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Rapid urbanization and industrialization in the past decades have resulted in vast
amounts of wastewater containing pollutants such as inorganic chemicals, pathogens,
pharmaceuticals, plant nutrients, petrochemical products, and microplastics [1–3]. The
extensive discharge of wastewater into the environment without proper treatment poses
unprecedented threats to humans, marine life, and other organisms [4,5]. Remediating and
separating these large wastewater bodies requires methods that enable fast operation and
high separation efficiency with a relatively low energy consumption. Membrane-based
liquid separation and water treatment technologies can meet these requirements as they
rely on relatively low thermal inputs and additives while providing promising permeation
flux and separation efficiency [6–13].

This Special Issue titled “Recent Studies of Membranes for Liquids Separation and
Water Treatment” emphasizes different aspects of the membranes employed in separating
liquid mixtures and wastewater remediation. These aspects include materials, synthesis and
fabrication, separation mechanisms, performance evaluation, modeling and simulations,
and applications.

Desalinating saline water has proven to be an effective method to meet the escalating
demand for fresh drinking water. Among various desalination technologies, vacuum
membrane distillation is a relatively cost-effective method that can enable a high water
vapor flux under sufficiently high vacuum levels [14,15]. In a study by Idrees et al., techno-
economic analyses were conducted on vacuum membrane distillation for removing NaCl
and KCl salts from seawater [16]. The lab-scale experiments were conducted utilizing
a polytetrafluoroethylene (PTFE) membrane under a variation of different parameters,
including temperature, concentration, pressure, and velocity [16]. Subsequently, economic
investigations were performed based on the experimental results in combination with a
market survey to estimate the costs of an up-scale vacuum membrane distillation plant.
The results indicated that the costs associated with obtaining clean water using lab-scale
vacuum membrane distillation can be reduced by utilizing a large-scale setup [16].

Forward osmosis is another prominent water treatment process that relies on the
difference in osmotic pressure induced by different concentrations of the feed and draw so-
lutions [17]. In a study by Mendoza et al., the forward osmosis technique was implemented
using magnesium phosphate salts recovered from wastewater as the draw solution [18].
Nitric acid and citric acid were utilized to facilitate the dissolution of salts, including cattiite,
struvite, and hazenite, as they show limited solubility in water. This setup enabled water
extraction to produce nutrient solutions [18]. Subsequently, the nutrient solutions were
supplied as fertilizers to plants in a hydroponic system. The results of the study showed
the feasibility of functional growth of lettuce by utilizing recovered water as a source of
nutrition [18].
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The permeation flux in the forward osmosis process is relatively lower compared to
that in the membrane-based separation processes that operate under pressure [19,20]. To
achieve an acceptable permeation flux in forward osmosis setups, a better understanding
of the parameters affecting the flux is necessary, such as the interactions between the sol-
vent and solute. Higuchi et al. utilized the non-equilibrium molecular dynamics (NEMD)
method to quantitatively investigate the permeation flux through a semi-permeable for-
ward osmosis membrane under different solvent–solute interatomic interactions [20]. The
calculated permeation flux results were consistent with the theoretical curves obtained
from the combination of the permeation flux and Van’t Hoff equations [20]. The results
also validated the NEMD method for evaluating permeation flux in a forward osmosis
setup [20].

The release of pharmaceutical and personal care products (PPCPs) such as carba-
mazepine (CBZ) from conventional wastewater treatment facilities to the environment is
another challenge that requires immediate attention, as these products can have detrimental
effects on health even at low concentrations [21,22]. In a study by Dao et al., a moving-bed
membrane bioreactor system combined with an electrochemical process was implemented
to remove persistent CBZ and phosphate pollutants from synthetic hospital wastewater [22].
The results implied that using a moving-bed membrane bioreactor could effectively remove
components such as ammonia, whereas it could not effectively remove CBZ and phosphate.
A factorial design was subsequently applied to optimize the process and determine the
optimum operating conditions for the electrochemical process to improve the removal
of CBZ and phosphate [22]. The results indicated that the electrochemical method as an
oxidation process can be effectively combined with a moving-bed membrane bioreactor to
remediate wastewater containing CBZ and phosphate [22].

The contamination of water bodies by oil and other organic contaminants represents
another environmental hazard with potential impacts not only on humans but also on
marine and terrestrial ecosystems [23–25]. A review by Ezazi et al. summarized the recent
developments in oil–water separation membranes modified with two-dimensional (2D)
materials [26]. In particular, the review focused on the membranes modified with synthetic
2D materials, including graphene family materials, MXenes, metal–organic frameworks
(MOF), and covalent organic frameworks (COF). The synthesis and fabrication methods,
wettability, permeation flux, separation efficiency, and the type of oils separated by these
membranes were summarized [26]. The 2D materials with uniform pore size, high surface
area, tunable wettability, and relatively high thermal and chemical stability were found to
be effective alternatives to the current materials for developing membranes with promising
separation efficiency and flux. Further, these unique properties of the membranes modified
with 2D materials make them highly applicable for the sustainable treatment of complex
industrial wastewater [26]. Despite these advantages, this review encourages further
studies on different aspects of 2D materials-based oil–water separation membranes, in-
cluding thickness and durability, cytotoxicity, long-term stability, incorporating additional
functionalities, and large-scale fabrication [26].

Structural integrity is a crucial attribute of membranes that can affect separation perfor-
mance. Manufacturing imperfections, membrane aging and degradation, and membrane
fouling can deteriorate separation performance, resulting in improper liquid separation
or water treatment [27,28]. To ensure high-efficiency operation, the membranes should
be continuously monitored and inspected to detect potential performance and physical
degradation. However, performance evaluation may require disassembling membrane
units [29], which can impose process delays and additional maintenance costs. Real-time
monitoring can address this challenge by offering a continuous evaluation of membrane
performance. Various methods have been proposed to monitor the integrity of membranes,
such as acoustic sensor analysis, particle counting, and surrogate challenge tests [30]. With
the increasing demand for membranes for various applications, developing new real-time
monitoring and detection techniques is crucial. In particular, the response time, simplicity,
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accuracy, continuity, and cost-effectiveness are among the factors that should be considered
when developing new membrane monitoring systems [30].

In summary, the contributions featured here cover a wide range of attributes and
analysis methods for liquid separation and water treatment membranes, including mem-
brane configurations, membrane materials, fabrication methods, type of contaminants
removed, recovery potentials, optimizations to determine optimum operating conditions,
and techno-economic analyses. These findings highlight the importance of fundamental
studies and continuous research on membranes to develop new sustainable systems with
higher efficiency and lower energy requirements that can be applied to treat a wide range
of liquid mixtures and wastewater bodies.
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