTA, pH 7.4). Appropriate amounts of DMPC:SM:DMPE (22:20:6)
for erythrocyte membrane [32], and DMPG:CL (80:20) for S. aureus membrane [31] were
weighed in order to obtain a 5 mM final concentration of representative liposomes. Lipids
were dissolved in pure chloroform in a glass test tube, the solvent was dried under a stream
of nitrogen and the traces were removed by keeping the samples under reduced pressure
(about 13.3 Pa) for 30 min. Dried lipids were hydrated in buffer. Multilamellar vesicles
(MLVs) were formed by sonicating the samples above the main phase transition temperature
of the lipids for at least 15 min. For the determination of the secondary structure, LL-37 was
added to the liposome suspension to obtain a 15 molar% concentration. The experiments
were performed at 37 ◦C in an AquaSpec Cell (Bruker Optics, Ettlingen, Germany). The unit
was integrated with a Tensor II spectrometer with a liquid nitrogen MCT using a spectral
resolution of 4 cm−1 and 120 scans per spectrum. The secondary structure elements α-helix
and β-sheet were predicted following the methods supplied by the ConfocheckTM system
(Bruker Optics, Ettlingen, Germany). These methods calculate the secondary structure
with a multivariate partial-least-squares algorithm (PLS) based on a calibration data set of
45 different proteins.

3. Results
3.1. Phase Transition Experiments by Infrared Spectroscopy

One of the most important physicochemical parameters to follow the lipid order
and packing of the hydrophobic core of membranes is the wavenumber peak position
of the νsCH2 band. Depending on the temperature, the lipid bilayer has different states.
At lower temperatures, in the gel phase, νsCH2 lies around 2850 cm−1; while at higher
temperatures, in the liquid crystalline phase, the band lies around 2853 cm−1. Following
the phase transition, it is possible to calculate the main transition temperature (Tm) of a
lipid system. The results of the phase transition measurements of four pure lipid systems
are summarized in Figure 1. The change in the peak position of the symmetric stretching
vibration band of the methylene group as a function of the temperature of the four pure
lipids produced a sigmoidal curve, which reflects the high degree of molecular aggregation
of these systems. The transitions of saturated phospholipids were shown to be highly
cooperative events, with transition ranges of less than 0.1 ◦C. Afterward, multi-component
lipid systems to mimic two cell membrane systems were prepared, considering the reported
composition for cancer PC:SM:PE:PS (3.85:3.85:0.8:1.5 w/w), and non-cancer membranes
PC:SM:PE (4.35:4.35:1 w/w) proposed by Li et al. [33] and Yeung and collaborators [28]. The
results obtained by FT-IR are summarized in Figure 2. As expected, the phase transition
for the multi-component lipid systems is broader than for the pure systems. However,
obtaining a sigmoidal curve allows the same method as for pure lipid systems to be applied
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in order to determine the phase transition temperature through Boltzmann fitting. The Tm
obtained for non-cancer and cancer cell membranes are 39.9 and 41.0 ◦C, respectively.
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Figure 1. Peak positions of the νsCH2 vibration bands of the methylene groups as a function of the
temperature of the pure supported lipid bilayers of DPPC (•), DPPS (•), DPPE (•) and SM (•) in
buffer (10 mM HEPES, 500 mM NaCl, 1 mM EDTA, pH 7.4).
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Figure 2. Peak positions of the νsCH2 vibration bands of the methylene groups as a function of
temperature of the representative model of (a) non-cancer (PC:SM:PE; 4.35:4.35:1 w/w) and (b) cancer
cell membranes (PC:SM:PE:PS; 3.85:3.85:0.8:1.5 w/w) in buffer (10 mM HEPES, 500 mM NaCl, 1 mM
EDTA, pH 7.4).

One important component of the eukaryotic cell membrane is cholesterol. For this
reason, we evaluated a multi-component lipid system including cholesterol. Figure 3 shows
the thermal behavior of the non-cancer model including cholesterol and the comparison of
this with the thermal behavior of the total lipid extract from breast cancer cell line MCF-7.
When cholesterol was included in the multi-component lipid system, the characteristic sig-
moidal curve was lost. Analysis of the results of the phase transitions of multi-component
lipid system and MCF-7 lipid extract showed that both systems exhibited similar thermal
behavior, and the transitions obtained were more lineal than sigmoidal.
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Figure 3. Peak positions of the νsCH2 vibration bands of the methylene groups as a function of
temperature of (a) non-cancer cell model membrane (PC:SM:PE:CH; 4.35:4.35:1:1 w/w) and (b) lipid
extract of breast cancer MCF-7 cell line, both transitions were obtained using buffer (10 mM HEPES,
500 mM NaCl, 1 mM EDTA, pH 7.4).

The results showed that transitions are broader than the previous results obtained in
Figure 2. Nonetheless, there is a remarkable difference in the peak positions of the νsCH2
vibration; the vibration of the lipid extract is located at higher frequencies than the νsCH2
vibrations of the synthetic model, showing that the lipid extract is more fluid.

As part of our results, we also evaluated the thermal behavior of representative multi-
component lipid systems of two Gram-negative bacterial membranes P. aeruginosa [30], and
E. coli [29]. The results of these two lipid systems are represented in Figure 4. The results
showed a very similar Tm of 45.6 and 45.9 ◦C for P. aeruginosa and E. coli, respectively.
However, the SLBs behave differently in the two models, considering that the P. aeruginosa
and E. coli systems have different proportions of PG:CL, lipids related with the electrostatic
properties and the negative charge of the membrane surface in each model.
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Figure 4. Peak positions of the νsCH2 vibration bands of the methylene groups as a function of
temperature of (a) P. aeruginosa PE:PG:CL 65:23:12 (w/w) and (b) E. coli PE:PG:CL 75:20:5 (w/w)
multi-component lipid systems in 10 mM HEPES, 500 mM NaCl, 1 mM EDTA, pH 7.4.

Finally, we studied a multi-component lipid system representative of S. aureus. The
results of this are summarized in Figure 5. The pure lipid systems of PG and CL are
included in the graph to compare the results obtained with the different proportions of
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PG:CL evaluated. The first model was the sensitive S. aureus, based on our previous results
on lipid quantification of total lipids of S. aureus strain RN4220. We reported a ratio of
PG:CL (80:20) [31]. However, for antibiotic-resistant and other S. aureus strains, different
PG:CL ratios, such as 70:30 and 60:40, were reported [34,35]. As can be observed in the
results, the extremes in the graph correspond to the pure PG and CL lipids. From the left
side of the graph, increasing concentrations of CL caused an increase in the Tm of the model
lipid system from 28.8 ◦C in the sensitive S. aureus model to 38.3 ◦C in the resistant model.
Additionally, the increasing concentrations of CL in the gel phase for all the lipid systems
induced a reduction in the νsCH2 vibration to lower wavenumbers.
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Figure 5. Peak positions of the νsCH2 vibration bands of the methylene groups as a function of
temperature of (•) DMPG, (•) DMPG:CL (80:20), (•) DMPG:CL (70:30), (•) DMPG:CL (60:40), and
(•) CL in Buffer (20 mM Hepes, 500 mM NaCl and 1mM EDTA).

3.2. Determination of the Secondary Structure of LL-37

Given that the structural conformation of antimicrobial peptides changes through
interaction with membranes, we evaluated the conformational change in the human cathe-
licidin LL-37, a very highly-studied peptide, in two representative lipid systems. The
obtained results are summarized in Table 1. Analysis of the secondary structure found
that in the buffer, the LL-37 peptide was partially helical. In the case of the representative
multi-component lipid system of erythrocyte membrane (DMPC:SM:DMPE) the results
showed a conformational change of 8% of the LL-37 helical structure. However, when the
peptide interacted with the bacterial model of S. aureus (DMPG:CL) the peptide acquired
63.1% of its secondary structure as an α-helix.

Table 1. Prediction of the secondary structure analysis of the peptide LL-37 in buffer and in different
lipid systems.

Peptide/Lipid System α-Helix prediction (%)

LL-37 in Hepes 32.0
LL-37 + DMPC:SM:DMPE 40.0

LL-37 + DMPG:CL 63.1
Prediction of secondary structure elements α-helix were performed using the methods supplied by the
ConfocheckTM systems.
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4. Discussion

Membranes are fluid, heterogeneous and dynamic systems. Fluidity is related to the
viscosity of the lipid membrane, which is an important mechanical property of the cell
membrane. It is an intensive and bulk property related to the translational, rotational,
and vibrational movement of membrane lipids, with important consequences for other
molecules inserted in the hydrophobic core such as proteins [36,37]. Increased fluidity en-
hances the free movement of phospholipid molecules and protein moieties in the membrane
to facilitate various biological functions including ion transport, cell signaling and cell
growth [10]. Fluidity is affected by lipid chemical structure, temperature, and cholesterol
content [38]. In the case of fatty acids, fluidity has a characteristic value depending on the
unsaturation and length of the acyl chains [39], and on the structure of the head groups of
the phospholipid [40]. At low temperatures, the hydrocarbon chains of lipids are organized
in an orderly arrangement called the gel state. In contrast, with increasing temperature,
lipid molecules vibrate faster, causing fusion that leads to a liquid crystalline state, which is
more fluid and disordered [2]. These phases consist of hydrated phospholipid aggregates.
The aggregation process is driven by the hydrophobic effect of acyl chains. Therefore,
transitions between phases can be induced by varying temperatures. For pure lipid sys-
tems, the temperature value where the lipids change state is called the main transition
temperature (Tm). For multi-component lipid mixtures, Tm will correspond to a value
depending on the participating lipids and their proportions. This thermal process is highly
cooperative and easy to monitor using several techniques. Cholesterol has been exten-
sively studied given its considerable effects on the conformation, fluidity and thermotropic
properties of membranes [41–44]. Additionally, malignant cells have been described as
more fluid, due to their lower cholesterol content than normal cells. This lower cholesterol
content makes malignant cells more susceptible to membrane acting-drugs by facilitating
the destabilization of the membrane [45].

One of the most versatile techniques to follow thermal behavior is Fourier transformed
infrared spectroscopy. This allows monitoring of the order of the lipid acyl chains in terms
of the symmetric vibration of CH2 of phospholipid molecules and the changes due to
temperature, which is a measurement of fluidity. Low frequencies of methylene groups are
associated with a less mobile phase and high frequencies with a high mobile state. In addi-
tion, this technique can be used to study the effects of changes in pH, solute concentration,
and the interaction with exogenous agents [46] in the absence and presence of an agent as
a function of temperature and at different lipid:compound ratios. Since biological mem-
branes are very complex systems given the current understanding of lipid behavior, model
membranes have been extensively used for study purposes instead of natural membranes.
The most well-known biomimetic systems for such purposes are lipid monolayers, lipid
vesicles, and supported lipid bilayers [47]. These models have been extensively studied
using different biophysical techniques. These analytical or spectroscopic techniques are
based on the fact that molecules can produce changes in the physical and thermodynamic
properties of model membranes [48].

We worked with SLBs as model membranes to study the thermal behavior of several
lipid systems. Analysis was carried out on symmetric stretching CH2 vibration through
FT-IR as a function of temperature. The first step in the evaluation was obtaining the
phase transitions of the pure lipids DPPC, DPPE, DPPS, and SM. The results of the pure
lipid systems were sigmoidal functions representing the transitions from gel to the liquid-
crystalline states. The temperature-dependent changes in the νsCH2 stretching band
allowed the determination of the phase transition temperature for the studied SLBs. This
method was based on calculating the second derivative of the sigmoidal curves. The
results of the determination of the Tm were consistent with data previously reported in
the literature using differential scanning calorimetry (DSC) [49–52], which is a very precise
calorimetric technique to obtain the phase transitions of lipid suspensions [53].

Although pure lipid systems such as PC and PS have been extensively used to repre-
sent non-cancer and cancer cell membranes, respectively [54–56], these simplified models
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are far from representing the composition of a complex biological membrane. For this
reason, the next step was to prepare multi-component lipid systems representative of both
membranes. We used the composition reported by Almarwani et al. for the normal cell
membrane, and an anionic phospholipid range of 10–20% for the cancer model, without
including cholesterol in the multi-component lipid model [28]. In the absence of choles-
terol, slightly broader sigmoidal curves were obtained, through which it was possible to
calculate the Tm of the systems. The results showed that the temperatures obtained for
non-tumoral and tumoral cells were 39.9 and 41.0 ◦C, respectively. These results could be
considered similar, but the charge of the systems is not. The cancer model is slightly but
not completely negatively charged at the surface, in comparison to a single-component
system built exclusively from PS. The phosphatidylserine in the multi-component system
is in principle distributed along the surface of the model membrane, which is more rep-
resentative of a cancer cell membrane. It was extensively reported that malignant cells
of several types of cancer lose their asymmetric distribution [57,58], which results in the
exposure of the negatively charged PS on the surface of their membranes. In the case
of the non-cancer cell membrane, there is no charge at the membrane surface since all
lipids used in the model were zwitterionic. This is also in accordance with the typical
non-charge of a eukaryotic membrane but has the headgroup complexity from it. Our
results represented the different fluidity of cancer cell membranes in comparison with
non-cancer cell membranes. This characteristic can be monitored through the analysis of
the wavenumber at a specific temperature, for example at 37 ◦C, which is 2850.8 for the
cancer model membrane, and 2850.5 cm−1 for the non-cancer membrane. Our findings
are in accordance with the previously-described characteristic of cancer cell membranes as
more fluid systems than normal cell membranes [4,59].

Our attempt to include cholesterol in the multi-component lipid systems resulted
in a very broad transition, where the inflection point characteristic of the gel to liquid-
crystalline change was not evident. This transition was compared with the one obtained
from the total lipid extract from MCF-7 cells. The result was very similar, consisting of a
very broad phase transition. The main difference was that the νsCH2 stretching vibrations
from the lipid extract were located at higher frequencies, which could suggest that the
extract contains unsaturated lipids and higher cholesterol content. The broadening effect
of the cholesterol in the phase transition is not surprising, as cholesterol acts as a phase
modulator in mammalian membranes, generating modifications in membrane dynamics
and fluidity [41,51].

Multi-component lipid systems representative of P. aeruginosa (PE:PG:CL; 65:23:12 w/w)
and E. coli (PE:PG:CL; 75:20:5 w/w) were also evaluated to identify the Tm of the systems.
Both are Gram-negative bacteria and represent a major health problem worldwide. They
are related to several infections and are difficult to treat due to the absence of new an-
timicrobial agents active against this group of pathogens [60,61]. The results obtained
showed very similar values for Tm, which is closely related to the similar composition of
the cell membranes. However, the technique is sensitive enough to detect small variations
in the lipid composition of the systems, resulting in slight differences in the Tm obtained of
45.6 and 45.9 ◦C for P. aeruginosa and E. coli, respectively.

Another very interesting system to study was S. aureus model membrane. In this
Gram-positive bacteria, two lipids were identified as major components, phosphatidylglyc-
erol (PG) and cardiolipin (CL) [31]. However, the role of CL is not completely understood.
Several authors have suggested that increasing concentrations of CL in S. aureus membrane
is associated with a resistance mechanism based on the modification of membrane com-
position in the bacteria [62,63]. The polar headgroups of the cardiolipin structure have
a relatively small size, which promotes greater cohesion between the CL hydrocarbon
chains [64]. For this reason, it was proposed that higher concentrations of the lipid in
the bilayer increase the membrane packing due to an increase in the lateral density of
fatty acids. Some studies have suggested that an elevated CL content in the membrane of
S. aureus may contribute to bacterial resistance to antibiotics, including Daptomycin [65].
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Considering the relevant physical–chemical properties of CL in S. aureus membrane, we
evaluated different proportions of CL in the SLBs by FT-IR. The results suggest that CL
plays an important role in the membrane characteristics of S. aureus. Specifically, they
showed that increasing concentrations of CL have an effect on the fluidity of the system,
increasing the Tm of the model membranes and a fixed temperature. For example, the
νsCH2 vibration of the system 60:40 appeared at wavenumbers lower than 70:30 or 80:20.
These results provide evidence that CL imposes structural consequences on the bilayer core
of the S. aureus membrane.

Finally, a very attractive application of the multi-component lipid systems is the
determination of the secondary structure of bioactive peptides. The conformational change
that peptides undergo when they interact with the cell membrane has been extensively
studied [66,67]. The most extensively used technique for the determination of the secondary
structure is circular dichroism. In this technique solvents such as trifluoroethanol are used to
represent the membrane environment. However, the possibility of using multi-component
lipids systems that can be designed depending on the membrane under study, opens in turn
the possibility of using more representative model systems to study the conformational
change. Most peptides change conformation from random coiled to an α-helical structure.
In this study the very highly-studied peptide LL-37 was made to interact with two different
multi-component lipid systems, representative of erythrocytes and S. aureus membranes, to
evaluate the conformational change depending on the composition of the model membrane
used. It was demonstrated that human cathelicidin LL-37 after binding to the membrane
assumes an α-helical structure [24]. This peptide has several physiological roles in the body,
being recognized for its antimicrobial, antifungal and antiviral activities [20–22,68–70]. The
results showed that, in solution, LL-37 was partially helical. This result could be explained
by the fact that cathelicidins often show a slightly α-helical structure at low concentrations
in buffer solution [25]. In the presence of liposomes representative of the erythrocyte
membrane the peptide underwent a mild conformational change, but in the presence of
the liposomes representative of S. aureus membrane the change in conformation was very
strong. LL-37 peptide is known to interact with negatively charged phospholipid vesicles,
leading to the induction of a secondary structure [24,71], which is highly associated with
its biological activity.

5. Conclusions

The complexity of the cell membrane makes it a very intricate system to study in
its natural state. However, given the importance of understanding how molecules in-
teract and affect the physicochemical properties of membranes, it is necessary to use
representative models of these systems. Our results demonstrated the possibility of using
multi-component lipid systems to monitor membrane fluidity by infrared spectroscopy.
This application opens the possibility of studying the thermal behavior of eukaryotic and
bacterial model membranes, where the lipid composition and charge mainly influence the
phase transition temperature. The results of this study have led to the identification of
differences in both tumoral and non-tumoral membrane fluidity, and even to comparisons
between the thermal behavior of synthetic and natural lipids, thereby allowing the main
effect of cholesterol on the phase transition to be appreciated. The results also showed
that, despite the similarity in the phospholipid composition between Gram-positive and
Gram-negative bacteria, proportions established significant differences in the lipid sys-
tem charge, thereby conditioning the Tm parameter. We finally wanted to highlight one
more application of multi-component lipid systems for the conformational change that
peptides can undergo in the presence of a lipid environment. Thus, the helical content of
the recognized LL-37 peptide was evaluated in aqueous, erythrocyte, and bacterial model
membranes. The folding trend is consistent with reports using circular dichroism. As a
future perspective, further investigations with multi-component lipid systems will be used
as a strategy to study the effect of potential antimicrobial and antitumoral agents in the
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biophysical properties of eukaryotic and bacterial membranes, as well as the secondary
structure prediction of peptides in those lipid environments.
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