
Citation: Qu, Y.; Lee, J.J.-W.; Zhuo, Y.;

Liu, S.; Thomas, R.L.; Owens, D.R.;

Zee, B.C.-Y. Risk Assessment of CHD

Using Retinal Images with Machine

Learning Approaches for People with

Cardiometabolic Disorders. J. Clin.

Med. 2022, 11, 2687. https://doi.org/

10.3390/jcm11102687

Academic Editors: Zeljko Reiner and

Nandu Goswami

Received: 15 April 2022

Accepted: 6 May 2022

Published: 10 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Risk Assessment of CHD Using Retinal Images with Machine
Learning Approaches for People with Cardiometabolic Disorders
Yimin Qu 1,†,‡ , Jack Jock-Wai Lee 1,†, Yuanyuan Zhuo 2 , Shukai Liu 3, Rebecca L. Thomas 4 , David R. Owens 4

and Benny Chung-Ying Zee 1,5,*

1 Division of Biostatistics, The Jockey Club School of Public Health and Primary Care, Faculty of Medicine,
The Chinese University of Hong Kong, Hong Kong SAR, China; 1155101052@link.cuhk.edu.hk (Y.Q.);
jack@cuhk.edu.hk (J.J.-W.L.)

2 Department of Acupuncture and Moxibustion, Shenzhen Traditional Chinese Medicine Hospital,
Shenzhen 518005, China; qinyuan64@163.com

3 Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital,
Shenzhen 518005, China; lsk23456@163.com

4 Diabetes Research Group, Swansea University, Swansea SA2 8PP, UK; r.l.thomas@swansea.ac.uk (R.L.T.);
owensdr@cardiff.ac.uk (D.R.O.)

5 Clinical Trials and Biostatistics Lab, CUHK Shenzhen Research Institute, Shenzhen 518057, China
* Correspondence: bzee@cuhk.edu.hk
† These authors contributed equally to this work.
‡ Current address: School of Population Medicine and Public Health, Chinese Academy of Medical Sciences &

Peking Union Medical College, Beijing 100730, China.

Abstract: Background: Coronary heart disease (CHD) is the leading cause of death worldwide,
constituting a growing health and social burden. People with cardiometabolic disorders are more
likely to develop CHD. Retinal image analysis is a novel and noninvasive method to assess microvas-
cular function. We aim to investigate whether retinal images can be used for CHD risk estimation
for people with cardiometabolic disorders. Methods: We have conducted a case–control study at
Shenzhen Traditional Chinese Medicine Hospital, where 188 CHD patients and 128 controls with car-
diometabolic disorders were recruited. Retinal images were captured within two weeks of admission.
The retinal characteristics were estimated by the automatic retinal imaging analysis (ARIA) algorithm.
Risk estimation models were established for CHD patients using machine learning approaches.
We divided CHD patients into a diabetes group and a non-diabetes group for sensitivity analysis.
A ten-fold cross-validation method was used to validate the results. Results: The sensitivity and
specificity were 81.3% and 88.3%, respectively, with an accuracy of 85.4% for CHD risk estimation.
The risk estimation model for CHD with diabetes performed better than the model for CHD without
diabetes. Conclusions: The ARIA algorithm can be used as a risk assessment tool for CHD for people
with cardiometabolic disorders.

Keywords: coronary heart disease; retinal images; machine learning; cardiometabolic disorders

1. Introduction

Globally, coronary heart disease (CHD) is the leading cause of death and affected
110 million people and accounted for 8.9 million deaths in 2015 [1]. Coronary heart disease
caused approximately one third of all deaths in persons older than 35 years of age [2].
The prevalence and mortality of CHD vary according to risk factors among countries and
regions and change markedly over time. Although CHD prevalence has been decreasing in
many developed countries, the overall disease burden is still increasing, especially in low-
and middle-income countries, due to rapid socioeconomic development and aging [3–9].
Approximately three fourths of the global mortality and 82% of the global disability-
adjusted life years (DALYs) of CHD occurred in low- and middle-income countries [10].
China has undergone a rapid health transition in recent decades, with rapid economic
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growth and social change [11]. A crude prevalence of 4.42% was reported in rural China in
2019 [12]. The global burden of disease 2015 study showed that the age-standardized CHD
mortality rate increased by 13.3% from 1990 to 2015 in China [13]. The mortality rate was
113.46 per 100,000 for Chinese urban residents and 118.74 per 100,000 for rural residents
according to the “China Health and Family Planning Statistical Yearbook 2017” [14]. A
study predicted a 69% increase in CHD events and a 64% increase in CHD-related deaths
during 2020–2029 compared to 2000–2009 [15]. Among the CHD patients who died within
one month after the onset of symptoms, approximately two thirds died before they reached
a hospital after suffering a CHD event [16].

Cardiometabolic disorders, including hypertension, type 2 diabetes, overweightness
or obesity, and dyslipidemia, are documented preclinical factors associated with cardio-
vascular diseases [17–19]. People suffering from cardiometabolic disorders are at higher
risk of developing CHD in the future than the general population [20–26]. Therefore, risk
assessment of CHD among these patients has more clinical significance.

The tools used for the diagnostic assessment of CHD, such as coronary angiography
and computed tomography (CT), are reliable and well established. Sophisticated imaging
modalities can determine the presence and severity of the diseases with a high degree of
sensitivity and specificity. However, these diagnostic tools are technically challenging and
expensive to operate, and thus unsuitable as a screening tool in the general population,
especially in rural areas. Thus, feasible and cost-efficient tests must be developed to enable
the diagnostic identification of individuals with a high risk of CHD.

Many risk equations have been developed in recent years to predict the risk of CHD in
the general population, such as those described in the Framingham Study, the Atherosclero-
sis Risk in Communities (ARIC) Study, the Prospective Cardiovascular Münster (PROCAM)
Study, the CUORE cohort, and the Taiwan cohort study [27–34]. Risk equations for dia-
betes patients were also established, such as the Cardiac Risk Calculator from the UKPDS
study [35]. These risk equations included similar clinical characteristics which substantially
vary in disease risk. However, a proportion of disease morbidity and mortality cannot
be explained by these risk factors [36–39]. Additionally, these models’ practice value in
primary care settings is limited since they require information from questionnaires, inva-
sive blood tests, and physical examinations [28–31,40]. Moreover, it is more challenging to
develop risk estimation models for people with cardiometabolic disorders since risk factors
used in traditional risk equations such as blood pressure, blood glucose, and blood lipid
levels were also abnormal for these people.

Thus, there is a pressing need for new, convenient, and inexpensive risk factors for
CHD assessment and prevention for people with cardiometabolic disorders. We noted that
retinal vessels are the only directly visible vessels in the body and microvascular retinopathy
features are associated with coronary artery abnormalities [41–43]. Retinal vascular changes
are a summary marker of a patient’s lifetime exposure to risk factors and can reflect
cumulative vascular damage [44]. Furthermore, many studies found retinal changes
associated with CHD and CHD mortality [45–51]. The analysis of retinal characteristics
may provide a supplementary way for risk estimation of CHD.

2. Materials and Methods
2.1. Study Subjects

This cross-sectional study was conducted in the Cardiology Department of Shenzhen
Traditional Chinese Medicine Hospital from December 2017 to September 2019. The Shen-
zhen Traditional Chinese Medicine Hospital Ethics Committee (Ref. No.: K2019-005-01)
and the Joint Chinese University of Hong Kong—New Territories East Cluster Clinical
Research Ethics Committee (Ref. No.: 2020.093) approved the study. Informed consent
was obtained from each participant. The inclusion criteria used in the study included
good health status and ability to sit on a chair for taking a retinal image, diagnosis with a
cardiometabolic disorder, and having a clear disease diagnosis. Subjects with cataracts or
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other eye diseases that affected retinal imaging required close clinical monitoring or who
were unable or unwilling to comply with disease examination were excluded.

Baseline demographic and medical information was collected from participants’ hos-
pital medical records. The nurses measured height and weight and calculated body mass
index (BMI; calculated as weight in kilograms divided by height in meters squared)
for each participant. Diabetes mellitus (DM) was defined as a fasting blood glucose
concentration > 7.0 mmol/L or an HbA1c value > 6.5%; patients with a history of dia-
betes were also labelled as having DM. Hypertension was defined as a systolic blood
pressure ≥ 140 mmHg, diastolic blood pressure ≥ 90 mmHg, or a patient with a history of
hypertension. Dyslipidemia was defined as total cholesterol (TC) ≥ 240 mg/L, triglyceride
(TG) ≥ 200 mg/dL, high-density lipoprotein cholesterol (HDL-C) < 40 mg/dL, low-density
lipoprotein cholesterol (LDL-C) ≥ 160 mg/dL, or a patient with a history of dyslipidemia.
Obese status was defined as a BMI of 28 or higher, overweight status as a BMI of 24.0 to
28, and normal weight (including underweight) status as a BMI of less than 24.0. Car-
diometabolic disorders, including hypertension, diabetes, dyslipidemia, and overweight
or obese status, were measured based on the hospital clinical protocol. Patients with at
least one of these conditions were recruited. CHD was diagnosed according to standard
recommendations from international guidelines [52–54]. Patients were initially suspected
of CHD based on their symptoms and electrocardiogram results. Coronary computed
tomography or coronary angiography were performed for accurate diagnosis in accordance
with clinical practice guidelines. The presence of 50% diameter stenosis of any coronary a
with a diameter ≥ 2.0mm has been used as the threshold value for diagnosis.

Three hundred sixteen subjects were included in this study: 188 CHD patients and
128 control with cardiometabolic disorders.

2.2. Retinal Imaging Acquisition and Analysis

Retinal images of both eyes were taken within two weeks from the hospital admission
using a non-mydriatic fundus camera (Canon CR2). Each participant obtained one retinal
image centered at the fovea of each eye. The spatial resolution of each retinal image was
3648 by 2432 pixels, and the images were stored without compression before analysis.

A fully automatic retinal image analysis for CHD risk (ARIA-CHD) was developed
using R (version 3.6.0, R Foundation for Statistical Computing, Vienna, Austria) and
Matlab (Version 2020a, The Math Works, Inc., Natick, MA, USA) computer software to
estimate retinal microvascular characteristics and incorporate machine learning techniques
to estimate an overall risk of CHD. The detailed methods of the automatic retinal imaging
analysis method have been reported [55]. The methods include fractal analysis, high order
spectra analysis, and statistical texture analysis incorporating a machine learning approach.
The characteristics include retinal vessel measurements, arteriole–venous nicking, arteriole
occlusion, hemorrhage, exudates, tortuosity, bifurcation coefficients (BC), asymmetry of
branches, bifurcation angles, and other machine-learning generated factors.

2.3. Statistical Analysis

For univariate analysis, independent t-test and chi-square test were used to evaluate if
the retinal and clinical variables were significantly different between the CHD and control
groups. Variables with a p-value of less than 0.05 were considered statistically significant.

For the classification analysis, we randomly selected 70% for the training of the
classification model. The other 30% were used for an internal validation process. We used
machine learning and deep learning techniques. We extracted the texture/fractal/spectrum-
related features (such as high order spectra and fractal dimensions) associated with CHD
by using the automatic retinal image analysis (ARIA) algorithm written in Matlab [44].
We then used the glmnet approach to select the most important subset of features based
on the penalized maximum likelihood using R and Matlab [55]. Finally, we translated
the features extracted from the machine learning approaches to commonly used retinal
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characteristics measured from the images using ImageJ to gain further insights. We have
previously applied this method and validated results in different disease cohorts [56–58].

For the validation, we applied a 10-fold cross-validation method using the Support
Vector Machine (SVM) algorithm to test the datasets that have not been used in the model’s
training [59,60]. This is done by partitioning the dataset and using 90% of the data to train
the algorithm and the remaining 10% of data for testing. Because cross-validation does not
use all of the data to build a model, it is a commonly used method to prevent overfitting
during training.

2.4. Sample Size Estimation

To obtain sensitivity and specificity values of 0.85 or higher with a lower bound of
the 95% confidence intervals of at least 0.7, we require more than 50 subjects to estimate
sensitivity and specificity for each subgroup [61,62].

3. Results

The univariate analysis showed that many characteristics were significantly different
between the CHD patients and the control group (Table 1). The CHD group are older and
has a higher rate of female participants than the cardiometabolic disorders group (p < 0.001).
In addition, the percentage of patients with hypertension, diabetes, and dyslipidemia was
higher in the CHD group than in the control group (p < 0.005).

Table 1. Patient characteristics between coronary heart disease (CHD) and cardiometabolic disorders.

Basic Characteristics Control
n = 128

CHD
n = 188 p

Age (years) 52.13 ± 11.78 63.89 ± 11.40 <0.001
Sex n, (%) <0.001

Male 42(32.81%) 103(55.79%)
Female 86(67.19%) 85(45.21%)

Smoking n, (%) 0.891
No 115(89.84%) 168(89.36%)
Yes 13(10.16%) 20(10.64%)

Drinking n, (%) 0.100
No 114(89.06%) 177(94.15%)
Yes 14(10.94%) 11(5.85%)

BMI group 0.200
<24 70(54.69%) 89(47.34%)
≥24 58(45.31%) 99(52.66%)

Diabetes n, (%) <0.001
No 97(75.78%) 95(50.53%)
Yes 31(24.22%) 93(49.47%)

HbA1c (%) 6.25 ± 1.41 6.66 ± 1.26 0.019
Fasting glucose (mmol/L) 5.16 ± 2.16 5.63 ± 1.95 0.050

Hypertension n, (%) <0.001
No 49(38.28%) 34(18.09%)
Yes 79(61.72%) 154(81.91%)

SBP (mmHg) 135.39 ± 22.05 133.87 ± 20.26 0.529
DBP (mmHg) 85.53 ± 14.39 80.64 ± 13.47 0.002

Dyslipidemia n, (%) 0.043
No 50(39.06%) 53(28.19%)
Yes 78(60.94%) 135(71.81%)

TG (mmol/L) 1.85 ± 1.34 1.90 ± 1.90 0.791
TC (mmol/L) 4.56 ± 0.98 4.32 ± 1.29 0.076

HDL-C (mmol/L) 1.20 ± 0.33 1.13 ± 0.31 0.073
LDL-C (mmol/L) 2.85 ± 0.90 2.67 ± 1.10 0.119

The univariate analysis also revealed differences in many retinal characteristics be-
tween the CHD patients and people with cardiometabolic disorders (Table 2). We found
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significantly more tortuosity (p = 0.020 for average tortuosity, p = 0.013 for arteriole tortuos-
ity, p < 0.001 for venule tortuosity, respectively), more exudates (p = 0.001 for left eyes), and
more arteriole occlusion (p = 0.032 for left eyes) in the CHD group. While the central retinal
artery equivalent (CRAE, p = 0.028 for right eyes), central retinal vein equivalent (CRVE,
p = 0.002 for left eyes), mean bifurcation coefficient of venules (MBCV, p = 0.014 for left
eyes), mean asymmetry index of arterioles (MAasymmetry, p < 0.001 for left eyes), the mean
asymmetry index of venules (MVasymmetry, p = 0.008 for left eyes), and mean bifurcation
angles of arterioles (MAangle, p = 0.007 for right eyes) were smaller in the CHD group.

Table 2. Comparison of retinal characteristics between CHD and Control.

Retinal Characteristics Control
n = 128

CHD
n = 188 p

lCRVE 18.34 ± 0.36 18.21 ± 0.38 0.002
lMBCV 1.21 ± 0.03 1.20 ± 0.03 0.014

lMAasymmetry 0.85 ± 0.01 0.85 ± 0.01 <0.001
lMVasymmetry 0.75 ± 0.01 0.74 ± 0.01 0.008

lAocclusion 0.13 ± 0.08 0.16 ± 0.09 0.032
lExudates 0.23 ± 0.07 0.26 ± 0.08 0.001

lTortuosity_av 0.20 ± 0.07 0.22 ± 0.08 0.020
lTortuosity_a 0.14 ± 0.06 0.16 ± 0.07 0.013
lTortuosity_v 0.15 ± 0.06 0.18 ± 0.08 <0.001

rCRAE 11.17 ± 0.26 11.10 ± 0.25 0.028
rMBCV 1.20 ± 0.02 1.20 ± 0.02 0.015

rMAangle 76.76 ± 1.44 76.32 ± 1.44 0.007

After the univariate analysis, we randomly selected 70%—132 CHD and 90 controls—for
training the classification model. The remaining 30%—56 CHD and 38 control—were used
for internal validation. The results of this classification model are our primary analysis.
Thirty-three controls (86.8%) and 52 CHD patients (92.9%) were correctly classified in the
internal validation set. The ROC curve was displayed in Figure 1, with an AUC of 0.96.
The overall accuracy was 90.4% (Figure 2).
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We further divided CHD patients into diabetes and non-diabetes groups for subgroup
analysis. The same training and testing procedures were conducted for the two subgroup
analyses. The results showed that for classification between CHD without diabetes and
control, the model had a sensitivity of 84.6% and a specificity of 89.5%, with an overall
accuracy of 87.5%. For classification between CHD with diabetes and control, the model
had a sensitivity of 90.0% and a specificity of 94.7%, with an overall accuracy of 92.6%
(Figure 3).
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To avoid overfitting and test the robustness of the models, we performed a 10-fold
cross-validation analysis by using an SVM algorithm for testing datasets that were not used
in the training of the model. This was performed by 10-fold partitioning the dataset and
repeating the training and testing ten times. Each analysis used a subset of 90% of the data
to train the algorithm and the remaining 10% for testing. This process was repeated ten
times until all ten folds of the data were tested. We then calculated the overall sensitivity
and specificity for the cross-validation analysis based on all ten independent analyses. The
sensitivity and specificity results from the cross-validation analysis were 88.3% and 81.3%,
respectively, for the overall CHD model; 90.6% and 84.1%, respectively, for CHD with
diabetes; 89.1% and 89.0%, respectively, for CHD without diabetes.

4. Discussion

WHO has recommended cost-effective interventions that can be applied in low-
resource settings to prevent CHD. The population-level prevention strategies include
comprehensive tobacco control; reducing intake of foods high in fat, sugar, and salt; en-
couraging physical activity; reducing alcohol consumption; and promoting healthy diet
habits. Individual-level prevention requires targeting people at high risk. These diseases
can be prevented by addressing the above behavioral risk factors to target the high-risk
population. Thus, early screening with appropriate tools is urgently needed.

The relationship between retinal images and cardiovascular diseases has been studied
previously. Many retinal characteristics are associated with CHD risk factors, disease
presence, and prognosis. For instance, retinal vessel atherosclerosis was correlated strongly
with the risk factors and severity of CHD, and retinal arteriolar endothelial dysfunction
predicts major adverse cardiovascular events in patients with CHD or cardiovascular risk
factors [63–65]. Automatic retinal vessel analysis may provide added benefit to traditional
risk factors in stratifying patients at risk for CHD.

Retinal vessel calibers are the most studied retinal characteristics. The association
of CRAE, CRVE, and CHD have been reported previously, though the results were not
consistent [66–68]. Our result showed that CHD patients had smaller CRAE and CRVE
than the control group. Retinal vascular tortuosity quantifies the frequency with which
a vessel crosses a low dimensional spline [69]. The tortuosity of vessels constitutes a
physiological mechanism that increases metabolic tissue input [70]. Several studies have
reported positive associations between retinal vessel tortuosity and cyanotic CHD, intracra-
nial artery atherosclerosis, diabetes, and cerebrovascular events. However, one research
study reported a negative association with ischemic heart disease death [68,71–74]. Our
study result demonstrated a positive association between retinal vessel tortuosity and CHD.
For retinal fractal dimension characteristics, we found a negative association of MAangle,
MAasymmetry, and MVasymmetry with CHD. Similar associations have been found with
cerebrovascular events and stroke previously [74]. We have also found larger occlusion
and more exudates in the CHD group than the control group in this study, consistent with
previous studies [75–77].

Our study shows that retinal images can be used as a risk assessment tool for CHD in
people with cardiometabolic disorders. The sensitivity and specificity for the classification
model were 92.9% and 86.8%, respectively. After dividing CHD patients into diabetes
and non-diabetes groups, the model performed even better in the diabetes subgroup. The
results of cross-validation were also robust.

Recently, one study using data from South Korea, Singapore, and the UK has shown
that a deep learning retinal coronary artery calcium (CAC) score is comparable to CT-scan-
measured CAC in predicting cardiovascular events [78]. Another study has established a
risk assessment model using fundus photographs for a 10-year risk assessment of ischemic
cardiovascular diseases in China, which proved the utility of retinal images as a risk
assessment tool in the general population [79]. Compared with these studies, we chose
people with cardiometabolic disorders as the control group since they are at higher risk of
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developing cardiovascular diseases. Though these people were more difficult to classify
from CHD patients, the performance of our model was just as good, if not better.

However, there were several limitations to this research. First, although the retinal im-
ages were captured prospectively, this is still a retrospective study since CHD patients may
have their disease developed when admitted to the hospital. Second, all the participants in
this study were patients from the Shenzhen Traditional Chinese Medicine Hospital, and no
community controls were recruited. Thus, we cannot eliminate potential case-selection bias
in this research. Third, we did not have a separate and large enough data set for model
testing for further external validation.

For the future direction of the study, we aim to explore the ability of automatically
calculated retinal images to prospectively evaluate the risk of CHD by incorporating
retinal images captured in prospective community-based cohorts. Population with car-
diometabolic disorders can have regular retinal image acquisition and automated analysis,
and subjects with a high burden of developing CHD can undergo further evaluation.
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