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Abstract: Bipolar membrane electrodialysis (BMED) is a new membrane separation technology
composed of electrodialysis (ED) through a bipolar membrane (BPM). Under the action of an electric
field, H2O can be dissociated to H+ and OH−, and the anions and cations in the solution can
be recovered as acids and bases, respectively, without adding chemical reagents, which reduces
the application cost and carbon footprint, and leads to simple operation and high efficiency. Its
application is becoming more widespread and promising, and it has become a research hotspot. This
review mainly introduces the application of BMED to recovering salts in the form of acids and bases,
CO2 capture, ammonia nitrogen recovery, and ion removal and recovery from wastewater. Finally,
BMED is summarized, and future prospects are discussed.

Keywords: bipolar membrane electrodialysis; acid and base; carbon dioxide; ammonia nitrogen;
wastewater

1. Introduction

Electrodialysis (ED) is a membrane separation technology, and the ion exchange mem-
brane present in ED is divided into anion-exchange membrane (AEM) and cation-exchange
membrane (CEM). CEM and AEM are selective for cation and anion transfer [1–3] under
an electric field [4–6]. ED is widely used in (bio)chemistry, food processing, wastewater
treatment, chemical recycling, and the removal of toxic components, but the high energy
consumption limits its wider development [7].

In 1956, Frilette [8] made a breakthrough in membrane separation technology. He
was the first to propose a bipolar membrane (BPM) [9], which is a special ion exchange
membrane that consists of an AEM and a CEM [10]. Their combined thickness is less than
10 nm [11,12]. Under the reverse bias of a DC electric field, H+ and OH− can be generated
by dissociating H2O [13]. BPM is used in the (bio)chemical industry, as well as for food
processing, environmental protection, and energy conversion and storage, because it can
acidify organic salts in situ without causing salt contamination, and converts the cations
into a base (which can be reused to produce organic salts) [14].

Over the past 20 years, bipolar membrane electrodialysis (BMED), a system com-
bining ED and BPM, has been developed for its ability to convert anions and cations
into acids and bases, respectively. BMED is composed of BPM, CEM, and AEM in a cer-
tain arrangement [15] and has three basic membrane structures (three-chamber BMED;
two-chamber BMED containing acids or base) depending on the application. Among them,
the three-chamber BMED (Figure 1a) contains CEM, AEM, and BPM in each membrane
repeating unit, and the benefit of it is that the salts can be separated and recovered as acids
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and bases [13]. Two-chamber BMED includes base-BMED (Figure 1b) and acid-BMED
(Figure 1c); the difference from the three-chamber BMED is that an AEM or CEM is re-
moved from each membrane repeating unit, resulting in only base or acid being produced.
Base-BMED (Figure 1b) can be used to treat weak acid salts (organic acid salts) for ob-
taining a relatively pure base; acid-BMED (Figure 1c) can be used to convert weak base
salts into a relatively pure acid. Moreover, two-chamber BMED has advantages, such as
requiring a smaller membrane area (per repeating unit), simple operation, high efficiency,
low energy consumption, and only with two outlet streams [13]. However, the base gener-
ated by the cathode in the two-chamber BMED is easily transported to an acid chamber
through the AEM, neutralizing the acid, therefore reducing the amount of acid and current
efficiency [16].
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In a three-chamber BMED, the basic units are repeatedly placed between the electrodes.
The salt solution flows in the chamber between the AEM and the CEM; the CEM is not
directly in contact with the acid, and the AEM is not directly in contact with the base, so
the durability of the membrane is significantly increased compared to in the two-chamber
BMED [18]. This also overcomes the disadvantage of ion leakage that was present in the
two-chamber BMED. When a direct current is applied, water will dissociate into equal
amounts of H+ and OH− in the BPM; the generated H+ forms HX with the X− ions
provided by the salt solution, OH− and M+ ions provided by the salt solution form MOH,
and the corresponding acids and base are obtained. It was shown that concentrations of
acids and base as high as 6 M can be produced in a three-chamber BMED. However, its
energy consumption is relatively high due to the resistance of the salt solution increasing
with the ion migration, which resulted in a high voltage under the condition of a stable
current density.

Compared with other electrochemical technologies, BMED has the characteristics
of lower energy consumption and higher economic efficiency. The water dissociation
potential (0.828 V) required in BPM is much lower than that of water electrolysis on
electrodes (2.057 V). The electrolysis reaction is compared as follows (assuming that 1 mol
of acid and base are both generated) [19]:

The overall electrolysis reaction on an electrode:

3H2O→ 1/2O2 + H2 + 2H+ + 2OH−, theoretical potential 2.057 V (1)

cathodic reaction:

2H2O + 2e→ H2 + 2OH−, theoretical potential 0.828 V (2)

anodic reaction:

H2O→ 1/2O2 + 2H+ + 2e, theoretical potential 1.229 V (3)

Bipolar membrane water dissociation reaction:

2H2O
k1→
←−−
k−1

H3O+ + 2OH−, theoretical potential 0.828 V (4)

where k1 is the water dissociation rate constant, and k−1 is the water recombination
rate constant.

The water dissociation reaction in BPM is described as a two-stage protonation–
deprotonation reaction [20]. The protonation–deprotonation mechanism suggests the
possibility of generating H+ and OH− ions via proton transfer reactions between water
and immobilized charged groups [21–23], involving the participation of catalysts in the
dissociation of water, and it is believed that the water dissociation reaction depends on the
catalytic activity of the immobilized group. Therefore, the reaction in Equation (4) can be
divided into the following processes:

B + H2 O
k1→
←−−
k−1

BH+ + OH− (5)

BH+ + H2 O
k2→
←−−
k−2

B + H3O+, (6)



Membranes 2022, 12, 829 4 of 22

where B is a weak base, BH+ is the catalytic center (i.e., fixed charged groups of AEM), k1;2
is the forward rate constant, and k−1;−2 the backward rate constant.

AH + H2O
k1→
←−−
k−1

A− + H3O− (7)

A− + H2O
k2→
←−−
k−2

AH + OH−, (8)

where A− is the catalytic center in the membrane.
If the dissociated ions combine with the ions in solution, the overall reaction of BPM

can also be written as:
MX + H2O→ MOH + HX, (9)

where MX refers to a generic electrolyte and MOH and HX to its corresponding base and
acid, respectively.

The energy consumption of electrohydrolysis for 1 mol of water is 198.5 KJ/mol
on electrodes, and 79.9 KJ/mol in BPM. H2 and O2 are not generated during the BMED
process, which has no effect on the electrode. This gives BMED better application prospects
compared to other electrochemical technologies.

This review mainly introduces the application of BMED in terms of recovering salts in
the form of acids and bases, CO2 capture, ammonia nitrogen production and recovery, and
ion removal and recovery from wastewater.

2. Recovering Salts in the Form of Acids and Bases
2.1. Inorganic Acid and Base Recovery from Salt Solutions

BMED technology is often used to treat high-salt wastewater. A large number of
previous studies reported acid and base recovery from NaCl and Na2SO4 containing
wastewater. For example, Gao et al. [24] used a BMED system to recover acid and base from
NaCl wastewater generated from the process of generating HZSM-5 zeolite. Yang et al. [18]
used a BMED to treat seawater reverse osmosis (RO) concentrate; 1 mol/L of mixed acid
and base was continuously produced at a constant current density of 57 mA/cm2, and
the produced acid was used for pH adjustment of RO process and controlling of RO
membrane fouling. In addition, the combination of BMED with other technologies is also
used to treat waste acid, waste base, and other solutions. Zhuang et al. [25] recovered acid
and aluminum in the form of Al(OH)3 from a waste acid generated from the aluminum
foil industry using a combined BMED with diffusion dialysis. When a RO-ED-BMED
combination process was used to treat brine (Na2SO4), NaOH and H2SO4 were recovered
and pure water was generated [26]. Reig et al. [27] integrated an ED + BMED system
to treat high-salt wastewater. ED was used to concentrate salts and BMED was used to
convert salts to acids and bases, and 1.9 mol/L of NaOH and 2.0 mol/L of HCl were
finally recovered with consumption of 1.7 kW·h/kg [28]. Badruzzaman et al. [29] proposed
a new integrated membrane system(IMS)–BMED technology for treating RO high-salt
wastewater, and it was found that the IMS–BMED system had certain advantages in terms
of investment costs and operating costs. Chen et al. [30] first proposed a new process
called BPM selective eletrodialysis (BMSED) to treat concentrated saline, which works
by combining selective electrodialysis (SED) and BMED processes (Figure 2). The results
show that the selective permeability of Na+/Ca2+ and Cl−/SO4

2− are 5 to 10 and 50 to
60, respectively; the concentrations of NaOH and HCl increased to 2.2 and 1.9 mol/L,
respectively, and the purity of NaOH and HCl were both close to 99.99%. Chen et al. [31]
proposed a novel innovative hybrid selective ED (HSED) and a selective BMED (SBMED)
(Figure 3) to treat seawater brine. The HSED process was used to enrich major divalent
cations and anions and the SBMED process was used to produce acids and bases without
any purification pretreatment. When the combination technology of ozonation and BMED
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was used to treat textile wastewater, 90% of color, 37% of chemical oxygen demand, and
more than 90% of salt could be removed [32].
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Gonzalez et al. [33] determined and analyzed the scope and feasibility of BMED for
recovering high-purity LiOH from an LiCl solution. The results showed that when the
initial LiCl concentrations were 0.5 wt. % and 14 wt. %, the concentrations of obtained
LiOH solutions were 3.34 wt. % (purity 96.0%) and 4.35 wt. % (purity 95.4%), respectively.
However, when the concentration of LiCl was in the range of 25–34 wt. %, Cl− is easily
diffused into the LiOH solution; also, the phenomenon of OH− leakage occurred with LiOH
concentration increase. Currently, this can be addressed by asymmetric BPM, or by avoiding
high HCl concentrations and current density. In a previous study by Kishida et al. [34],
BMED was used to generate NaOH and H2SO4. The NaOH was used in the Bayer refinery
and H2SO4 was used to neutralize bauxite residues. In their study, the purpose of treating
waste with waste was realized and the main treatment process was as shown in Figure 4.
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The study by Erkmen et al. [35] proved that BMED is an environmentally friendly and
easy-to-implement technology for the production of HF and NaOH from a NaF solution:
the purity of HF and NaOH were 99.7% and 99.1%, respectively, with a current efficiency of
98.5%. Compared with the reaction of acid-grade fluorspar (CaF2) with H2SO4 and NaOH
to produce HF in the chlor-base process, BMED has more commercial value because the
traditional production method of choline hydroxide has disadvantages such as low product
purity, low yield, and high energy consumption. In the study by Yao et al. [36], 86.8% of
choline chloride was converted to choline hydroxide in a BMED system with low energy
consumption (0.74 kWh kg−1) and high current efficiency (84.6%) [37,38]. Shen et al. [39]
produced high-purity (Cl−/Br− content < 500 ppm) quaternary ammonium hydroxides
(Figure 5) in a novel four-chamber BMED; the details of the BMED are shown in Figure 4.
Compared with traditional quaternary ammonium hydroxide synthesis methods, such
as quaternary ammonium chloride reaction, ion exchange, and electrodialysis, there is no
secondary pollution created in the BMED process.

In addition, BMED was used to treat some pollutants that are difficult to treat with
traditional methods. Glyphosate (N-phosphonomethyl glycine) is a postemergent nonselec-
tive broad-spectrum herbicide used worldwide [40]. The glycine–dimethylphosphite and
iminodiacetic acid processes are the two main methods for synthesizing glyphosate [41].
However, both methods produce large amounts of glyphosate and high-salinity liquid [42],
the discharge of which without treatment will not only cause environmental pollution,
but also a waste of resources [43]. In 2012, BMED was first used to treat a high-salt
glyphosate solution [43] and the obtained acid-based solution could be used for producing
glyphosate (Figure 6); however, the process remained at the laboratory stage, and the
prepared acid–base concentrations were all less than 1 mol/L. A three-chamber BMED
was also used by Shen et al. [44] to treat glyphosate wastewater, and glyphosate and high-
concentration base/acid were recovered; the current efficiency of producing NaOH with
a concentration of 2.0 mol L−1 was above 67% and the corresponding energy consump-
tion was 2.97 kWh kg−1, when the current density was 60 mAcm−2. When the current
density was 30 mAcm−2, the current efficiency increased and the energy consumption
decreased (87.13% and 2.37 kWh kg−1, respectively). Compared to normal methods for
treating glyphosate wastewater, BMED avoided the high energy consumption and low
recovery of the evaporation method, and the high-salt residue of nanofiltration [45]. BMED
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was also used to treat pesticide wastewater [46], in which 99% of Na2SO4 was removed
and 97% of 2,6-Difluorobenzamide was recovered.
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From the above, we see that BMED has wide applications in treating different salt-
containing wastewaters; however, high-salt wastewater is complex and contains various
inorganic ions, organic substances, and heavy metals. Among them, hardness ions and
heavy metal ions can be deposited on the surface of membranes, blocking the membrane
channels and reducing the effective area of the membrane; too much organic matter will
cause BPM swelling or adsorption by membranes, resulting in a decrease in selectivity [47].
Therefore, BMED influent generally requires low-concentration hardness ions (such as
calcium and magnesium below 0.1 mg/L) and turbidity (below 1 mg/L) to protect its
membrane components. In the future application of BMED, how to pretreat wastewater
and develop a fouling-resistant membrane are ongoing topics of research.

2.2. Organic Acid–Base Recovery from Salt Solution

The BMED process is also used for the production and recovery of organic acids.
Normally, organic acids are produced by chemical synthesis or fermentation [48]. The
products generated by chemical synthesis are usually highly pure and concentrated [49,50],
but the energy consumption is high, an expensive catalyst is needed [51], and some toxic and
environmentally harmful reagents are used [52,53]; these limit the development of synthetic
methods. The organic acids generated by fermentation are of high purity [54], but impurities
such as sugar and mineral salts [55] often exist in the fermentation broth. To obtain a high-
purity product, the impurities need to be removed using separation and purification
technologies including precipitation [56], acidification, extraction [57–59], crystallization,
distillation, and adsorption [60]; this consumes a large amount of chemical reagents and
generates a large amount of waste liquid and residues that pollute the environment. Both of
these methods fail to meet the requirements of modern chemistry, characterized by “design
for the environment” and “green chemistry” [61]. To avoid the above disadvantages,
ED [62] and ion exchange [63] are also used to produce organic acids. ED uses the principle
of the selective permeability of AEM and CEM under the action of an electric field to
produce organic acids from organic acid salt solutions. Since the ED system cannot generate
H+, a large amount of acid needs to be added during the ED process, which leads to high
costs. The main principle of ion exchange is to exchange ions through an ion exchange
resin and convert them into organic acids, but the disadvantage is that the ion exchange
resin is bulky and needs to be regenerated, resulting in a large amount of acid and alkali
being consumed. In recent years, BMED has often been used to produce organic acids such
as citric acid, fumaric acid, vitamin C, alpha-ketoglutaric acid, salicylic acid, gluconic acid,
succinic acid, amino acids, and itaconic acid (IA) from a fermentation broth owing to its
characteristics of simple operation, no addition of chemical reagents, and environmental
friendliness [64]. Organic acids and bases can be generated directly by BMED through
combining the H+ and OH− generated by BMP and anions and cations in the fermentation
broth. Table 1 shows the properties of ED, ion exchange, and BMED for obtaining organic
acid from a fermentation broth.

Table 1. A comparison of BMED and other membrane processes.

Type ED Ion Exchange BMED

additive consume a lot of acid consume a lot of acid and base does not consume any acid and base

product
produce a lot of salt waste liquid,

the produced high-soda ash
solution can be recycled

produces a lot of acid and
base waste liquid, and it is

difficult to recover

no waste liquid is produced, and the
produced high-soda ash solution can

be recycled

production scale capable of mass production not suitable for
mass production

capable of mass production of
inorganic acids and bases; the market

for organic acids and bases
is expanding

recycling effect high recovery and high purity the recovery efficiency is low;
the purity is high high recovery efficiency and purity
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In the study by Xu et al. [65,66], a two-chamber BMED was used to produce citric acid
from sodium citrate solution. The effect of battery configuration and salty concentration on
the energy consumption and electroacidification parameters were investigated; finally, citric
acid with a concentration of 30 g/L was obtained. Cauwenberg et al. [67] also successfully
recovered citric acid (concentration: 8.2–20.7 wt. %) from a sodium citrate solution (initial
concentration: 15–18 wt. %) using a two-chamber EDBM with current density 40–100 mA
cm−2. Sun et al. [68] produced citric acid from a fermentation broth using a two-chamber
BMED. The effect of current density, initial sodium citrate concentration, and the structure
of the acid and base chambers on BMED performance were investigated, and acid recovery
of 97.1% was achieved under the conditions of initial sodium citrate 3.3 wt. % and current
density 40 mA cm−1. Yu et al. [69] applied EDBM to the acidification process of sodium
L-ascorbate and sodium 2-keto-L-guluronate, replacing the original sulfation process and
ion exchange method in the production of vitamin C. The conversion rate was higher than
98% with an average current efficiency of about 70% and an electricity consumption of
1 kWh/kg of vitamin C. Szczygiełda et al. [70] produced α-ketoglutarate from a simulated
solution using a two-chamber EDBM stack. Under the optimal conditions, the obtained
alpha-ketoglutaric acid concentration, current efficiency, and energy consumption were
4.83 g/L, 71.8%, and 3.72-kW h/kg, respectively. Jiang et al. [71] produced morpholine
(Mp) from a sulfate Mp solution with an energy consumption of 4.27 kW h/kg.

Three-chamber BMED is also used to produce strong and weak organic acids from dif-
ferent solutions. A normal three-chamber BMED consists of a fermentation broth, base, and
acid chamber, as shown in Figure 7 [72]. Fu et al. [73] employed different BMED to recover
succinic acid from a sodium succinate solution. The properties of BMED with three different
structures were investigated according to energy consumption, current efficiency, voltage
drop across the stack, and yield concentration (Figure 8). It was found that the BMED
could not work at a high current density and had a relatively high energy consumption.
BPM-CEM-BPM BMED has a low energy consumption and high acid concentration, but it
is difficult to obtain high-purity succinic acid. However, BPM-AEM-CEM-BPM BMED had
a high current efficiency (90%) and low energy consumption (2.3 kW h/kg). An integrated
technology of ED and BMED (Figure 9) was used by Ferrer et al. [74] to regenerate formic
acid from a sodium formate and sodium hydroxide containing wastewater. ED was used
to concentrate sodium formate, a three-chamber BMED was used to recover formic acid
and NaOH from concentrated sodium formate, and a 30% formic acid was obtained with a
current efficiency of 80% under a current density of 500 A m−2. Alvarez et al. [75] recovered
salicylic acid (4.5 g L−1) in a three-chamber BMED. Wang et al. [76] used a three-chamber
BMED to recover three amino acids with similar structures but different methylation groups
(N-methyl glycine, N,N-dimethylglycine, and N,N,N-trimethyl glycine). The effects of
feed mass concentration and current density on separation performance were analyzed in
terms of molecular size, molecular structure, ion concentration, and the interaction between
the amino acid and the membrane. In addition, 99.2% of itaconic acid was recovered
from an itaconic acid sodium solution by Komáromy in a three-chamber BMED system
(Figure 10) [77], and 92% of xylonic acid was obtained from a 100 g/L sodium xylate
fermentation broth by Cao et al. [78] in a three-chamber BMED system.

The integration of BMED with other processes is also used to recover organic acids
and bases. Prochaska et al. [55] proposed a new method (Figure 11) based on nanofiltration,
BMED, and reactive extraction techniques for the recovery of fumaric acid from a fermen-
tation broth of glycerol biotransformation, and 95% of fumarate can be concentrated and
converted to fumaric acid.
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3. CO2 Capture

Global warming and carbon emissions have become a global problem, and carbon
capture and storage are recognized as effective methods to reduce carbon emissions [79,80].
CO2 can be captured directly from industrial sources by postcombustion capture, pre-
combustion capture, or the combustion of fossil fuels in pure oxygen environments [79]
(Figure 12). Among them, postcombustion chemical absorption capture is the most ma-
ture technology [81–83]; however, the energy for the regeneration of capture reagents is
high [84], which accounts for 70% of the cost of CO2 capture [85]. In the storage process,
CO2 emitted from point sources can be captured and transported to a storage site, and the
liquid CO2 can be injected into the ground or seawater [79]. Similarly, storage technology
also involves the problems of high cost and energy consumption. It is, therefore, necessary
to develop new technology to capture CO2.
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EDBM was demonstrated to be an effective method to capture CO2 from flues [86–88]
and the atmosphere [80,89]. The main principal of CO2 capture by BMED is the absorption
ability of bases for CO2, which includes the three steps shown in Figure 13 [87]. First, the
CO2 from the flue is absorbed by NaOH to generate a carbonate solution (Equation (10));
second, the carbonate solution is sent to the BMED system, where NaOH is regenerated
and gaseous CO2 is recovered (Equations (11) and (12)); third, the regenerated NaOH is
used to capture CO2. However, the CO2 recovery is only 40–60% [87,88,90]. To increase
CO2 recovery, Valluri et al. [84] improved the method by allowing sulfuric acid to react
with sodium bicarbonate to produce sodium sulfate, and then using BMED to convert
sodium sulfate to NaOH (Figure 14). In this way, 100% of CO2 was recovered, and energy
consumption as low as 1.18 MJ/kg CO2 was recovered with a current efficiency of 91.2%.

NaOH (aq) + CO2 (g) → HCO3
−

(aq) + Na+
(aq) (10)

HCO3
−

(aq) + H+
(aq) → H2O + CO2 (g)↑ (11)

Na+ + OH− → NaOH (12)

For the capture of CO2 from the atmosphere, Zhao et al. [89] developed a new seawater
carbon capture technology. BMED was combined with a crystallizer to avoid the precipita-
tion of calcium ions on the membrane surface during seawater treatment. The results show
that decalcification, carbon fixation, and desulfurization can reach 94.52%, 31.41% and
100%, respectively. However, the decalcified seawater still contains abundant precious mag-
nesium resources, and the CO2 in the flue gas is only partially mineralized. Chen et al. [91]
integrated BMED into a crystallizer to prevent the nucleation of MgCO3·3H2O and the
membrane fouling problem (Figure 15), the CO2 fixation rate increased to 50.9%, and the
magnesium recovery rate was 56.7%. Jiang et al. [80] integrated a BMED with a hollow
fiber membrane (HFM) to capture CO2 due to HFM not only physically separating CO2
from liquid, but also to have a large mass transfer area [92]. The results showed that
the energy consumption decreased to 2 MJ/kg CO2 (including heat stable salt removal).
Ruan et al. [93] also integrated BMED and HFM to capture CO2. BMED was used to gener-
ate HCl and NaOH. HCl can be recycled to adjust the pH, and NaOH can be directly used to
absorb CO2. Under optimal experimental conditions, the CO2 removal rate can reach 90.9%.
Jiang et al. [94] used BMED to simultaneously capture CO2 and extract methionine from
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methionine salts. The methionine extraction rate was 99.57%, and the energy consumption
for capturing 1 kg CO2 was 7.0 kWh.
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4. Ammonia Nitrogen Production and Recovery

With the rapid development of the economy and industrialization, industrial wastew-
ater containing ammonia is continuously discharged into the environment, causing serious
environmental problems [95]. According to the study by Erisman et al. [96], half of the
NH3 produced enters into the environment, leading to eutrophication and a subsequent
loss of biodiversity. Therefore, ammonia pollution has become a serious environmental
problem in many industrialized countries, and it is urgent to develop effective ammonia
removal technologies. Nanofiltration, reverse osmosis, and biodegradation technologies
have been studied to treat ammonia wastewater [97–99], but these methods involve high
energy consumption, secondary pollution, and high costs.

In recent years, BMED has often been used to recover ammonia from wastewater.
Linden et al. [100] recovered HCl and NH3·H2O from simulated NH4Cl wastewater by
BMED (Figure 16). The effects of initial NH4Cl concentration, current density, salt solution
volume, initial acid–base concentration, and membrane stack structure on the yields of
HCl and NH3·H2O were investigated. The total ammonia removal efficiency was between
85% and 91%, and the energy consumption was stable at 19 MJ kg−1 of nitrogen, which
is more competitive than ED combined with added chemicals (22 MJ kg N−1 of nitrogen).
The effects of humic acid, Mg2+, and Ca2+ on the removal of ammonium were investigated
by Zhang et al. [101], with the results showing that humic acid and a high concentration
of Mg2+ and Ca2+ has a significant effect on ammonium removal: more than 86% of
ammonium was removed from a leachate collected from a local landfill. In addition,
Ferrari et al. [102] combined an on-site BMED with two liquid/liquid membrane contactors
to recover ammonia from an anaerobic fermentation broth. Graillon et al. [103] found that
a BMED system is not suitable for recovering nitric acid and ammonia from an ammonium
nitrate solution; they proposed a two-step process instead. First, NaOH is added to the
ammonium nitrate solution and ammonia is stripped, then the obtained sodium nitrate
solution is treated by BMED to regenerate nitric acid and NaOH in a second step. However,
this increases the operational difficulty and cost. Ali et al. [104] achieved 83% recovery of
ammonium from an ammonium nitrate solution using an integrated technology of BMED
and continuous in situ ammonia stripping. The different results may be caused by the
differences in the BMED configuration and operation process.
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Figure 16. The membrane and (flow) cell sequence in the BMED and the intended ion transport
(electromigration and water dissociation) as a result of the applied current. In the acid, H+ and
HCO3

− are combined and react to CO2, while in the base, OH− and NH4
+ are combined and react to

NH3. At the cathode, NH4
+ is transported to the electrode rinse, while at the anode, both Na+ and

NH4
+ are transported to the base, resulting in the accumulation of NH4

+ in the electrode rinse and
the washing out of Na+ to the base [100].
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From the above, we note that ammonia can be recovered from ammonium-containing
wastewater, but the phenomena of OH− leakage, dissolved ammonia diffusion, and ionic
diffusion from the base to the diluent occur during the BMED process, which can decrease
the current efficiency. With the extension of the experimental time and the increase in
concentration gradients between the diluent and concentrated compartments, the current
efficiency decreased from 69% to 54% [100]. This is the deficiency of BMED technology in
the treatment of ammonium-containing wastewater.

5. Ion Removal and Recovery from Wastewater

With the improvement of environmental standards and the shortage of resources, the
removal and recovery of metals and valuable ions from wastewater have both environmen-
tal protection and economic benefits. Heavy metals are a class of harmful pollutants, which
are toxic, carcinogenic, nonbiodegradable, and persistent in the environment and organ-
isms [105]. Once they enter the food chain, they accumulate in the human body and lead
to serious health problems [104]. The most common method for removing heavy metals
from wastewater is chemical precipitation, but a large amount of sludge can be generated
that is hard to treat [105]. Wu et al. [106] used an improved BMED system combined with
H2O2 oxidation to recover Cr(III) from a sodium chromate solution, and 87.8% of Cr(III)
was recovered. Raffinate produced during the hydrometallurgical processing of copper
ore has strong acidity and a high content of heavy metals (iron, zinc, copper, etc.), and
so is difficult to treat. Liu et al. [107] found that 99.3% of iron, 99.1% of zinc, 99.0% of
copper, 84.9% of nickel, 70.6% of chromium, 95.8% of cadmium, and 94.8% of arsenic can
be removed, and 85.9% of SO4

2− can be recovered in the form of H2SO4, in a BMED system
(Figure 17). Liu et al. [108] also used a BMED system to remove arsenic and cationic metals
from copper slag produced during copper ore hydrometallurgy, with only a small amount
of stable residual metals remaining in copper slag after treatment.
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In recent years, BMED has often been used to recover boron and lithium from solutions
in the form of H3BO3 and LiOH. Sun et al. [109] introduced a QGO-P84 membrane into
BMED to recover boron from a synthetic model solution (Na2B4O7‘10H2O, 1000 mg B/L);
the recovery rate of boron and the energy consumption were 94.9% and 26.16 kW h/kg,
respectively. In the study by Jarma et al. [110], 38.8% of boron and 50.2% of lithium were
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recovered in a BMED system. İpekçi et al. [111] also used a BMED system to separate
and recover boron and lithium from aqueous solutions (Figure 18). The results showed
that the separation efficiency and recovery of boron and lithium increased when the
potential increased from 15 V to 25 V under a solution flow rate of 50 L/h, and the
removal and recovery rates were 74.4% and 59%, while those of lithium were 99.0% and
73.0%, respectively. İpekçi et al. [112] separated and recovered lithium and boron from
an aqueous solutions using a BMED. The separation rates of boron and lithium were
86.9% and 94.7%, respectively, with a specific energy consumption of 7.9 kWh/m3. In the
study by Bunani et al. [113], the separation and recovery of lithium were 99.6% and 88.3%,
respectively, while those of boron were 72.3% and 70.8%, respectively. Bunani et al. [114]
recovered 39.1% of boron and 20.0% of lithium using a BMED system. In the study
by Hung et al. [115], the removal and recovery rates of boron were 98.6% and 86.5%,
respectively, in a BMED system.
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From the above, we conclude that BMED can be used to remove and recover heavy
metals from wastewater. Additionally, the recovery of boron and lithium from solutions
using a BMED system has good application prospects. It was also found that the removal
and recovery of boron and lithium are different in different studies, mainly because of
difference in BMED size, membrane performance, wastewater properties, and operating
conditions. The studies on boron and lithium removal and recovery are summarized in
Tables 2 and 3, respectively.

Table 2. Separation and recovery of boron from aqueous solutions using BMED.

Method Operating Conditions Boron Concentration Efficiency References

intermittent BMED voltage: 12 V, current density: 6.36 A/m2,
pH: 9.5–10.5, solution flow rate: 36 L/h

680 mg B/L SB = 98.6%
βB = 86.5% [115]

Continuous BMED
Voltage: 12 V, current density: 6.36 A/m2,
pH: 9.5–10.5, solution flow rate: 36 L/h

reaction time: 5 cycle
612 mg B/L SB = 98.53%

βB = 81.2% [115]
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Table 2. Cont.

Method Operating Conditions Boron Concentration Efficiency References

BMED

voltage: 30 V, reaction time: 3 h, membrane:
QGO-P84 membrane 1000 mg B/L SB = 76.6% [109]

voltage: 30 V, reaction time: 3 h, membrane:
Commercial membrane CJMA-3 1000 mg B/L SB = 51.6% [109]

voltage: 15 V, sample solution:
0.5 L 3 mM HCl-3 mM NaOH

membrane: PC-bip membranes
850 mg B/L SB = 72.3%

βB = 70.8% [113]

voltage: 30 V, type of membrane:
AHA membranes 1000 mg B/L SB = 97.8%

βB = 39.1% [114]

voltage: 30 V, sample solution:
2 L 5 mM HCl-5 mM NaOH 1000 mg B/L SB = 86.9%

βB = 50.0% [112]

voltage: 20 V, sample solution:
0.05 mol/L H3BO3-0.05 mol/L LiOH

solution flow rate: 45–50 L/h, membrane:
PC-Cell ED 640 04 model

924 mg B/L
313 mg Li/L

SB = 77.5%
βB = 54.0% [110]

voltage: 20 V, sample solution:
0.05 moL/L H3BO3, 0.05 mol/L LiOH

solution flow rate: 45–50 L/h, membrane:
Mega EDR-Z-Full-V4 model

976 mg B/L,
314 mg Li/L

SB = 81.0%
βB = 38.8% [110]

voltage: 25 V, sample solution:
3 mM HCl-3 mM NaOH

solution flow rate: 50 L/h, membrane: Mega
EDR-Z-FULL-V4 model

812 ± 56.15 mg B/L SB = 74.0%
βB = 59.0% [111]

SB: Separation rate of boron; βB: Recovery rate of boron.

Table 3. Separation and recovery of lithium from aqueous solutions using BMED.

Method Operating Conditions Feed Solution Efficiency References

BMED

Voltage: 15 V, sample solution: 0.5 L 3 mM HCl,
3 mM NaOH

membrane: PC-bip membranes
250 mg Li/L SLi = 99.6%

βLi = 88.3% [113]

Voltage: 30 V, sample solution: 0.1 M HCl,
0.1 M NaOH

membrane: AHA BP-1E membranes
340 mg Li/L SLi = 97.8%

βLI = 20.0% [114]

Voltage: 30 V, sample solution: 2 L 5 mM HCl,
5 mM NaOH 340 mg Li/L SLi = 94.7%

βLi = 62.0% [112]

Voltage: 20 V, sample solution: 0.05 moL/L H3BO3,
0.05 moL/L LiOH

solution flow rate: 45–50 L/h, membrane: PC-Cell
ED 640 04 model

313 mg Li/L SLi = 99.8%
βLi = 86.4% [110]

Voltage: 20 V, sample solution: 0.05 mol/L H3BO3,
0.05 mol/L LiOH

solution flow rate: 45–50 L/h, membrane: Mega
EDR-Z-Full-V4 model

314 mg Li/L SLi = 99.8%
βLi = 50.2% [110]

Voltage: 25 V, sample solution: 3 mM HCl,
3 mM NaOH

solution flow rate: 50 L/h, membrane: Mega
EDR-Z-FULL-V4 model

256 ± 33.11 mg Li/L SLi = 99.0%
βLi = 73.0% [111]

SLi: Separation rate of lithium; βLi: Recovery rate of lithium.
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6. Conclusions

At present, BMED technology has been widely used for recovering NaCl, NaSO4, and
NaNO3 salts in the form of acids and bases. In terms of organic acids, after more than
10 years of research and development, it has moved toward large-scale production. CO2
capture, ammonia nitrogen recovery, wastewater ion removal and recovery are still at the
lab scale; however, with increased attention being paid to these fields, it can be speculated
that BMED technology will have good application.

In addition, BMED has some problems that limit its development, such as a high
preparation cost, and membrane fouling and ion leakage during operation. The cost and
performance of BMED depend on the membrane characteristics, feed conditions, required
product quality, and parameter design such as stack structure and current density. The
problem of membrane fouling during operation can be solved through modifications to
the membrane hydrophilicity, charge, and roughness by adding modified components
(such as nanoparticles), by pretreating the raw material solution (such as using chemical
precipitation, coagulation, filtration, and other methods to reduce the solution ion con-
centration), and by changing the operating conditions (such as the feed solution pH, raw
material solution concentration, feed speed, and other factors). To solve the problem of
ion leakage, an acid-blocking membrane can be used to block the migration of H+. H+

migration can also be reduced by controlling the cell voltage, current density, and salt
compartment solution pH. Alternatively, AEM can be added to the three-chamber BMED
to reduce the competitive migration of H+ with other cations. Although BMED has some
deficiencies, its characteristics, such as environmental friendliness, no need to add chemical
reagents, small footprint, high efficiency, and simple operation, mean it has been widely
used in the field of environmental protection and resources recovery. It can be predicted
that with the gradual deepening of the research on BMED, it will be applied in more fields.
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