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Abstract: A new severe acute respiratory syndrome coronavirus (SARS-CoV-2) causing coronavirus
diseases 2019 (COVID-19), which emerged in Wuhan, China in December 2019, has spread world-
wide. Currently, very few treatments are officially recommended against SARS-CoV-2. Identifying
effective, low-cost antiviral drugs with limited side effects that are affordable immediately is urgently
needed. Methylene blue, a synthesized thiazine dye, may be a potential antiviral drug. Antiviral
activity of methylene blue used alone or in combination with several antimalarial drugs or remde-
sivir was assessed against infected Vero E6 cells infected with two clinically isolated SARS-CoV-2
strains (IHUMI-3 and IHUMI-6). Effects both on viral entry in the cell and on post-entry were also
investigated. After 48 h post-infection, the viral replication was estimated by RT-PCR. The median
effective concentration (EC50) and 90% effective concentration (EC90) of methylene blue against
IHUMI-3 were 0.41 ± 0.34 µM and 1.85 ± 1.41 µM, respectively; 1.06 ± 0.46 µM and 5.68 ± 1.83 µM
against IHUMI-6. Methylene blue interacted at both entry and post-entry stages of SARS-CoV-2
infection in Vero E6 cells as retrieved for hydroxychloroquine. The effects of methylene blue were
additive with those of quinine, mefloquine and pyronaridine. The combinations of methylene blue
with chloroquine, hydroxychloroquine, desethylamodiaquine, piperaquine, lumefantrine, ferroquine,
dihydroartemisinin and remdesivir were antagonist. These results support the potential interest of
methylene blue to treat COVID-19.
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1. Introduction

In December 2019, a new coronavirus called severe acute respiratory syndrome coro-
navirus (SARS-CoV-2) responsible for coronavirus diseases 2019 (COVID-19) was first
detected in Wuhan, China, before spreading all over the world [1]. SARS-CoV-2 belongs to
the Betacoronaviruses with similarities with viruses detected in bats [2]. SARS-CoV-2 caused
a wide range of symptoms from asymptomatic to fatal respiratory tract infections [2–4]. The
common symptoms of COVID-19 are fever with dry cough, dyspnea, headaches, myalgia,
intense fatigue with gastrointestinal symptoms including vomiting, abdominal pain, loss of
appetite and diarrhea [2–4]. Less common symptoms including hyposmia, anosmia, ageu-
sia, maculopapular rash or urticarious lesions are observed [4]. Severe cases are associated
with uncontrolled increased lung inflammatory response called cytokine storm syndrome.
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An interleukin release of IL-6, IL-1, IL-2, IL-10, IL-12 and IL-18 associated with tumour
necrosis factor alpha (TNF-α) and other inflammatory mediators (IP-10, MCP-1, MIP-1α)
are associated with the severity of pulmonary inflammation and extensive lung damages,
likely leading to death [3,5]. Currently, very few treatments are officially recommended
against SARS-CoV-2. Evaluation of repurposing of existing approved drugs is an efficient,
low-cost approach to identify therapeutic against SARS-CoV-2. Several compounds have
been already evaluated at least in vitro, including antimalarial drugs (chloroquine, meflo-
quine, quinine, pyronaridine, piperaquine, lumefantrine, artemisinin) [6–9], antibiotics
(azithromycin, doxycycline) [10,11], antiparasitic drugs (ivermectin) [12] or antiviral agents
(remdesivir, ritonavir, lopinavir, favipiravir) [8,9,13,14].

Methylene blue, a synthesized thiazine dye, is able to inactivate viruses, including
Zika, yellow fever, dengue, chikungunya, Ebola viruses and Middle East respiratory syn-
drome coronavirus in plasma when illuminated with visible light [15–18]. Methylene blue
was also shown to exert in vitro and in vivo antimicrobial effects without photoactivation,
and more particularly against Plasmodium spp. [19–23]. The repurposed methylene blue
could be a potent candidate in the treatment of COVID-19 [24]. SARS-CoV-2 in plasma or
in infected Vero E6 cells was inactivated by photoactivation [25–27]. Moreover, methylene
blue was found to inhibit SARS-CoV-2 in vitro at concentrations achievable after oral or
intravenous administration [25,28].

The aim of this study was to confirm the antiviral activity of methylene blue against
SARS-CoV-2, to investigate its effects on viral entry in the cell and on post-entry and its
activity in combination with other potential drugs.

2. Materials and Methods
2.1. Drugs, Virus and Cells

Methylene blue (methylthioninium chloride; Proveblue®) was provided by Provepharm
SAS (Marseille, France). Hydroxychloroquine sulfate (Sigma Aldrich, St Quentin Fallavier,
France) and remdesivir (Apollo Scientific, Manchester, UK) were used as comparators.
Stock solutions of methylene blue and hydroxychloroquine were prepared in water and
remdesivir in DMSO/water 10%. All the stock solutions were then diluted in Minimum
Essential Media (MEM, Gibco, ThermoFischer, Waltham, MA, USA) in order to have 7 final
concentrations ranging from 0.1 µM to 100 µM. Two clinically-isolated SARS-CoV-2 strains
(IHUMI-3 and IHUMI-6), collected in hospitalized patients during the first COVID-19
outbreak in March 2020 in Marseille [29], were maintained in production in Vero E6 cells
(American type culture collection ATCC® CRL-1586™) in MEM with 4% of fetal bovine
serum and 1% of glutamine (complete medium). Vero E6 cells are one of the most used
cells for the culture of SARS-CoV-2 due to the presence of high expression of angiotensin
converting enzyme 2 (ACE2) receptors, essential for SARS-CoV-2 cellular entry [30,31].
Vero E6 cells were found to be relevant for antiviral drug screening models [31,32].

2.2. Antiviral Activity Assay

Briefly, 96-well plates were prepared with 5 × 105 cells/mL of Vero E6 (200 µL per
well), as previously described [10]. The different concentrations of methylene blue without
photoactivation, hydroxychloroquine or remdesivir were added 4 h before infection. The
replication of IHUMI-3 or IHUMI-6 strains in Vero E6 cells at an MOI of 0.01 was estimated
48 h after infection by RT-PCR using the Superscript III platinum one step with Rox kit
(Invitrogen) after extraction with the BioExtract SuperBall kit (Biosellal, Dardilly, France).
The primers used were previously described [33]. EC50 (median effective concentration)
and EC90 (90% effective concentration) were estimated through nonlinear regression by
using the R software (ICEstimator version 1.2). EC50 and EC90 values resulted in the mean
of 6 to 12 independent experimentations.
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2.3. Determination of the Inhibition Stage

Effects of methylene blue, hydroxychloroquine or remdesivir on entry and post-entry
of SARS-CoV-2 were evaluated at a concentration of 10 µM. For “full-time” treatment,
Vero E6 cells were infected with the IHUMI-3 strain for 48 h after pre-incubation of the
cells with one of the three drugs for 4 h. For “entry” treatment, the cells were infected
for 2 h after pre-incubation for 4 h and then the virus–drug mixture was replaced with
fresh medium maintained for 46 h. For “post-entry” treatment, the cells were infected for
2 h and then incubated with drug for 46 h. The percentage of inhibition of SARS-CoV-2
replication by 10 µM of drug was estimated for each drug concentration as following: (mean
CTdrug concentration − mean CTcontrol 0%)/(mean CTcontrol 100% − mean CTcontrol 0%) × 100.
The result was the mean of 6 to 9 independent experiments.

2.4. Antiviral Activity of Drug Combinations

The antiviral activity of two concentrations of methylene blue (0.1 and 0.5 µM) was
evaluated alone or in combination with four fixed concentrations of chloroquine (0.5,
1, 5 and 10 µM), hydroxychloroquine (0.5, 1, 5 and 10 µM), quinine (1, 5, 10 and 25
µM), mefloquine (0.5, 1, 5 and 10 µM), pyronaridine (0.1, 0.5, 1 and 5 µM), ferroquine
(0.5, 1, 5 and 10 µM), desethylamodiaquine (0.1, 0.5, 1 and 10 µM), lumefantrine (5,
10, 25 and 50 µM), piperaquine (5, 10, 25 and 50 µM), dihydroartemisinin (5, 10, 25
and 50 µM) and remdesivir (0.05, 0.1, 0.5 and 1 µM) against the SARS-CoV-2 IHUMI-
3 strain for 48 h. The percentage of inhibition of SARS-CoV-2 replication by methy-
lene blue alone or in combination was estimated for each drug association as following:
(mean CTdrug association − mean CTcontrol 0%)/(mean CTcontrol 100% − mean CTcontrol 0%) × 100.
The result was the mean of 9 to 13 independent experiments.

3. Results

The antiviral activity of methylene blue against the clinically-isolated SARS-CoV-2
strains IHUMI-3 and IHUMI-6 was concentration-dependent (Figure 1).
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Figure 1. Anti-SARS-CoV-2 activity of methylene blue in % of antiviral inhibition on IHUMI-3 (mean
of 12 independent experiments) and IHUMI-6 (mean of 6 independent experiments) clinically-isolated
strains (error bar represents standard deviation).

The median effective concentration (EC50) and 90% effective concentration (EC90)
of methylene blue against IHUMI-3 were 0.41 ± 0.34 µM and 1.85 ± 1.41 µM (n = 12),
respectively; 1.06 ± 0.46 µM and 5.68 ± 1.83 µM against IHUMI-6 (n = 6). The difference
between EC50 against the two was significant (p = 0.015, Welch two sample t-test).
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In comparison, EC50 and EC90 of remdesivir against IHUMI-6 were 1.00 ± 0.41 µM and
3.2 ± 2.9 µM, respectively (n = 6). There was no significant difference between methylene
blue and remdesivir EC50 or EC90 (p = 0.786 and p = 0.113, Welch two sample t-test).

EC50 and EC90 of hydroxychloroquine against IHUMI-6 were 6.25 ± 2.20 µM and
12.32 ± 2.82 µM, respectively (n = 6). Methylene blue was significantly more effective than
hydroxychloroquine against IHUMI-6 (p = 0.005 for EC50 and p = 0.003 for EC90; Welch two
sample t-test).

Methylene blue interacted at both entry and post-entry stages of SARS-CoV-2 infection
in Vero E6 cells, as hydroxychloroquine did (Figure 2). Contrariwise, remdesivir, which is
an antiviral drug, interacted only at post-entry stage.
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Figure 2. Antiviral activities of methylene blue, hydroxychloroquine and remdesivir at 10 µM against
the SARS-CoV-2 IHUMI-3 strain in vitro. For “full-time” treatment, Vero E6 cells were infected with
the IHUMI-3 strain for 48 h after pre-incubation of the cells with one of the three drugs for 4 h. For
“entry” treatment, the cells were infected for 2 h after pre-incubation for 4 h and then the virus–drug
mixture was replaced with fresh medium maintained for 46 h. For “post-entry” treatment, the cells
were infected for 2 h and then incubated with drug for 46 h. Error bars represent standard deviation
of 6 to 9 independent experiments.

The effects of methylene blue were additive with those of quinine (Figure 3), meflo-
quine (Figure 4) and pyronaridine (Figure 5).
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4. Discussion

Our data confirmed the in vitro activity of methylene blue at very low-micromolar range
with EC50 between 0.41 and 1.06 µM and EC90 between 1.85 ± 1.41 µM and 5.68 ± 1.83 µM
against two strains of SARS-CoV-2 IHUMI-3 and IHUMI-6 [28,34,35]. The reduction in the
viral replication is not due to methylene blue toxicity against Vero E6 cells. The 50% cyto-
toxic concentration (CC50) was previously evaluated (CC50 > 100 µM) [28]. According to
this previous CC50, the selectivity index (SI) for methylene blue was above 100. Methylene
blue was effective as antiviral remdesivir against IHUMI-6 strain and more effective than
hydroxychloroquine in vitro. These effective concentrations are compatible with blood
concentrations after usual oral intake or intravenous injection of methylene blue [36–38].
An oral uptake of 325 mg of methylene blue led to a Cmax (maximum blood concentration)
value of 0.97 µg/mL (around 3 µM) [36] and a dose of 2 mg/kg intravenous showed
a Cmax of 2.917 µg/mL (around 10 µM) [37]. In another study, blood concentrations of
6–7 µM were obtained after three oral daily doses of 69 mg (207 mg/day) [38]. Methylene
blue EC50 and EC90 are coherent with human blood concentrations after usual uptake of
methylene blue. Moreover, methylene blue is accumulated in lungs tissue. The absorption
of methylene blue in lungs was around 3 to 5% of injected drug per g of tissue after a single
intravenous injection of methylene blue in mice [39].

Methylene blue could be associated with antimalarial drugs such as quinine, meflo-
quine or pyronaridine to improve its antiviral activity. Mefloquine concentrations are
10 times higher in the lung than in the blood (a concentration which can go up to 180 mg/kg
in the lung) [40]. A single oral dose of 2 mg (10 mg/kg) of pyronaridine in rats led to a blood
Cmax of 223 ng/mL and a lung Cmax of 36.4 µg/g of tissue (165 more concentrated) [41]. In
rat, after intravenous dose of 10 mg/kg of quinine, the observed concentration lung/blood
ratio was at 246 [42]. These three drugs accumulate in lungs and could be potent partners
for methylene blue for COVD-19 treatment.

Methylene blue interacted at both entry and post-entry stages of SARS-CoV-2 infection
in Vero E6 cells. The inhibition of the viral entry is consistent with the results interaction
between the spike protein (S) and the angiotensin converting enzyme 2 (ACE2) via its
receptor binding domain (RBD), binding required for SARS-CoV-2 cell entry. Methylene
blue inhibits the binding of SARS-CoV-2 spike S protein to ACE2 at micromolar range [35].
Moreover, the inhibition of both entry and viral replication after SARS-CoV-2 entry is
coherent with 3D modelling approaches. Docking analysis showed that methylene blue
could bind both the spike protein S of SARS-CoV-2, but lesser than hydroxychloroquine,
and the main protease (M or Mpro), but lesser than remdesivir [43]. The main protein, also
called 3C-like protease, is crucial in SARS-CoV-2 replication by leading to the formation
of non-structural proteins (NSPs) [44]. SARS-CoV-2 needs the transmembrane protease
serine 2 (TMPRSS2) for activating the spike S protein [5]. The spike S protein, TMPRSS2
and Mpro are promising anti-SARS-CoV-2 targets for enzymatic inhibitors [5,45]. Moreover,
SARS-CoV-2 3D comparative modelling analyses lead to predict interactions with spike
protein S and human ACE2 and to design neutralizing antibodies for blocking this binding
as a new therapeutic strategy [46,47].

Besides its antiviral activity, methylene blue is reduced into leukomethylene blue
which reduces the methemoglobin to hemoglobin. Methylene blue could reduce hy-
poxia, one of the main complications in COVID-19 patients, by decreasing methemoglobin.
Moreover, methylene blue decreases inflammation and oxidative stress [48,49]. Pro-
inflammatory cytokines and nitric oxide were considerably increased in the cytokine
storm due to COVID-19 [50].

These results support additional in vivo studies in animal experimental models to
confirm methylene blue anti-SARS-CoV-2 activity. The probable use of methylene blue
to treat COVID-19 needs to be established by prospective comparative clinical studies.
Methylene blue has been assessed in combination with vitamin C and N-acetyl cysteine in
severe COVID-19 [51,52]. The addition of methylene blue to standard of care treatment
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significantly improved respiratory distress, hospital stay and mortality rate in severe
patients with confirmed COVID-19 [53].

5. Conclusions

Methylene blue, an FDA-approved drug for methemoglobinemia treatment, showed
potent in vitro anti-SARS-CoV-2 at micromolar range and potentiation in combination with
antimalarial drugs, including quinine, mefloquine or pyronaridine. Methylene blue acted
at both entry and post-entry (replication) of SARS-CoV-2 in Vero E6 cells. Methylene blue
needs additional in vivo evaluation in animal models and then in human to confirm its
antiviral effects.
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