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Abstract: The hydrogen evolution reaction (HER) is a developing and promising technology to
deliver clean energy using renewable sources. Presently, electrocatalytic water (H2O) splitting is
one of the low-cost, affordable, and reliable industrial-scale effective hydrogen (H2) production
methods. Nevertheless, the most active platinum (Pt) metal-based catalysts for the HER are subject
to high cost and substandard stability. Therefore, a highly efficient, low-cost, and stable HER
electrocatalyst is urgently desired to substitute Pt-based catalysts. Due to their low cost, outstanding
stability, low overpotential, strong electronic interactions, excellent conductivity, more active sites,
and abundance, transition metal tellurides (TMTs) and transition metal phosphides (TMPs) have
emerged as promising electrocatalysts. This brief review focuses on the progress made over the
past decade in the use of TMTs and TMPs for efficient green hydrogen production. Combining
experimental and theoretical results, a detailed summary of their development is described. This
review article aspires to provide the state-of-the-art guidelines and strategies for the design and
development of new highly performing electrocatalysts for the upcoming energy conversion and
storage electrochemical technologies.

Keywords: hydrogen evolution reaction (HER); transition metal tellurides (TMTs); transition metal
phosphides (TMPs); electrocatalysts; water splitting

1. Introduction

Worldwide energy consumption has gradually increased due to the rise in population
and the standard of living. Thus, renewable energy source usage has become increasingly
important [1–4]. During water electrolysis for the production of hydrogen (H2), one of the
most encouraging sustainable and clean energy carriers, only O2 is emitted as the byproduct
without emissions of carbon [5]. Hydrogen has many excellent characteristics, including
high energy density (140 MJ/kg) which is almost three times greater than typical fossil fuels
(around 50 MJ/kg) [6]. Currently, the global annual production of H2 is about 500 billion
cubic meters (bm3) [7,8]. The H2 produced is mainly used in industrial-scale applications
such as petrochemical and petroleum-refining processes, fertilizers, chemical industries,
and fuel cells [9–12]. H2 can be produced from various non-renewable and renewable en-
ergy resources, by employing different techniques, such as oil/naphtha reforming [13–15],
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methane-steam reforming [16–18], biomass [19–21], coal gasification [22–24], biological
sources [25–28] and water electrolysis (WE) [29–31].

The different hydrogen production methods are comprehensively represented in
Figure 1. Presently, 96% of the world’s H2 production derives from non-renewable sources
such as fossil fuels, specifically from methane [32,33]. Furthermore, a lower quality of H2
and more harmful greenhouse gases are produced from fossil fuels [34–36].

Figure 1. Methods for the production of hydrogen.

Further, the limited fossil fuel reserves and the constantly increasing global energy
demand require new energy methods with no carbon footprint. Hydrogen energy has
recently gained attention due to its production from environmentally friendly methods
such as electrocatalysis and photocatalysis, which can replace fossil fuel-based energy
production [37]. Hydrogen can be produced using renewable resources such as water.
Among the different H2-production approaches, high purity and eco-friendly H2 (99.999%)
can be achieved from water electrolysis. The reaction is defined by Equation (1) [38],

2H2O + [Electricity 237.2 kJ/mol + Heat 48.6 kJ/mol]→ 2H2 + O2 (1)

The efficiency of H2 production by H2O electrolysis is not sufficiently economically
competitive, because of the high-energy utilization and the low-H2 evolution rate. Many
researchers have been working on developing low-cost electrocatalysts to enhance perfor-
mance and reduce energy consumption.

To boost the hydrogen evolution reaction (HER), transition metal (TM)-based catalysts
are being increasingly used instead of the scarce and costly platinum group metals (PGMs).
A variety of TM-related electrocatalysts, such as phosphides [39], nitrides, carbides [40], and
chalcogenides [41], have been developed in recent years, with a similar HER performance to
PGMs. Between these attractive catalysts, transition-metal tellurides (TMTs) and transition-
metal phosphides (TMPs) have attracted much attention in recent years.

Compared with other chalcogens (oxygen (O), sulfur (S), and selenium(Se) [42] which
may lead to higher electrical conductivity and enhanced covalent features, tellurium (Te)
presents reduced electronegativity but higher metallic characteristics. The covalent feature
can give a promising electronic-band structure by simplifying the edge arrangement of
the conduction and valence bands with the H2O redox potential, and by boosting the
TMT-center redox reactions. Additionally, TMT-based electrocatalysts own outstanding sta-
bility, abundant active sites, excellent conductivity, low overpotential, and strong electronic
interactions between the components of the material, resulting in catalytic performance en-
hancement [43–49]. For example, Chevrel-phase Mo6X8 (X = Te, S, and Se) nanocatalysts for
hydrogen evolution were studied [50], utilizing as HER-activity descriptor the Gibbs free
energy of hydrogen adsorption (∆GH). Interestingly, they identified that as the electroneg-
ativity of X-chalcogenide increases in Mo6X8, so does the hydrogen adsorption strength
increase [50]. Lee et al. also confirmed that plenty of transition metal dichalcogenides
(TMDs) with suitable anion-vacancy densities (e.g., MoTe2, TiTe2, and ZrTe2) are placed
high on the volcano plot, facilitating the stronger hydrogen bond and thus promoting HER
activity [51].
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Transition metal phosphides (TMPs) have gained great scientific interest for their high
corrosion resistance, good conductivity, and superior HER-electrocatalytic performance.
The latest studies have shown that TMPs showed outstanding stability and activity in
H2O electrolysis. Liu and coworkers [52] recently proved that CoNiP/CoxP/NF catalysts
showed 290 mV overpotential at 10 mA cm−2 for HER with good long-term stability in
natural water conditions.

Chang et al. [53] synthesized a catalyst (Fe, P-NiSe2 NFs) through chemical deposition
at the gas phase, which displayed a huge current density at 1.8 V (800 mA cm−2) and
constancy for more than 8 days. Moreover, Wu and colleagues [54,55] prepared the Ni2P-
Fe2P catalysts that showed outstanding stability and activity, achieving current densities of
100 and 500 mA cm−2, with only 1.682 and 1.865 V required, in 1.0 M KOH-containing water,
and the CoPx@FeOOH catalyst that exhibited good stability for 80 h at a current density of
500 mA cm−2 and an overpotential of 283 mV at 100 mA cm−2 in 1.0 M KOH-containing
water.

There are examples of TMP- and TMT-based materials that showed outstanding per-
formance related to HER activity in both acidic and alkaline media; some examples are men-
tioned here: Co2P@Cu nanostructure [56], Co2P/Ni2P/CNT [57], FeNiP/MoOx/NiMoO4/
NF [58], Ni2P@NC/NF [59], MoP-Ru2P/NPC [60], CoTe2/Ti3C2Tx [61], NiFe2O4/NiTe [62],
NiTe-HfTe2/g-C3N4 [63], Co,Ni-MoTe2 [64], and CoP/Ni2P@Co(OH)2 [65] (Table 1).

Table 1. Performance of TMP- and TMT-based electrocatalysts for hydrogen evolution reaction (HER).

Sr. No Electrocatalysts HER Medium Current Density
(mA cm−2)

Overpotential
(mV)

Tafel Slope
(mV dec−1) Refs

1 Co2P@Cu nanostructure Alkaline 10
100

99.7
303.2 48.8 [56]

2 Co2P/Ni2P/CNT Acidic
Alkaline

10
10

151
202

41.64
—- [57]

3 FeNiP/MoOx/NiMoO4/NF Alkaline 10
100

16
97 21.2 [58]

4 Ni2P@NC/NF Alkaline 10 93 —- [59]

5 MoP-Ru2P/NPC Alkaline 10
10

47
82

36.93
64.99 [60]

6 CoTe2/Ti3C2Tx Alkaline 10 200 95 [61]

7 NiFe2O4/NiTe Alkaline 10 148.8 73.67 [62]

8 NiTe-HfTe2/g-C3N4 Alkaline 10 71 75 [63]

9 Co,Ni-MoTe2 Acidic 10 −82 —- [64]

10 CoP/Ni2P@Co(OH)2
Acidic

Alkaline
10
10

68
39

68
55 [65]

(NF = Ni foam; CNT = carbon nanotubes; NPC = porous N and P co-doped carbon; g-C3N4 = graphitic carbon nitride).

Considering the above, it can be concluded that TMPs and TMTs exhibited significant
performance and stability for water electrolysis. This review article aims to provide a brief
overview of the recent developments related to the various methods of water electrolysis
for hydrogen production and the growth of transition metal telluride (TMT)- and transition
metal phosphide (TMP)-based electrocatalysts for HER (Figure 2).
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Figure 2. Schematic illustration of the article’s overview.

2. Water Electrolysis

The electrolysis of water (H2O) is an emerging method for H2 production because
it utilizes renewable H2O, releasing only pure O2 as a side product. In addition, the
electrolysis process uses DC power from renewable energy sources such as biomass, solar,
and wind. Currently only 4% of H2 can be attained by electrolysis of H2O, mainly because
of the high cost [66,67]. This value is expected to be improved with the improvement of
renewable energy utilization (solar, wind, and nuclear). The European Energy Directive
has achieved the goal of utilizing 14% renewable source-derived energy for the energy
requirements up to 2020 [37]. H2O electrolysis has significant advantages, such as high
hydrogen evolution rate, high purity, and good cell performance. The hydrogen purity
is beneficial for its further transformation into electricity in low-temperature fuel cells
(FCs) [29]. In an electrolysis procedure, the H2O molecule serves as the reactant, which
under the effect of electricity dissociates into oxygen (O2) and hydrogen (H2). Water
electrolysis, is divided into four types, depending on the operating conditions, electrolyte,
and ionic agents (OH−, H+, and O2−). The usual water electrolysis approaches that will
be analyzed, are; (i) alkaline water electrolysis (AWE), (ii) proton-exchange membrane
water electrolysis (PEMWE), (iii) solid oxide electrolysis (SOE) [68–72], and (iv) microbial
electrolysis cells (MEC) [73,74].

2.1. Alkaline Water Electrolysis (AWE)

Hydrogen can be synthesized from alkaline H2O electrolysis, which is a well-known
approach up to the megawatt range; it is reported [75] that this phenomenon was invented
in 1789 by Troostwijk and Diemann. In the alkaline H2O electrolysis procedure, at the
cathode side, the alkaline solution of two molecules (KOH/NaOH) is reduced to a single
molecule of H2 and two OH− ions. The produced H2 is eliminated from the cathode surface,
while OH− is transferred from the cathode to anode through the porous diaphragm and
converted into one molecule of water and a half ( 1

2 ) molecule of oxygen. The mechanism of
alkaline water electrolysis is illustrated in Figure 3 (black color).
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Figure 3. Schematic representation of the different H2O electrolysis techniques. Note: the different
colors correspond to the four different types of H2O electrolysis cells: (1) black color for the alkaline
electrolysis cell; (2) red color for the PEM electrolysis cell; (3) purple color for the solid oxide
electrolysis cell; (4) green color for the microbial electrolysis cell.

Alkaline electrolysis can occur at lower temperatures (30–80 ◦C), employing a KOH/NaOH
aqueous solution as an electrolyte, whose concentration ranges from 30 to 20% [70,76–78].
In the alkaline H2O electrolysis procedure, nickel materials and asbestos diaphragms are
used [72]. The diaphragm, positioned between the anode and the cathode is responsible
for separating them, also separating the gaseous products that form at the corresponding
electrodes, and preventing mixing of the produced gases during the electrolysis process.

However, there are some disadvantages concerning the alkaline water electrolysis
process: low energy efficiency, lower current densities (below 400 mA cm−2), and low
operating pressures [70,79]. The development of an anion exchange membrane (AEM),
synthesized with anion-conducting polymers in the place of the asbestos diaphragm, is a
novel approach in alkaline water electrolysis. This cutting-edge method seems exciting for
H2O electrolysis in an alkaline medium [80–84].

2.2. Proton-Exchange Membrane Water Electrolysis (PEMWE)

The PEMWE was first introduced in 1959 by Grubb and the general electric company
was established in 1966 to eliminate the problems associated with H2O electrolysis [85–89].
The PEMWE process is analogous to PEMFC, where the electrolytes used are solid polysul-
fonated membranes (e.g., Fumapem and Nafion) [90–92]. These membranes have various
benefits such as higher proton conductivity (0.1 ± 0.02 S cm−1), lower gas permeability,
higher-pressure operation ability, and lower thickness. Given the environmental impact
and sustainability, PEMWE is one of the most suitable and favorable processes for hydrogen
production. Furthermore, other outstanding characteristics of PEMWE are: high current
densities (over 2 A cm−2), compact design, good efficiency, small footprint, quick response,
low operation temperature (20–80 ◦C), releasing only oxygen as a byproduct [90,91,93–95].
Moreover, balancing PEMWE plants—associated with commercial applications—is rel-
atively easy. Noble metal (Pt/Pd)-based up-to-date materials are standard for HER at
the cathode for PEM electrolysis due to their higher performance [94–96]; however, these
materials make the PEM electrolysis process more expensive as compared to alkaline water
electrolysis. From the above discussion, it is clear that the cost of the electrocatalysts for
PEMWE reduces its efficiency on an industrial scale. After that, substantial research has
been completed to improve the production of PEMWE spare parts at a low cost, so this tech-
nique has become favorable for commercial application [97]. The schematic representation
of the PEMWE operation is given in Figure 3 (red color).

2.3. Solid Oxide Electrolysis (SOE)

Solid oxide electrolysis (SOE) was invented in the 1980s by Donitz and Erdle [98].
SOE has received a lot of attention because it converts electrical energy into chemical
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energy, producing pure H2 with high performance [97,99]. It operates at high pressures
and temperatures (around 500–850 ◦C), employing steamed H2O and oxygen anion (O2−)
conductors [100]; its working principle is illustrated in Figure 3 (purple color). Currently,
conducting materials such as ceramic proton conductors prepared and tested in SOFCs
are used. The interest in ceramic proton conductors for SOEs is increasing because of
their excellent properties, such as superior ionic conductivity and superior performance
compared to O2− conductors at 500–700 ◦C [37]. SOE technology has the advantage
of working at higher temperature values than the common electrolysis types; however,
some degradation and stability issues must be addressed before its use on a commercial
scale [69,101–103].

2.4. Microbial Electrolysis (ME)

Microbial electrolysis cells (MECs) can produce hydrogen from wastewater containing
organic matter and renewable biomass. The operating principle of an MEC is the reverse of
microbial fuel cells (MFCs) [73]. The MEC procedure was first developed in the Netherlands
(2005) by Wageningen and Penn State Universities [73,104]. In the MEC procedure, electrical
energy is used to initiate hydrogen production from organic matter. Firstly, the substrate
is oxidized on the anode side by microbes, and secondly, electrons, CO2, and protons
are produced. As electrons are transferred to the cathode by an external circuit and the
protons reach the cathode through the electrolyte, the electrons combine with protons
and produce H2. The MEC operation principle is schematically shown in Figure 3 (green
color). Using the MEC procedure, the specific resistance on the anode side is higher than
on the cathode. Thus, increasing the input voltage by 0.2–1.0 V can regulate the initiation
of the HER procedure at the cathode side. Therefore, MEC requires less external voltage
when compared to other kinds of water electrolysis for H2 production [105]. However,
MEC technology is still under development and has hurdles to overcome, such as the
electrocatalytic electrode materials, the high internal resistance, the H2 production rate,
and the complicated design that has to be simplified before its use on a large scale [106].

3. Transition Metal Tellurides (TMTs)-Based Electrocatalysts for HER

The electrocatalytic performance of bulk transition metal tellurides (TMTs) was found
to be quite mediocre based on prior research [107–109]. To enhance the catalytic activity,
nanostructuring has become an attractive approach, because it not only allows the avail-
ability of more active sites, but also aids in the mass transfer of gaseous products and
electrolytes [109–111]. For example, MoTe2 nanosheets (NSs) synthesized through a liquid
exfoliation strategy demonstrated a notably improved HER performance in 0.5 M H2SO4
instead of bulk MoTe2 [108]. In recent years a lot of attention has been paid to the growth
of hollow NiTe2 nanotubes (NTs) [112], hierarchical CoTe2 nanowires (NWs) [113] and
core–shell CoTe2@NC nanoparticles (NPs) [114]. Ananthara et al. [115] prepared nanostruc-
tured NiTe2 with two different morphologies, for example, nanoflakes (NFs) and nanowires
(NWs) that were obtained by hydrothermally treating Ni foam with NaHTe and Te pow-
ders, respectively. The NiTe2 NWs presented excellent HER performance as compared
to NiTe2 NFs in both alkaline and acidic environments and, temporarily, demonstrated
values of Tafel slope similar to (for 0.5 M H2SO4) or lower (for 1 M KOH) than those of the
Pt/C parameters, illuminating adequate reaction kinetics [115]. A large electrochemically
available surface area (ECSA) and a high charge transfer capacity were responsible for the
enhanced activity of NiTe2 NWs.

3.1. Nanostructuring

Nanostructuring can efficiently enhance the catalytic activity of exposed active sites by
improving their efficiency. Zhuang et al. [109] observed that 1T-MoTe2 thin films prepared
by chemical vapor deposition (CVD) exhibited good HER performance. However, after
ion-beam etching, the 1T-MoTe2 films presented clearly improved HER activity, achieving
100 mA cm−2 current density at a Tafel slope value of 44 mV dec−1 in 0.5 M H2SO4
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solution and an overpotential of 296 mV [109]. Furthermore, the ion-beam etched 1T-MoTe2
films showed the improved stability of the catalytic operation, maintaining 87% of its
initial current density, in contrast to the 40% achieved for the pristine sample after 3600 s of
successive electrolysis [109]. The improvement was attributable to the highly exposed edges
of the active sites, which were determined through conductivity measurements, density
functional theory (DFT), and visualized copper electrodeposition calculation. However,
as the investigators stated, the method needs to be improved to achieve the enhancement
of the active sites on different materials, as it is still time-consuming and commercially
unfeasible for the mass production of electrocatalysts [109].

Metal-organic frameworks (MOFs) are broadly utilized to synthesize catalysts, due
to their (i) large specific surface area, (ii) spatially ordered microstructure, and (iii) high
nanoporosity. Wang and coworkers [116] developed an encapsulated CoTe2 NPs composite
in N-doped carbon nanotube frameworks, denoted as CoTe2@NCNTFs, by employing a
template of ZIF (zeolitic imidazolate framework)-67 [116]. This MOF-derived electrocatalyst
had open channels for efficient gas discharge, high conductivity, and a larger surface
area; furthermore, it allowed enhanced electron transport, resulting in a lower Tafel slope
value than the bulk CoTe2. Subsequently, CoTe2@NCNTFs exhibited excellent catalytic
activity, requiring an overpotential of 208 mV to attain 10 mA cm−2 for HER in a 1.0 M
KOH solution. The CoTe2@NCNTF provided 10 mA cm−2 when used as a bi-functional
electrocatalyst for water splitting at a cell voltage of 1.67 V [116]. Wang et al. further
explained that in MOF-derived nanostructures, the composition of cobalt telluride can be
easily included by employing a similar technique [117]. The attained optimum Co1.11Te2/C
electrocatalyst exhibited a high surface distribution of Co-ions and more reducible Co
species than CoTe2/C and CoTe/C, which contributed to HER activity improvement
(178 mV@10 mA cm−2 in 1 M KOH). The higher performance of Co1.11Te2/C was elucidated
through DFT calculations, illustrating a perfect Gibbs free energy, as seen in Figure 4a.

Figure 4. (a) Gibbs free energy diagram for CoTe, CoTe2 and Co1.11Te2 reproduced from [117]; (b) XPS
spectra images of Fe-Co1.11Te2@NCNTF and Co1.11Te2@NCNTF, reproduced from [118]; (c) schematic
design of the synthesis of NiTe/NiS decorated on heterojunction nanoarrays, reproduced from [119];
(d,e); transmission electron microscopy images of NiTe/NiS decorated on heterojunction nanoarrays
reproduced from [119]; (f) catalytic stability results of BPWEM, reused from [120].

3.2. In Situ Development

The in situ development of the electrocatalysts on the surface of electrodes has attracted
considerable interest in recent years. According to the literature, such a structure can
prevent the agglomeration and collapse of nanostructured electrocatalysts, enhancing the
long-term durability of the electrodes [121–124]. In addition, the binder-free adhesion
of the electrocatalysts to the current collector can lead to excellent mass diffusion and
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charge transfer. In this regard, several TMT-related HER self-supported electrodes were
recently reported, such as FeTex NSs on Fe foam [125], CoTe2 NPs on Co foam [126], NiTe2
NWs on Ni foam [115], Cu7Te4 arrays on Cu foil [127], an NiTe2 NS array anchored on
Ti mesh [110], and a CoTe2 NW array on Ti mesh [113], which will not be systematically
described in this review study. TMTs will ultimately be changed into the corresponding
metal oxy-hydroxide, because the Te species of the surface tend to be soluble and are the
actual catalytically active components, as mentioned previously [128] and confirmed by
Yang and co-workers, who developed the CoTe nanoarrays on Ni foam [129].

3.3. Nanostructure Engineering

Nanostructure engineering can improve electrocatalytic performance by tuning the
morphology and structure to provide more catalytic active sites. The latter could locally
modify the coordination conditions and chemical characteristics, improving the electrocat-
alytic performance by the ensemble effects or ligands. Doping with heteroatoms to control
the electronic structure is now widely accepted, and various nonmetals such as S, and
P [129–131] and transition metals including the Co, Ni, and Fe [129–133] elements have
already been used to dope TMTs, boosting their catalytic activity.

He et al. [134], confirmed that Fe-doping into Mo/Te nanorods (NRs) could signifi-
cantly enhance the catalytic stability. Fe-doping into Mo/Te NRs promoted the formation of
a Mo moiety with a higher valence state, fostering a significant modification in the electronic
state. Moreover, after doping with Fe, the Tafel slope value and the resistance of charge
transfer through Fe-Mo/Te were decreased, while the analysis of the Tafel slope provided
information that the main kinetic roots include a mixed step of MOOH or MO synthe-
sis [134]. Additionally, doping with Fe has been shown to increase the Co1.11Te2@NCNTF
catalytic activity. He and colleagues [118] developed the Fe-Co1.11Te2@NCNTF catalyst,
obtained through tellurization (under Ar/H2 atmosphere) of Fe-etched ZIF-67 gas, which
presented a blue shift in the XPS spectrum of the binding energy of Co2p, comparative to
the pristine Co1.11Te2@NCNTF, as shown in Figure 4b, resulting in reduced electron density
Co atoms and also higher peaks (concentration) of Co3+, which can enhance OER perfor-
mance. This accurately characterized the excellent HER activity of Fe-Co1.11Te2@NCNTF
which offered TOF values 10-fold higher than the un-doped Co1.11Te2 [118]. In contrast,
Pan et al. showed that doped Mn into 1T-VTe2 facilitated the stabilization of the 1T-phase
and developed a nanosheet-like morphology with high porosity and an enhanced surface
area, thus improving the HER activity, compared to that of the un-doped 1T-VTe2 [135].
Furthermore, it is reported that the activity could be enhanced by hybridizing Ni nanoclus-
ters (NiNCs) with Mn-doped 1T-VTe2 NSs (denoted as NiNCs-1T-Mn-VTe2 NS), compared
to all other electrocatalysts studied.

3.4. Dopants

Dopants can affect electrocatalytic activity [136]. This was also proved in TMT-related
electrocatalysts. According to DFT analysis, Gao and coworkers [64] observed that the
simultaneous doping of Ni and Co into MoTe2 can effectively activate the phase transition
of 2H to 1T, in contrast with the mono-atom doping. The experiments demonstrated that
the Ni/Co co-doped MoTe2 markedly improved HER activity. Apart from anion doping,
the cation combination can also efficiently boost the electrocatalyst performance. Wang and
his partners [137] described that the doping with S changed the 2H-MoTe2 from an inactive
to an active electrocatalyst, due to the modification of the electronic structure, whereby elec-
trons accumulated on the surface of S atoms, acting like active sites, adsorbed more rapidly
the intermediate (H*), boosting the HER performance. Moreover, mixed anion-doped
TMTs and tellurides, such as freestanding CoNiTe2 NSs [138], Ni1−xFexTe2 hierarchical
nanoflake arrays [139], MoSe0.12Te1.79 and MoSxTey/Gr [140] solid solutions [141] were
recently discovered as HER electrocatalysts. The majority of these materials suggest that
the stoichiometry between two chalcogens or metals is the main parameter for modulating
the intrinsic electrocatalytic performance by the electronic structure. Besides the compo-
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sition and nanostructure engineering, hybridization, or heterostructuring of the active
electrocatalyst with other active components have been attractive strategies for boosting
the electrocatalytic performance. Particularly, such hybridization/heterostructuring can
reveal a multitude of interfaces, permitting electronic-structure engineering and enhancing
the electrocatalysts’ reactivity and selectivity. Furthermore, the collaborative consequence
might appear in heterogeneous exposed interfaces resulting from the migration from one
portion of the adsorbed reaction moieties to the other. Thus, there is an unprecedented
unblocking of electrocatalytic reaction radicals and an enhancement of the overall reaction
rate [142,143].

3.5. Heterostructure

A number of TMT-related heterostructured electrocatalysts have been freshly re-
ported to illustrate enhanced HER activity, such as TMT nanostructures composited with a
secondary TMT [144–146], a chalcogenide [119,147], an oxide/hydroxide [148–150], or a
phosphide [151,152]. For example, Xu et al. [153] constructed Ni3Te2-CoTe hybrids, which
were developed in a single-step on carbon cloth by a hydrothermal procedure, and their
electrocatalytic activity was compared to every individual component (Ni3Te2 and CoTe).
Ni3Te2-CoTe hybrids delivered a current density of 100 mA cm−2 at 392 mV overpotential,
with a smaller Tafel slope value of 68 mV dec−1. Based on these findings, the hydroxyl
group chemisorption into the electrocatalytic surface was a defined rate-measuring step.
The investigators suggested that the enhanced activity stemmed from the incorporation
of CoTe into the electrocatalyst, exposing more Ni3Te2 active sites, also confirmed by the
double-layer capacitance and the denser states close to the Fermi level, using DFT analysis.

Xue et al. [119] presented a heterojunction composed of NiTe/NiS, resulting from
NiS nanodots (NDs) coupling with NiTe nanoarrays using an ion-exchange method, as
schematically depicted in Figure 4c. HRTEM micrographs revealed that the NiS NDs
decorated the NiTe surface with high density (Figure 4d,e). The NiTe/NiS nanointerfaces
underwent a significant alteration of their electronic structure, thus modifying the binding
energy of the *OOH intermediates. This is justified by the influence of the ligand in the
NiS/NiTe, since the Ni d-band center shifted to a lower-energy level compared to NiTe, as
a result of the Ni to S electron transfer, reducing the intermediates’ binding strength on the
electrocatalytic surface, and lowering in this way the barrier for the reaction. Subsequently,
the hybrid electrocatalyst required an overpotential of 257 mV for 100 mA cm−2 and
exhibited a Tafel slope of 49 mV dec−1 in 1.0 M KOH, which was significantly less than that
of pure NiS and pure NiTe. In addition, the electrocatalyst displayed over 50 h stability at
50 mA cm−2, and a potential boost of approximately 6%.

Instead, Sun et al. [154] successfully developed NiFe and RuO2-layered double-
hydroxides (NiFe-LDH and RuO2-LDH) on NiTe NR surfaces, synthesizing NiTe@NiFe-
LDH and Ni-Te@RuO2 heterostructures, which served, respectively, as anodic and cathodic
electrocatalysts for water splitting. At 1.63 V, the fabricated device delivered a current
density of 200 mA cm−2 and was powered by a 1.5 V solar cell for the continuous elec-
trolysis of water [154]. This outcome is comparable to the one presented by the same
research group [155]. They employed Pt/C||NiTe@FeOOH electrodes in a two-electrode
electrolysis cell. Pt/C||NiTe@FeOOH exhibited a voltage of around 1.7 V for the same
current density (200 mA cm−2).

Another research group [120] recently designed heterostructured and dual-phase
CoPeCoTe2 NWs with many interfaces that showed excellent HER activity in alkaline/acidic
solutions. CoP-CoTe2 NWs was employed as a bi-functional electrocatalyst (HER and OER)
in a bipolar water electrolysis membrane (BPWEM). The use of BPWEM permits HER to
occur simultaneously in kinetically favorable acidic and alkaline solutions. In the ‘for-
ward bias’ operation, the anion-exchange membrane (AEM) is at the cathode, while the
cation-exchange membrane (CEM) is on the anode side. The electrochemical neutralization
between H+ and OH− ions occurs when these ions cross the bipolar membrane and recom-
bine to form water molecules. This can facilitate the electrolysis of H2O by reducing the
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external electrical energy requirements. Using the CoP-CoTe2 electrocatalyst in a BPWEM
could transport 10 mA cm−2 at 1.01 V cell voltage (in the ‘forward bias’ operation), and
it provided 100 h of stable operation without prominent degradation, superior to that of
the anion-exchange H2O electrolysis membrane (AEWEM), using the same electrode pair,
CoP-CoTe2. Furthermore, CoP-CoTe2 exhibited good stability, thus improving the catalytic
performance. The results of the catalytic performance are mentioned in Figure 4f. The
‘forward bias’ of the bipolar water electrolysis membrane (BPWEM) can be considered a
promising candidate to replace the traditional proton-exchange water electrolysis mem-
brane (PEWEM) and anion-exchange water electrolysis membrane (AEWEM) approaches,
as it permits H2 evolution with low electrical energy consumption.

3.6. Nanocomposites

The synthesized Te/FeNiOOH-NCs and FeNiOOH-NCs catalysts were characterized
with SEM [150]. The FeNiOOH-NCs showed a uniform nanocubic shape, as illustrated
in Figure 5a1,a2. Furthermore, after the tellurization, the material retained its cubic shape
(Figure 5b1,b2).

Figure 5. FESEM images of FeNiOOH-NCs and Te/FeNiOOH-NCs catalysts are represented in
(a1,a2), (b1,b2), respectively; (c) TEM image of catalyst (Te/FeNiOOH-NC); (d) high-angle annular
dark-field STEM image (Te/FeNiOOH-NC) and consistent elemental mapping images of Te, Ni, and
Fe EDX. These figures were reprinted from [150].

The Te/FeNiOOH-NCs catalyst showed better electrochemical results as compared
to the FeNiOOH-NCs due to following reasons: (1) the surface area increased after tel-
lurization, retaining the nanocubic structure, so improving the number of active sites
for electrocatalysis. In addition, the Te-tailored nanocubic structure may have enriched
edge active centers [156]. (2) The Fe sites in FeNiOOH-NCs were generated on the sur-
face through Te metal due to in situ hydrothermal self-templating formation that likely
boosts the FeOOH electrochemical activity. Furthermore, the TEM results also verified the
nanocubic structure of the Te/FeNiOOH-NCs catalyst (Figure 5c). These results confirm
that all edge regions are enriched with the components (Te, Ni, and Fe) of the material.
Moreover, this is supported from the literature that it is the surface active centers that
are more abundant in retailored FeNiOOH nanocube edges. STEM with EDX of the cat-
alyst (Te/FeNiOOH-NC) mapping showed the existence of the Te, Fe, and Ni elements
(Figure 5d) [150,156].
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Furthermore, the synthesized FeNiOOH-NC and Te/FeNiOOH-NC nanocomposites
were tested for HER in 1.0 M KOH. As depicted in the linear sweep voltammograms
displayed in Figure 6a, an overpotential of 167 mV vs. RHE is required to deliver a
current density of 10 mA cm−2 for the HER process. This overpotential is better than
the commercially used Pt/C electrocatalyst (199 mV vs. RHE) or pure FeNiOOH-NCs
(279 mV vs. RHE), suggesting the excellent HER performance of the Te/FeNiOOH-NC
electrode [150].

Figure 6. (a) LSV curves and (b) Tafel plots of Te/FeNiOOH-NCs, FeNiOOH-NCs, and Pt/C
electrocatalysts for HER, measured in a 1.0 M KOH solution with 1600 rpm; (c) LSV curves before
and after 1000 cycles of HER; (d) chronopotentiometry (CP) measurements for Te/FeNiOOH-NCs
electrocatalyst; these figures were reprinted from [150].

Figure 6b illustrates the corresponding Tafel plots, in which Te/FeNiOOH-NCs display
a lower Tafel slope (93 mV dec−1) than the commercial Pt/C (20%) (108 mV dec−1). The
durability of the electrocatalyst (Te/FeNiOOH-NCs) for HER was also explored by applying
1000 cycles of CV scans. As seen from the LSV curves of Figure 6c, after 1000 CV cycles
only a loss of 1% was observed in the current density on the Te/FeNiOOH-NCs electrode
for HER [150]. Moreover, CP measurements for checking the stability of the electrocatalyst
for HER were completed. Only a 0.5% loss at 20 mA cm−2 current density was reported for
the potential after 10 h of operation, as illustrated in Figure 6d [150].

Post-characterizations (XRD and FESEM images [150]) revealed that the Te/FeNiOOH-
NCs electrocatalyst maintained the same cubic shape morphology with no obvious alkali
erosion but with slight agglomeration in only a few places. This minor potential loss which
is probably attributed to the electrocatalyst’s hour-long interaction with the electrolyte
during the long-term stability measurement can be justified [147,157]. Nevertheless, more
detailed postcharacterization protocols must be established, providing a more profound
knowledge of the catalyst’s post-HER morphology.
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4. Transition Metal Phosphide (TMP)-Based Electrocatalysts for (HER)

One of the primary design challenges is to improve the corrosion resistance and
selective oxidation of TMPs. As a result of the corrosion phenomenon, the electrocata-
lyst may be affected, and hypochlorite/Cl2 may be created; consequently, efficiency will
fast decline. Investigators, to address these issues, have synthesized an attractive HER
electrocatalyst—by rational design in structure and composition—that can directly elec-
trolyze H2O. Currently, H2O splitting normally employs three types of electrolysis: (i) an
alkaline solution and seawater, (ii) an alkaline solution with NaCl (which replaces the
seawater), (iii) and seawater.

TMPs present outstanding activity toward H2O electrolysis, and the activity of the
added electrolyte (in the alkaline solution) is significantly higher than in the H2O solution.
To enhance the electrolysis performance of H2O, an interesting approach would be to alter
the active site and electronic structure by utilizing heteroatoms (dopants or promoters),
facilitating the interaction of the bulk solution and electrocatalyst surface. Thus, gas
adsorption and desorption can be accelerated, electrolyte diffusion can be controlled, and
electrocatalysis can be improved.

4.1. Dopant

Chang et al. [53] prepared P and Fe co-doped NiSe2 nanoporous films following a
procedure consisting of three steps, namely, anodic treatment, chemical-vapor deposition,
and electrodeposition. The as-prepared nanocatalyst displayed outstanding electrocatalytic
performance. Figure 7a exhibits the simulative image of the crystalline structure for NFs
of Fe, P-NiSe2. The four elements (P, Ni, Fe, and Se) coexist, presenting homogeneous
distributions, as observed in Figure 7b, c.

Figure 7. (a) Dual doped structure of NFs of Fe, P-NiSe2,; (b,c) illustrated element representations
in NFs of Fe, P-NiSe2, reproduced from [53]; (d) systematic scheme for the synthesis of NFs of Fe,
P-NiSe2; (e–g) are the SEM pictures of electrocatalysts Ni(OH)2/NF, Ni2P-Ni5P4/NF, and Ni2P-
Fe2P/NF, correspondingly, reprinted from [55].
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Overpotentials of about 120 and 180 mV were required to provide current densities of
100 and 500 mA cm−2, respectively, in a 0.5 M KOH aqueous solution, with 90% infrared
correction. The NFs of the Fe, P-NiSe2 electrocatalyst demonstrated superior activity in the
seawater electrolyte compared to that of non-PGM electrocatalysts. At the same time, the
electrocatalyst delivered about 800 mA cm−2 with a voltage of 1.8 V and maintained stable
operation for 200 h in an electrolytic cell with a seawater electrolyte.

The Fe-doping provided the main active sites for the HER procedure, while P-doping
formed a passivation layer that maintained the phosphorus–oxygen bonds, enhancing
in this way the electronic conductivity and hindering Se dissolution. Moreover, bi-metal
phosphides enhance electrocatalytic activity and long-term stability, by the simultaneous
influence of the different metals. Thus, the development of an ion-exchange phosphory-
lation electrocatalyst, in situ into a nickel-foam (NF) substrate, was discussed, that could
efficiently alter the distribution of electrons locally for the central metal, thus promoting
the synthesis of low-cost and highly active seawater-electrolytic catalysts.

4.2. Two-Dimensional Nanosheet Structure

Wu et al. [55] synthesized a Ni2P-Fe2P/NF electrocatalyst with a 2D nanosheet struc-
ture, using a phosphidation and acidification method (as illustrated in Figure 7d), that
exhibited outstanding intrinsic performance. The morphological analysis verified the 2D
structure for the ultrathin Ni-related precursors and a similar nanosheet-like structure for
the Ni2P-Fe2P/NF electrocatalyst, as depicted in Figure 7e–g. The structure of the bimetallic
phosphide crystal which formed the heterostructure between the Fe2P and Ni2P phases
was clearly visible. The Ni2P-Fe2P/NF delivered 100 and 1000 mA cm−2 for the HER,
requiring overpotentials of 252 and 389 mV, respectively, and operated for 48 h in a water
solution of 1.0 M KOH. Furthermore, it was proven that increasing the specific surface area
improved the electrocatalyst performance, since more active sites were available to enhance
its efficiency. This way, not only specific surface area scattering was enhanced and thus the
active sites, but also full association was permitted between the electrolyte and the active
sites, thus enhancing the performance of the electrocatalyst. Furthermore, Ni-Fe helped to
improve resistance to corrosion and stability, which was beneficial for the H2O electrolysis
procedure.

4.3. Heterostructure

The transformation of the electrocatalyst’s structure into a heterostructure has sub-
sequently been identified as an appealing source for the enhancement of the active sites’
density and mass transfer rate, hence enabling the improvement of the activity. Liu
et al. [52] developed the CoNiP/CoxP/NF electrocatalysts using the chemical vapor de-
position and electrodeposition methods. The NF (substrate) with a 3D structure and high
conductivity was first synthesized, followed by the synthesis of CoNiP/CoxP/NF via
chemical vapor deposition and the formation of CoNi alloy/NF through electrodeposition.
The overpotential of the designed CoNiP/CoxP/NF electrocatalyst at 10 mA cm−2 was
290 mV for HER and showed stability up to 500 h in clean water. This structure had a high
concentration of exposed active sites and high corrosion resistance, resulting in superior
performance and long-term stability during water electrolysis. DFT-simulation findings
showed that the electrocatalyst (CoNiP) possessed an appropriate thermodynamic activity
for the desorption/adsorption of H2 [52].

4.4. Core–Shell Structure

Wu et al. [54] constructed a CoPx@FeOOH/NF electrocatalyst through a three-step
process, which included hydrothermal treatment, phosphidation, and electrodeposition.
CoPx precursors demonstrated linear smooth NWs and heterogeneous CoP2 distributions.
As seen from the SAED and HR-TEM images (Figure 8a–d) in the CoPx@FeOOH/NF
electrocatalyst, the FeOOH works as the shell while the CoPx works as the core in the
core–shell structure.



Membranes 2023, 13, 113 14 of 22

Figure 8. (a–d) SEM, TEM, HRTEM images and SAED pattern of CoPx@FeOOH; (e) HER polarization
curves of various electrocatalysts; (f) chrono-potentiometric measurement of CoPx||CoPx@FeOOH
in 1.0 M KOH water electrolyte, reused from [54].

It is widely believed that phosphide-related electrocatalysts usually exhibit excellent
HER performance due to the P atoms that can easily break down H2 molecules and trap
the H* intermediates [158–160]. Compared to pure phase CoP, the CoPx catalyst has a
relatively greater number of active sites for HER performance due to the heterogeneous
phase composition (CoP-CoP2). This may be due to a greater number of P atoms or defective
phase interfaces [161–164]. Additionally, the reported material (CoPx) has a nanowire mesh
structure that provides beneficial features to the catalyst for H2 production through water
electrolysis. Some of those features are mentioned below; every catalytic nanowire is
exposed to react, providing a broad contact with the electrolyte molecules, and enhancing
mechanical strength.

The CoPx catalyst showed greater HER activity compared to other self-supported
catalysts since it required low overpotential for attaining the required current densities.
More precisely, 117, 190, 248, and 269 mV overpotentials were needed to attain 10, 100, 500,
and 800 mA cm−2 current densities, respectively, with a 71.1 mV dec−1 Tafel slope value
(Figure 8e). The catalysts which have a hydrophilic surface and nanowire mesh structure
can promote H2 bubble release and electrolyte diffusion, leading to structural stability and
outstanding catalytic durability in 1 M KOH seawater electrolyte, which was confirmed by
the negligible decline in the polarization curve (Figure 8e,f) [165].

As concluded, the core–shell structures are expected to contribute to the high elec-
trocatalyst’s performance (activity and stability) by having both corrosion-resistance and
active layers, demonstrating the important role structural morphology plays. Furthermore,
at an industrial-scale current density of 500 mA cm−2, measurements were performed
to check the catalytic durability of the CoPx||CoPx@FeOOH pair through the long-term
chronopotentiometric method. The results are depicted in Figure 8f, showing a potential
fluctuation of only 53 mV over 80 h of continuous testing. These excellent catalytic durabil-
ity results indicate that CoPx@FeOOH and CoPx catalysts are realistic for H2 production by
electrolysis of water [54].

5. Concluding Remarks

In this review article, we have discussed the production of H2 as an emerging energy
carrier and illustrated the techniques used for this purpose. By using renewable energy
sources, the electrolysis of water is the most competent technology to mitigate both energy
demands and environmental pollution. Furthermore, different water electrolysis methods
for H2 production (AWE, PEMWE, SOE, and MEC) were discussed. Additionally, elec-
trocatalysts play a key role in H2 production by water electrolysis. In this regard, from
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the various types of electrocatalysts, only the recent developments in transition metal
tellurides and transition metal phosphides have been discussed in this review, due to
their promising features, such as enhanced H2 production rate, stability, durability, high
efficiency, and low cost requirements as compared to precious commercial electrocatalysts,
such as the platinum group metals (PGMs). Although the development of metal-based
tellurides and phosphides is competing with PGMs, more effort is still required to enable
the commercialization of water-splitting technology.

Therefore, an enhancement of the catalytic activity, as well as long-term operational
stability, are highly required.

There are some points to be considered for the future research in the field.

1. Transition metal-based catalysts require some improvements for industrial-scale water
electrolysis in terms of current density (greater than 500 mA cm−2) and long-term
stability.

2. TMT-based electrocatalysts have high electrical conductivity, due to their metallic
character, but conductivity is not the only characteristic needed for enhancing the
HER performance of the electrocatalysts. Therefore, improvements of the electronic
structure of electrocatalysts are still required to change the composition; and of the
structural engineering to achieve binding energy regulation of the reaction intermedi-
ates and lower the reaction energy barrier.

3. The development of novel and advanced synthesis methods is required for large-scale
production with suitable structural properties.

4. More research is needed to explain the self-construction mechanism in the transition
metal tellurides and phosphides. Furthermore, to understand the self-construction
mechanisms and intrinsic properties, tests under different conditions should be per-
formed for the self-constructions of TMT and TMP. By controlling the construction
mechanism of the electrocatalysts, HER performance can be boosted.

5. Development of simple but more accurate characterization techniques for the struc-
tural elucidation of the material may be beneficial for designing efficient electrocata-
lysts for HER performance.

6. Transition metal telluride and phosphide electrocatalysts have greater electrical con-
ductivity than other electrocatalysts due to the metallic character of transition metals.

7. TMT and TMP electrocatalysts are better than conventional platinum-group electro-
catalysts, due to their low cost.
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