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Abstract: In critically ill patients with acute respiratory distress syndrome (ARDS) coronavirus
disease 2019 (COVID-19), a high incidence of thromboembolic and hemorrhagic events is reported.
COVID-19 may lead to impairment of the coagulation cascade, with an imbalance in platelet function
and the regulatory mechanisms of coagulation and fibrinolysis. Clinical manifestations vary from a
rise in laboratory markers and subclinical microthrombi to thromboembolic events, bleeding, and
disseminated intravascular coagulation. After an inflammatory trigger, the mechanism for activation
of the coagulation cascade in COVID-19 is the tissue factor pathway, which causes endotoxin and
tumor necrosis factor-mediated production of interleukins and platelet activation. The consequent
massive infiltration of activated platelets may be responsible for inflammatory infiltrates in the
endothelial space, as well as thrombocytopenia. The variety of clinical presentations of the coagu-
lopathy confronts the clinician with the difficult questions of whether and how to provide optimal
supportive care. In addition to coagulation tests, advanced laboratory tests such as protein C, protein
S, antithrombin, tissue factor pathway inhibitors, D-dimers, activated factor Xa, and quantification
of specific coagulation factors can be useful, as can thromboelastography or thromboelastometry.
Treatment should be tailored, focusing on the estimated risk of bleeding and thrombosis. The aim of
this review is to explore the pathophysiology and clinical evidence of coagulation disorders in severe
ARDS-related COVID-19 patients.

Keywords: COVID-19; thrombosis; coagulopathy; platelets; bleeding; heparin; acute distress respira-
tory syndrome
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1. Introduction

The novel coronavirus (severe acute respiratory syndrome coronavirus-2, SARS-CoV-
2), which emerged in late 2019 in Wuhan, China, is currently causing significant concern in
the medical community because of its rapid global spread [1]. Since its identification in
December 2019, the number of cases has risen to pandemic levels, and knowledge of the
clinical and epidemiological features of this infection, known as coronavirus disease 2019
(COVID-19), is changing on a daily basis. Initial symptoms of COVID-19 include fever,
myalgia, fatigue, and dry cough. Most severe cases develop dyspnea and hypoxemia within
1 week of disease onset, progressing quickly thereafter to an atypical acute respiratory
distress syndrome (ARDS) or multiorgan failure [2,3]. However, there is growing evidence
for an outstanding impact of cardiovascular events in COVID-19, especially in the most
critical cases, with a high incidence of thromboembolic or hemorrhagic events [4–6].

Helms et al. reported a significantly higher risk of thromboembolic complications in
COVID-19 ARDS patients when compared with non-COVID-19 ARDS (18% vs. 6%, odds
ratio (OR) = 3.4 (95% confidence interval (CI) = 1.7–7.3), p < 0.001) [5].

A recent study [4] including 416 hospitalized patients with COVID-19 found that
19.7% had cardioembolic complications, and that these patients were at a higher risk of
death (hazard ratio (HR), 4.26 (95% CI, 1.92–9.49)). In this study, the incidence of coagula-
tion disorders was 2.9% in the overall population, with a higher rate (7.3 vs. 1.8%, p = 0.02)
in patients with cardiac injury compared with those who did not present cardiological
complications. High levels of interleukin (IL)-6, C-reactive protein (CRP), and D-dimers
have been observed in patients with COVID-19 ARDS, and the magnitude of the activation
of the inflammatory cascade seems to be strongly correlated with the severity of coagu-
lation disorders. However, the risk factors, pathophysiology, and management of these
complications are still poorly understood.

The aim of this manuscript is to explore the pathophysiology, clinical manifestations,
and treatment of coagulation disorders in patients with ARDS-related COVID-19.

2. Pathophysiology of Coagulative Derangements in COVID-19 Patients

The hemostatic system consists of three phases (Figure 1) [7].
After an inflammatory trigger, the main mechanism for activation of the coagulation

cascade is the tissue factor (TF) pathway. Through this pathway, endotoxin and tumor
necrosis factor (TNF)-α trigger the production of interleukin (IL)-6 and IL-8 inhibitors,
which is followed by an increase in thrombin and fibrin generation, thrombin–antithrombin
complexes, and fibrinopeptide. Moreover, the fibrinolytic pathway is activated, poten-
tially leading to an imbalance between activation of coagulation and regulation (activa-
tion/inhibition) of fibrinolysis [8]. The role of endothelial cell activation seems to be crucial
in the development of shock and impairment of coagulation, and is a common feature
of viral infection [9]. In fact, endothelial cells can be directly infected by several viruses,
including adenoviruses, influenza, and herpes simplex virus [10].

SARS-CoV-2 may also downregulate angiotensin-converting enzyme 2 (ACE-2) ex-
pression, thus regulating overproduction of angiotensin II and concomitant enhancement
of IL-6. IL-6 in a positive inflammatory feedback loop inactivates ACE-2, enhancing
angiotensin II retention and leading to endothelial activation and inflammation [11].

A recent study on autopsies including seven lungs from patients who died from
SARS-CoV-2 infection found three distinctive angiocentric features of ARDS-COVID-19:
severe endothelial injury with disrupted endothelial cell membranes, widespread vascular
thrombosis with microangiopathy, and occlusion of alveolar capillaries with significant
new vessel growth through a mechanism of intussusceptive angiogenesis [12].

The net clinical manifestation may well be a procoagulant state, mainly by induction of
TF expression on the endothelial surface in a process probably mediated by cytokines such
as IL-1, TNF-α, and IL-6. During sepsis, the protein C/S system and thrombomodulin are
also downregulated, resulting in a further decrease in protein C activity, thereby enhancing
the procoagulant state. The change in endothelial cells from a resting to a procoagulant
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state may be associated with expression of endothelial surface adhesion molecules such
as E-selectin and the von Willebrand factor, resulting in local inflammatory response,
endothelial damage, and plasma leakage [8].
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Figure 1. Coagulation cascade after severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)
infection. Coagulation is initiated by viral binding to angiotensin-converting enzyme 2 receptors
(ACE-2Rs) on endothelial cells, resulting in the exposure of tissue factor (TF) and collagen to blood
and the release of von Willebrand factor (vWF). Platelets are exposed to TF, collagen, and vWF and
activated, thus releasing mediators such as adenosine monophosphate (ADP) and vWF, leading to
further platelet recruitment, followed by activation, aggregation, and plug formation. The TF–Factor
VII (FVII) interaction activates the extrinsic pathway, while the exposed collagen starts the intrinsic
pathway, helped by antithrombin-III (ATIII). Both pathways result in the common coagulation
pathway, which ends with the formation of fibrin strands, thus leading to the formation of a stable
platelet–fibrin clot. Meanwhile, tissue plasminogen activator (tPA) activates plasminogen to plasmin,
which acts on the fibrin strands by degradation. ATIII, antithrombin-III; TF, tissue factor; tPA,
tissue plasminogen activator; tPA, tissue plasminogen activator; vWF, von Willebrand factor; ADP,
adenosine monophosphate; FDP, fibrin degradation products; ACE-2R, angiotensin-converting
enzyme 2 receptors; SARS-CoV-2, severe acute respiratory syndrome coronavirus-2.

3. Understanding the Role of Platelets and Inflammation in Pneumonia Pathogenesis

The role of platelets is not only limited to the formation of the initial clot in the injured
vessel endothelium to initiate hemostasis; platelets are also an integral part of the innate
immune system, and act as proinflammatory cells [13–15]. Platelets can be activated by a
number of mediators and cytokines that are stored within their alpha granules and whose
release triggers further recruitment, activation, and aggregation of additional platelets
in a downstream cascade [16–19]; once activated, they express a number of receptors for
adhesion, clotting, and neutrophil activation. The consequent platelet–neutrophil aggrega-
tion process is responsible for local and systemic inflammation, especially in the lung, and
can also generate reactive oxygen species (ROS), modulating the phagocytic capacity of
neutrophils and formation of neutrophil extracellular traps [20,21]. The massive infiltration
of activated platelets in the lungs that follows an insult or infection can be associated with
thrombocytopenia, which is often seen in the course of many viral infections, albeit it
is only occasionally serious enough to lead to hemostatic impairment and bleeding [22].
Although the mechanism of thrombocytopenia is mainly immune-mediated, decreased
thrombopoiesis, increased platelet consumption, or a combination of both may also act as
concomitant factors for its occurrence [22].
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4. COVID-19 and Hyper/Hypocoagulable States

COVID-19 infection can activate the coagulation cascade through various mechanisms,
leading to severe hypercoagulability, as SARS-CoV-2 infection is, in effect, a systemic dis-
ease not limited to the lungs. Initial clinical manifestations include fever, sore throat, fatigue,
diarrhea, and other nonspecific symptoms [23,24]. During incubation (1–14 days, 3–7 days
being more common), peripheral blood leukocytes and lymphocytes are not significantly
reduced. Thereafter, the virus spreads, especially in tissues expressing ACE-2 (the SARS-
CoV-2 receptor), i.e., the lungs, gastrointestinal tract, and heart. At this stage, pulmonary
infiltration by blood cells increases, pulmonary lesions worsen, and chest computed to-
mography (CT) scans show peculiar imaging changes. Peripheral blood lymphocyte count
(both T and B) significantly decreases, whereas inflammatory factors in the peripheral blood
are raised [25]. In a previous study, Berri et al. [26] reported that plasminogen contributes
to inflammation caused by influenza through fibrinolysis, and that 6-aminocaproic acid
can protect against influenza. Presumably, fibrinolysis may also be induced following
severe SARS-CoV-2 infection. High plasma levels of proinflammatory cytokines (IL-2, IL-7,
granulocyte colony-stimulating factor, interferon-γ-induced protein-10, monocyte chemoat-
tractant protein-1, macrophage inflammatory protein-1, and TNF-α) have been observed
in patients with COVID-19 admitted to intensive care units, suggesting that a cytokine
storm may be developing in individuals with severe disease [27]. Cytokine storm has been
described as the primary cause of several disorders of immune dysregulation characterized
by constitutional symptoms, systemic inflammation, and multiorgan dysfunction that can
lead to multiorgan failure and coagulopathy if inadequately treated, with different severity
and duration [27].

In the specific case of COVID-19, different factors can lead to thrombosis and to a
hypercoagulable state. Among these, the need for quarantine or isolation reduces physical
exercise and increases immobility and the risk for deep venous thrombosis. In agreement
with this, high levels of IL-6, clotting activation, elevated D-dimer, and a high incidence
of thromboembolic events have been reported [28]. Antiviral therapy itself—particularly
ritonavir, which has been trialed for COVID-19 treatment in some centers—can lead to
dysregulation of platelet function and prostaglandin-E2 production, and increases platelet
aggregation [29]. Finally, the role of mechanical ventilation and positive intrathoracic pres-
sure should be considered. In fact, mechanical ventilation itself can cause local and systemic
inflammatory activation and a hypercoagulable state [30]. Positive end-expiratory pres-
sure (PEEP) can also contribute to pulmonary vascular vasoconstriction, high pulmonary
vascular resistance and pressures, and right-heart overload.

Typical clotting derangements observed in COVID-19 include increased D-dimer
(from mild to significant), prolonged prothrombin time (PT), and gradual decreases in
fibrinogen and platelet counts [31,32]. Recent evidence has also shown that patients with
COVID-19 who had poor outcomes exhibited ischemic clinical manifestations, such as
mottling of the fingers and toes and organ dysfunction, thus suggesting a systemic hyper-
coagulable phase culminating in disseminated intravascular coagulation (DIC) [32]. DIC is
an acquired disorder caused by hemostatic system stimulation, resulting in activation of
platelets, activation of fibrinogen, and conversion of fibrinogen to fibrin, which triggers
generalized microvascular thrombosis and life-threatening hemorrhage due to consump-
tion of coagulation factors and activation of the fibrinolytic system. Hemorrhage may
occur as a single clinical phenomenon or may be part of a more complex derangement of
the coagulation cascade due to DIC or septic vasculitis or might even be iatrogenic as a
result of anticoagulant treatment. In some cases of multi organ failure (MOF), bleeding
and (microvascular) thrombosis may coexist. For the aforementioned reasons, early (per-
haps universal) administration of low molecular weight heparin (LMWH) can be useful,
whereas intravenous immunoglobulin (IVIG) may inhibit the development of cytokine
storm or decrease its clinical impact [31,32]. Figure 2 represents a summary of the effect of
heparin on endothelial function. However, attention should also be paid to the occurrence
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of hemorrhagic complications that often present as muscular and retroperitoneal bleeding
and/or hemorrhagic shock.
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Figure 2. Potential beneficial roles of low molecular weight heparin (LMWH) on endothelial glycoca-
lyx dysfunction during coronavirus disease 2019 (COVID-19). Figure Legend: − = inhibition; + =
activation; ↑ = increase; ↓ = decrease.

During SARS-CoV-2 infection, alveolar macrophages and T cells (among other im-
mune system cells) are recruited and activated. However, a hallmark of critically ill patients
is an uncontrolled immune response leading to a cytokine storm characterized by increased
serum levels of IL-1β, TNF-α, and IL-6. These cytokines reduce the expression of the
constitutive endothelial nitric oxide synthase (eNOS) and increase the oxidative stress and
the expression of adhesion molecules, thus favoring a dysfunctional endothelial phenotype.
The glycocalyx is fundamental to epithelial and endothelial barrier function under homeo-
static conditions and confers an anticoagulant and antiadhesive surface. Hyaluronan (or
hyaluronic acid; HA) is a key component of glycocalyx. HA affects water homeostasis and
excessive HA forms cable-like structures disrupting tissue architecture. IL-1β, TNF-α, and
IL-6 are strong inducers of plasma-membrane-located HA synthase (HAS)-2 in endothelial
cells, alveolar epithelial cells, and fibroblasts, and therefore HA may also participate in the
pathophysiology of COVID-19. Moreover, HA inhibits antithrombin in vitro. If translated
to the clinic, circulating HA may contribute to faster thrombin activity, explaining at least
partially the coagulopathy found in critically ill patients, and the improvement mediated by
low molecular weight heparin treatment. Moreover, IL-1β and TNF-α also target glycoca-
lyx by activation of metalloproteinases and heparinize, consequently reducing the content
of proteoglycans e.g., syndecan-1 and heparan sulfate, respectively. Glycocalyx shedding
is linked to endothelial barrier rupture, which favors the increase of vascular permeability,
leukocyte trafficking, and microthrombi. LMWH inhibits thrombin activity and protects
endothelial cells from oxidative stress; therefore, it may counteract the consequences of
cytokine storm during COVID-19. Furthermore, the use of steroids, which has been shown
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to improve outcome, can help in the minimization of the systemic inflammatory activation
consequent to cytokine storm [33]. The role of other drugs with potential anti-inflammatory
effects needs to be further investigated.

5. Clinical Evidence, Manifestations, and Treatment of Coagulative Disorders in
COVID-19 Patients

Systemic infections may be complicated by activation of the coagulation cascade,
with consequent subclinical and clinical manifestations ranging from a rise in laboratory
markers to thromboembolic events and fulminant DIC [34]. Bleeding, thrombosis, or both
may be the presenting clinical features [22]. In the 2002–2004 SARS epidemic, hematologic
complications occurred in up to 63% of infected patients; activated partial thromboplastin
time (aPTT) prolongation often developed within 2 weeks of infection, although some
patients showed normal prothrombin time and no D-dimer elevation. Only 2.5% of SARS
patients had DIC, but those affected were more likely to die [35].

In a study of 183 patients (41% with comorbidities, 11.5% mortality), coagulation
parameters at hospital admission were comparable between survivors and non-survivors,
except for PT, D-dimer, and fibrin degradation product (FDP) levels. Late in the hospital
course, fibrinogen and antithrombin (AT) levels were also lower in non-survivors. The
median time from admission to DIC onset was 4 days for those patients who died, while
only 0.6% of those who were discharged from the hospital met the International Society on
Thrombosis and Hemostasis (ISTH) diagnostic criteria for DIC [36].

A retrospective study of SARS-CoV-2-infected patients in Wuhan, China reported
that patients with elevated markers of inflammation (e.g., high-sensitivity CRP and serum
ferritin), coagulation (e.g., prothrombin and D-dimer), and end-organ damage (e.g., urea,
lactate dehydrogenase, and aspartate transaminase (AST)) were at increased risk of de-
veloping severe ARDS and death. However, several other clinical factors—including
comorbidities and cluster differentiation (CD3 and CD4 cell counts, AST, prealbumin,
creatinine, ferritin, and prothrombin)—were in fact not associated with higher risk of
death [37]. D-dimer values were higher in non-survivors as compared with survivors,
suggesting DIC as the main mechanism of death in at least some patients [37]. These
findings were confirmed by another small study of 109 COVID-19 patients. Patients who
died showed higher rates of complications, including ARDS, acute cardiac injury, acute
kidney injury, and DIC [38]. However, no cases of DIC were diagnosed in other cohorts of
patients admitted to an Intensive Care Unit for ARDS due to COVID-19 [5,39], suggesting
that hemostasis activation is not the same in all COVID patients, who can present with
different phenotypes.

A recent retrospective study by Xu et al. [40] found that 16.67% of patients with
COVID-19 were at high risk of venous thromboembolism (VTE) and 6.52% were at high
risk of bleeding from VTE prophylaxis, with an incidence of deep venous thrombosis (DVT)
among critically ill patients of 20%, which was even higher ( 69%) in a study by Litijos
et al. [41].

Bompard et al. [42] in a retrospective study evaluating CT pulmonary angiographies
found a total of 32 cases of pulmonary embolism, resulting in a 24% (95% CI; 17–32%)
overall cumulative incidence; of those, 50% were in the intensive care unit. Similarly, in a
cohort of 184 intensive care unit (ICU) patients, the cumulative incidence of symptomatic
acute pulmonary embolism, deep venous thrombosis, acute ischemic stroke, myocardial
infarction, and systemic arterial embolism was 49%.

Altogether, the evidence to date suggests that a variety of clinical features of coag-
ulation derangement are present after viral infections and, in particular, in COVID-19,
ranging from thromboembolic and hemorrhagic complications to DIC and vasculitis. The
clinical course may be dominated by bleeding, thrombosis, or both, with a high rate of
DVT or pulmonary embolism, which can result in life-threatening hemodynamic instability.
Vasculitis triggered by infection may be present, resulting from infarction secondary to
thrombotic occlusion of small blood vessels in the lung. Vasculitis may lead to ischemic
injury (due to local occlusion) or bleeding (due to local tissue damage) [43,44]. The variety
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and complexity of clinical presentations of the coagulopathy syndromes confront the clini-
cian with the difficult questions of whether, when, and how to provide optimal supportive
care to restore the balance of coagulation. Furthermore, microthrombi in the pulmonary
circulation can increase the areas that are aerated but not perfused, thus increasing shunt
and causing hypoxemia. We believe that the clinician should be guided by whichever
presenting symptom is most pronounced.

6. Coagulation Markers and Treatment Proposals

One of the key issues in the management of COVID-19 coagulopathy is the prompt
recognition of hemostasis and coagulation disorders. In-ICU and post-ICU management
should be individualized according to laboratory test results and clinical status. Current
guidelines from different countries are showing similar shrewdness. Coagulation markers
at hospital and ICU admission should include: D-dimers, PT and/or international normal-
ized ratio (INR), aPTT, platelet count, and fibrinogen to monitor daily or twice daily relying
on the preliminary results. Twice-daily monitoring should be considered in case of altered
coagulation parameters at first glance: platelet count <100 × 109/L, fibrinogen <2 g/L,
and raised D-dimer (although a specific cutoff for D-dimer cannot be defined, a three to
four-fold elevation is considered a markedly raised value) [44].

In non-bleeding patients, platelet count should be kept above 25 × 109/L; in bleeding
patients, platelets above 50× 109/L, fibrinogen above 1.5 g/L, and PT ratio <1.5 [44] should
be maintained, as abnormal coagulation parameters are associated with poor outcome [45].
However, these also have several limitations and only partially reflect the coagulation
balance [46].

Other tests include protein C, protein S, AT, tissue factor pathway inhibitor (TFPI), and
coagulation factors (in particular factor Xa to monitor LMWH treatment). However, these
are not often readily available for clinical use [47]. In this context, thromboelastography
(TEG) and rotational thromboelastometry (ROTEM) are point-of-care tests that evaluate
whole-clot formation and dissolution, enabling the assessment of different phases of the
clotting process, and which could add valuable information on coagulation derangement
to guide treatment strategies [48–51]. In a recent study assessing the role of rotation throm-
boelastometry, prothrombin time was slightly reduced, and it increased significantly after
10 days, whereas activated partial thromboplastin time and fibrinogen values were higher
at admission. In general, thromboelastometry profiles presented a picture of hypercoagula-
bility characterized by an acceleration of the propagation phase of blood clot formation
and higher clot strength [49].

Although useful, TEG and ROTEM are not always easily available in ICUs, require
special training of non-hematological staff members, and may be expensive [52]. Serial
electrocardiogram, echocardiography, and lung ultrasound can also be useful for risk
stratification. In Figure 3, we propose a treatment algorithm for coagulation management in
COVID-19 patients, with three distinct clinical scenarios according to the risk of thrombosis
and bleeding.

Recently, Ranucci et al. [53] described the typical procoagulant pattern of patients
with COVID-19 acute respiratory distress syndrome as increased fibrinogen, an increased
platelet count, and increased clot strength at viscoelastic tests that return to values close to
normal after 14 days of aggressive anti-thrombotic therapy.

It is important to highlight that the risk/benefits of anticoagulation should be re-
assessed at each step of treatment, especially after discharge, considering the risk of
hemorrhage and patients’ clinical status and clinical events (such as pulmonary embolism,
venous thrombosis, local bleeding, and hemorrhagic shock) [40,44].
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Prophylactic heparin can be continued after discharge under a strict follow up; in the most severe cases, oral anticoagulation
should be taken in consideration after ICU stay. Abbreviations: PE, pulmonary embolism; UHF, unfractioned heparin, DD,
D-dimer.

Considering the abovementioned pathophysiological features, blockade of platelet
overactivation and aggregation can reduce the severity of lung impairment. In a mouse
model, administration of the protease-activated-receptor-1 (PAR-1) antagonist SCH9797 (an
inhibitor of thrombin-induced platelet activation) reduced inflammation [54]. Antiplatelet
agents (such as clopidogrel, ticlopidine, and acetylsalicylic acid) may be considered accord-
ing to the patient’s clinical condition. To reduce the number of microthrombi and the risk
of pulmonary embolism, LMWH or unfractionated heparin (UFH) should be uniformly
administered. However, important adverse effects have been reported in the literature after
anticoagulant treatment, including major intramuscular bleeding (particularly of the iliop-
soas) [55]. The recently published guidelines on the Diagnosis, Prevention, and Treatment
of Venous Thromboembolism in Hospitalized Patients with COVID-19 recommend that
practitioners use standard of care objective testing to diagnose VTE based on the clinical
index of suspicion, whereas routine screening for VTE using bedside Doppler ultrasonogra-
phy of the lower extremities or based on elevated D-dimer levels is not recommended [56].

Although the scientific community is waiting for more robust evidence in terms of
treatment, guidelines suggest routine thromboprophylaxis with standard-dose UFH or
LMWH after careful assessment of bleed risk, with LMWH as the preferred agent. Anticoag-
ulant treatment has shown to be associated with decreased mortality in severe coronavirus
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disease patients with coagulopathy [45,57]. A position paper from the Italian Society on
Thrombosis and Hemostasis (SISET) strongly reiterated that COVID-19 patients should
be covered by LMWH, UFH, or fondaparinux at doses indicated for the prophylaxis of
VTE for the entire duration of the hospital stay, and for 7–14 days more after hospital
discharge [58]. Another Consensus Statement confirmed that in patients with active bleed-
ing, temporarily contraindicating pharmacological prophylaxis, intermittent pneumatic
compression should be adopted [57]. Moreover, in patients who show renal impairment
(creatinine clearance <30 mL/min), UFH is preferred over LMWH [57]. The use of ther-
apeutic doses of LMWH or UFH is currently not supported by evidence and cannot be
recommended as a standard of care [57,58]. Finally, in cases of thrombocytopenia with
suspicion of heparin-induced thrombocytopenia, danaparoid, argatroban, or bivalirudin
may be preferred over rivaroxaban or fondaparinux [57].

While prophylaxis- and treatment-related criteria are fairly similar in all available
guidelines, criteria for withholding anticoagulation do not fit all. Withholding of prophy-
lactic anticoagulation with LMWH is proposed for platelet count <25 × 109/L, platelet
count <30–50 × 109/L, or fibrinogen <1 g/L, while therapeutic anticoagulation should be
held only if platelet count <25 × 109/L or fibrinogen <0.5 g/L for the International Society
on Thrombosis and Haemostasis – International Guidelines (ISTH-IG) recommendations;
while the Scientific and Standardization Committee (SSC)-ISTH, Center for Diseases Con-
trol (CDC), and Anticoagulation Forum (ACF) guidelines do not suggest specific thresholds
to withhold [59].

In particular, resuming assisted and spontaneous breathing with potential asyn-
chronies and coughing in patients under anticoagulant therapy may facilitate bleeding, in
particular from sartorius and iliopsoas muscles (Figure 4). These two muscles are very soft
and prone to hemorrhage, and therefore attention should be paid during physiotherapy
(Figure 4). However, Paranjpe et al. found that among 2773 patients, 1.9% not receiv-
ing anticoagulant had bleeding events, compared with 3% who received anticoagulants
(p = 0.2).
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7. Conclusions

Coagulation abnormalities may have a major impact on the outcome of COVID-
19 patients. A variety of clinical manifestations have been described in these patients,
ranging from micro- to macrothrombi, with pulmonary embolism and hemodynamic
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instability requiring thrombolysis. Prophylactic anticoagulation and prompt diagnosis of
complications are essential. However, treatment should be individualized on the basis
of the patient’s risk of bleeding and thrombosis. Further data are needed in this setting
and, more importantly, randomized controlled trials to evaluate the optimal treatment and
management of coagulation—that represents one of the major issues to improve survival
in COVID-19 patients.
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MOF multiorgan failure
OR odds ratio
PEEP positive end-expiratory pressure
PT prothrombin time
R reaction time
ROS reactive oxygen species
ROTEM rotational thromboelastometry
rPA tissue plasminogen activator
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