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Abstract: The accurate assessment of left ventricular systolic function is crucial in the diagnosis and
treatment of cardiovascular diseases. Left ventricular ejection fraction (LVEF) and global longitudinal
strain (GLS) are the most critical indexes of cardiac systolic function. Echocardiography has become
the mainstay of cardiac imaging for measuring LVEF and GLS because it is non-invasive, radiation-
free, and allows for bedside operation and real-time processing. However, the human assessment
of cardiac function depends on the sonographer’s experience, and despite their years of training,
inter-observer variability exists. In addition, GLS requires post-processing, which is time consuming
and shows variability across different devices. Researchers have turned to artificial intelligence (AI)
to address these challenges. The powerful learning capabilities of AI enable feature extraction, which
helps to achieve accurate identification of cardiac structures and reliable estimation of the ventricular
volume and myocardial motion. Hence, the automatic output of systolic function indexes can be
achieved based on echocardiographic images. This review attempts to thoroughly explain the latest
progress of AI in assessing left ventricular systolic function and differential diagnosis of heart diseases
by echocardiography and discusses the challenges and promises of this new field.

Keywords: echocardiography; artificial intelligence; left ventricular systolic function; machine
learning; deep learning

1. Left Ventricular Systolic Function Assessment in Clinical Practice

Left ventricular systolic dysfunction is a common disorder mainly caused by myocardi-
tis, cardiomyopathy, and ischemic heart diseases [1,2]. It gives rise to fatigue, dyspnea, or
even death from heart failure [1,2]. Accurate assessment of left ventricular systolic function
is crucial for the diagnosis, treatment, and prognosis of cardiovascular diseases.

Currently, parameters such as LVEF, GLS, and peak systolic velocity of the mitral
annulus (S’) are used to evaluate left ventricular systolic function in clinical practice [1–5].
Echocardiography has become the mainstay of cardiac imaging in measuring LVEF and
GLS as it is non-invasive, radiation-free, and easy to obtain. Although echocardiography
plays a vital role in the dynamic treatment and follow-up of cardiovascular diseases, there
remain some limitations such as dependence on experience, intra-observer variability,
and inter-observer variability. Recently, AI has shown increasing promise in medicine to
overcome these challenges.
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2. AI’s Application in Left Ventricular Systolic Function Assessment
2.1. Key Concepts in AI

Medical imaging has great significance in the diagnosis, treatment, and prognosis of
diseases with the characteristics of a large amount of data and rich information of lesions.
However, humans have a limited ability to interpret high-dimensional image features. As
an effective tool, AI assists experts in analyzing medical imaging data, which can improve
the accuracy and repeatability of complex and multi-dimensional data analysis [6,7].

AI is a field of computer science in which algorithms are used to perform human-
intelligence tasks, and it is an emerging interdisciplinary field covering computers, psy-
chology, and philosophy [8]. Machine learning (ML) is a subset of AI, and deep learning
(DL) is an essential branch of ML [8] (Figure 1). ML uses statistical algorithms such as the
random forest (RF) and support vector machine (SVM) algorithms to quickly, accurately,
and efficiently analyze complex clinical data based on feature engineering. They establish
decision-aided models for cardiovascular diseases with high efficiency and good model
interpretability. However, machine learning requires human-designed feature extraction,
which is time consuming. DL realizes automatic feature extraction and plays a vital role in
analyzing large and complex samples, but its interpretability still needs improvement [8,9].
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Figure 1. Logical diagram of AI, ML, and DL and the main characteristics of ML and DL. (AI: artificial
intelligence; ML: machine learning; DL: deep learning).

2.2. AI in Echocardiography

Currently, the research on AI’s application in echocardiography is proliferating. The
series of studies follow a standard paradigm divided into four stages: data collection,
preprocessing, model development, and model testing [10] (Figure 2).

AI extracts features of ultrasound images to recognize standard views, segment cardiac
structures, assess cardiac function, identify disease phenotypes, and analyze the prognosis
combined with multi-dimensional parameters [7,11] (Figure 3).

View classification is the first step in real-time quantitative and post-processing cardiac
structures and function analysis. Echocardiography consists of multimodal images, such
as M-mode still images, two-dimensional gray-scale videos, and Doppler recordings [3].
Different modes contain multiple standard views [3]. Due to the between-subject variability
and different imaging parameters, there are differences in the same standard view [3]. In
addition, multiple standard views contain similar cardiac motion information (such as
valvular motion and ventricular wall motion), increasing the challenge of view classifica-
tion [3]. Several studies have confirmed the feasibility and accuracy of AI in analyzing
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echocardiography and classifying standard views [12–15]. AI algorithms represented by a
convolutional neural network (CNN) can extract multi-scale features of ultrasonic images,
improve the accuracy of view classification, and simplify the process of image processing.
However, how to efficiently classify multimodal ultrasound images requires further studied
for the high frame rate of echocardiography, small pixel changes between images, and
information redundancy.

J. Clin. Med. 2022, 11, x FOR PEER REVIEW 2 of 12 
 

 

2. AI’s Application in Left Ventricular Systolic Function Assessment 
2.1. Key Concepts in AI 

Medical imaging has great significance in the diagnosis, treatment, and prognosis of 
diseases with the characteristics of a large amount of data and rich information of lesions. 
However, humans have a limited ability to interpret high-dimensional image features. As 
an effective tool, AI assists experts in analyzing medical imaging data, which can improve 
the accuracy and repeatability of complex and multi-dimensional data analysis [6,7]. 

AI is a field of computer science in which algorithms are used to perform human-
intelligence tasks, and it is an emerging interdisciplinary field covering computers, psy-
chology, and philosophy [8]. Machine learning (ML) is a subset of AI, and deep learning 
(DL) is an essential branch of ML [8] (Figure 1). ML uses statistical algorithms such as the 
random forest (RF) and support vector machine (SVM) algorithms to quickly, accurately, 
and efficiently analyze complex clinical data based on feature engineering. They establish 
decision-aided models for cardiovascular diseases with high efficiency and good model 
interpretability. However, machine learning requires human-designed feature extraction, 
which is time consuming. DL realizes automatic feature extraction and plays a vital role 
in analyzing large and complex samples, but its interpretability still needs improvement 
[8,9]. 

 
Figure 1. Logical diagram of AI, ML, and DL and the main characteristics of ML and DL. (AI: artifi-
cial intelligence; ML: machine learning; DL: deep learning). 

2.2. AI in Echocardiography 
Currently, the research on AI’s application in echocardiography is proliferating. The 

series of studies follow a standard paradigm divided into four stages: data collection, pre-
processing, model development, and model testing [10] (Figure 2). 

 
Figure 2. The workflow of studies on AI in echocardiography, including four main steps: (1) clinical 
problem-oriented data collection; (2) data preprocessing operations based on task characteristics 
(classification tasks require explicit sample labels; segmentation tasks require the marking of regions 
of interest) and data splitting (training, validation, and testing datasets are mutually independent); 
(3) based on the type of tasks (regression, classification, or clustering), appropriate AI algorithms 

Figure 2. The workflow of studies on AI in echocardiography, including four main steps: (1) clinical
problem-oriented data collection; (2) data preprocessing operations based on task characteristics
(classification tasks require explicit sample labels; segmentation tasks require the marking of regions
of interest) and data splitting (training, validation, and testing datasets are mutually independent);
(3) based on the type of tasks (regression, classification, or clustering), appropriate AI algorithms
are selected for model development on the training datasets, and the performance of the model is
validated on the validation datasets; (4) the reliability and generalization of the model are tested on
the internal and external independent testing datasets.

In terms of medical image processing, cardiac segmentation is the key to accurately
assessing cardiac structures and function. Due to the complexity of heart movement and
anatomic structures, edge blur, low signal-to-noise ratios, and small cardiac target regions,
accurate heart segmentation based on echocardiography has always been an extremely
challenging task [16]. AI algorithms are valuable for mining high-dimensional information
that is not perceivable by the naked eye and for maximizing the extraction of image
features. By integrating the spatial and temporal information, AI can identify critical
cardiac anatomical structures, improve the accuracy of cardiac segmentation, and lay a
solid foundation for the assessment of cardiac function [16–18].

Human assessment of cardiac function depends on the sonographer’s experience,
and inter-observer and intra-observer variability exist [19]. Based on AI algorithms, fully
automatic, comprehensive analyses of cardiac function can be achieved. Additionally, they
also improve the accuracy and repeatability of image interpretation, simplify the diagnosis
and treatment process, and reduce the time and labor costs, which have significant clinical
value [19–22].

Disease diagnosis, differential diagnosis, and prognosis analysis usually require the
integration of multi-dimensional imaging parameters and clinical information to build
disease decision models. The traditional statistic methods require a priori knowledge by
clinicians, and the prediction effect is poor when dealing with extensive sample data [23].
AI performs well in analyzing high-dimensional and complex data with strong feature
extraction ability. It has significant advantages over clinicians in analyzing complex clinical
information and realizing personalized risk stratification [23–27].
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Figure 3. Overview diagram of AI’s application in echocardiography. Current applications focus
on view classification and image quality control (classification), cardiac phase detection and cardiac
function assessment (regression), and disease diagnosis and prognosis analysis (clustering). Main-
stream AI algorithms consist of the convolutional neural network (CNN), recurrent neural network
(RNN), transformer, and traditional machine learning algorithms (RF and SVM).

With the continuous development of ultrasound imaging and computer technology,
the application of AI in the quantitative assessment of heart structures and function is
shifting from single-frame images and two-dimensional video to three-dimensional images,
from ML to DL, and from single-tasking to multitasking. The emergence of the latest AI
algorithms has injected new vitality into quantifying cardiac function in echocardiography.
These algorithms are expected to help achieve automatic full-stack analysis in echocar-
diography and improve the accuracy and reproducibility of cardiac function assessments.
However, AI’s application in echocardiography is in its initial stage, and the current hot
spot still focuses on automatic left ventricular systolic function assessment. This paper
reviews the current studies on AI-enhanced echocardiography in evaluating left ventricular
systolic function.

3. AI’s Application in Left Ventricular Systolic Function—LVEF

LVEF is one of the most critical indexes of cardiac systolic function. However, human
assessment of cardiac function has inter-observer variability despite the sonographer’s
years of training. Therefore, researchers have been working on a fully automated method
of assessing LVEF (Table 1).
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3.1. Cardiac Segmentation

Accurate segmentation of the left ventricle is the basis for estimating LVEF. In 2019,
Leclerc S. et al. [16] made a large publicly available dataset called Cardiac Acquisitions for
Multi-Structure Ultrasound Segmentation (CAMUS). It contained two- and four-chamber
views of 500 patients with expert annotations. Multiple algorithms were adopted to seg-
ment structures such as the left ventricular endocardium, myocardium, and left atrium
based on the dataset. Then they measured end-diastolic and end-systolic volumes and
LVEF using Simpson’s biplane method. The results showed that the optimized AI model
performed better than the other algorithms in segmenting the left ventricle. The automatic
measurements of the left ventricular volumes and LVEF were consistent with expert assess-
ments. In the same year, Smistad E. et al. [17] used the CAMUS dataset and an additional
dataset of 106 patients with apical long-axis views to construct a multi-view segmentation
network by transfer learning. It turned out that the network successfully segmented the left
ventricle and left atrium in apical long-axis views. Later, Leclerc S. et al. [18] proposed a
multistage attention network. Compared with the AI model mentioned above, this network
was optimized by adding a region proposal network to locate the left ventricle before
segmentation. The results showed that the network improved the accuracy and robustness
of left ventricle segmentation.

Previous studies have focused mainly on the segmentation of the cardiac cavity in a
single video frame. However, echocardiography provides rich information in the temporal
domain. Therefore, Wei H. et al. [28] designed a network called Co-Learning of Segmenta-
tion and Tracking on Appearance and Shape Level (CLAS). It provides segmentation of the
whole sequences with high temporal consistency and an accurate assessment of LVEF.

3.2. Automatic Assessment of LVEF

Based on the image segmentation, researchers have devoted themselves to developing
fully automatic models to assess LVEF.

Ouyang et al. [19] presented a video-based AI model called EchoNet-Dynamic to
evaluate cardiac function. The study included apical four-chamber views of 10,030 patients
with annotations of only end-systole and end-diastole frames. They generalized these
labels with a weak supervision approach and developed an atrous convolution model
to generate frame-level semantic segmentation of the whole cardiac cycle. The weak
supervision approach could cut the cost of labeling considerably. The atrous convolution
model is able to integrate sufficient information into the temporal domain, provide frame-
level segmentation of the left ventricle, and draw a left ventricular volume curve with
multiple cardiac cycles to evaluate LVEF. The results showed that the EchoNet-Dynamic
segmented the left ventricle accurately with a Dice similarity coefficient greater than 0.9,
both at the end-systole and end-diastole levels, as well as across the cardiac cycle. The
researchers further analyzed the accuracy of LVEF assessment by external validation of
2895 patients. It was revealed that the automatic measurements were consistent with
the expert assessments and had good repeatability. In addition, the study discussed
a series of problems that clinicians might experience in clinical practice, including the
accuracy of model measurements of cardiac function in patients with arrhythmias and the
measurements of different video qualities, using different instruments, and under different
imaging conditions. The results showed that EchoNet-Dynamic was robust to variation in
heart rhythm and video acquisition conditions.

Asch F.M. et al. [20] developed a computer vision model that estimated LVEF by
simulating experts on a dataset of 50,000 studies. The results showed good correlation
and consistency between automatic measurements and human assessments. In addition,
Reynaud H. et al. [29] proposed a transformer model based on the self-attention mechanism,
which can analyze echocardiographic videos of any length, locate ED and ES precisely, and
assess LVEF accurately.

Zhang J. et al. [21] presented the first fully automated multitasking echocardiogram
interpretation system to simplify the clinical diagnosis and treatment. The model success-
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fully classified 23 views, segmented cardiac structures, assessed LVEF, and diagnosed three
diseases (hypertrophic cardiomyopathy, cardiac amyloid, and pulmonary arterial hyper-
tension). In 2022, Tromp J. et al. [30] developed a fully automated AI workflow to classify,
segment, and interpret two-dimensional and Doppler modalities based on international
and interracial datasets. The results showed that the algorithms successfully assessed LVEF
with the area under the receiver operating characteristic curve (AUC) of 0.90–0.92.

The above studies discussed the quantification of LVEF in regular medical imaging
practice. Nevertheless, Point-of-Care Ultrasonography (POCUS) is widely used in emer-
gency and severe cases. POCUS is the acquisition, interpretation, and immediate clinical
integration of ultrasound imaging performed by a clinician at the patient’s bedside rather
than by a radiologist or cardiologist [31]. POCUS enables direct interaction between pa-
tients and clinicians, contributing to accurate diagnoses and treatments. Moreover, POCUS
can provide timely diagnoses for emergency and critically ill patients as the ultrasonic
device is easy to carry and handle. However, one of the prerequisites for using POCUS is
that the clinician is competent in operating the device and interpreting the data obtained,
which requires standardized training. To overcome this challenge, researchers have turned
their attention to AI. In 2020, the FDA approved two products of Caption Health: Cap-
tion Guidance and Caption Interpretation. Caption guidance could successfully guide
novices without ultrasonographic experience to obtain diagnostic views after short-term
training [15]. Caption Interpretation was able to assist doctors in measuring LVEF automat-
ically [20]. Then, they combined Caption Guidance and Caption Interpretation to develop
a new AI algorithm setting in POCUS [32]. The algorithm allowed for image acquisition,
quality assessments, and fully automatic measurements of LVEF, which could assist doctors
in collecting and analyzing images accurately and quickly.

The above studies indicate that AI algorithms have essential clinical values: they
can improve the accuracy of LVEF assessment, simplify the workflow of diagnosis and
treatment, and reduce time and labor costs.

3.3. Disease Diagnosis

According to the 2021 ESC guidelines [1], heart failure is divided into three categories:
heart failure with reduced ejection fraction (LVEF ≤ 40%), heart failure with mildly re-
duced ejection fraction (LVEF 41~49%), and heart failure with preserved ejection fraction
(LVEF ≥ 50%). The three types of heart failure have different degrees of left ventricular
systolic and diastolic dysfunction. However, there is no sensitive prediction model based
on echocardiographic indicators to stage heart failure for patients with similar features
or to predict major adverse cardiac events. For this, Tokodi M. et al. [24] applied topo-
logical data analysis (TDA) to integrate echocardiographic parameters of left ventricular
structures and function into a patient similarity network. The TDA network can represent
geometric data structures according to the similarity between multiple echocardiographic
parameters, retain critical data features, and effectively capture topological information of
high-dimensional data. The results revealed that the TDA network successfully divided
patients into four regions based on nine echocardiographic parameters and performed well
in the dynamic evaluation of the disease course and the prediction of major adverse cardiac
events. Cardiac function gradually deteriorated from region one to region four.

It can be seen that AI algorithms perform well in mining the potential features of
echocardiographic data, and hence facilitate early and accurate diagnosis.
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Table 1. Studies of AI’s Application in Left Ventricular Systolic Function—LVEF.

Authors Year Task Model Dataset Results

Leclerc S. et al. [16] 2019 LV segmentation U-Net 500 subjects Accuracy in LV volumes
(MAE = 9.5 mL, r = 0.95).

Smistad E. et al. [17] 2019 LV segmentation U-Net 606 subjects Accuracy for LV segmentation
(DSC 0.776–0.786).

Leclerc S. et al. [18] 2020 LV segmentation LU-Net 500 subjects Accuracy in LV volumes
(MAE = 7.6 mL, r = 0.96).

Wei H. et al. [28] 2020 LV segmentation CLAS 500 subjects Accuracy for LVEF assessment
(r = 0.926, bias = 0.1%).

Reynaud H. et al. [29] 2021 LVEF assessment Transformer 10,030 subjects Accuracy for LVEF assessment
(MAE = 5.95%, R2 = 0.52).

Ouyang et al. [19] 2020 LVEF assessment EchoNet-Dynamic 10,030 subjects

Accuracy for LV segmentation
(DSC = 0.92), LVEF assessment
(MAE = 4.1%),
and HFpEF classification
(AUC 0.97).

Asch F.M. et al. [20] 2019 LVEF assessment CNN >50,000 studies

AutoEF values show agreement
with GT: r = 0.95, bias = 1.0%,
with sensitivity 0.90 and
specificity 0.92 for detection of
EF less than 35%.

Zhang J. et al. [21] 2018
LVEF assessment
GLS assessment

Disease detection
CNN 14,035 studies

Agreement with GT: for LVEF,
MAE = 9.7%;
for GLS, and MAE = 7.5% and
9.0% (within 2 cohorts).
Disease detection: HCM,
Amyloid, and PAH (AUC 0.93,
0.87, and 0.85).

Tromp J. et al. [30] 2022 LVEF assessment CNN 43,587 studies Accuracy for LVEF assessment
(MAE 6–10%).

Narang A. et al. [15] 2021 LVEF assessment Caption Guidance 240 subjects

LV size, function, and
pericardial effusion in 237 cases
(98.8%)
and RV size in 222 cases (92.5%)
are of diagnostic quality.

Asch F.M. et al. [32] 2021 LVEF assessment Caption Health

166 subjects
(Protocol 1)
67 subjects
(Protocol 2)

Protocol 1: agreement with GT:
ICC 0.86–0.95, bias < 2%.
Protocol 2: agreement with GT:
ICC = 0.84, bias 2.5 ± 6.4%.

Tokodi M. et al. [24] 2020 Disease detection
(HFpEF) TDA 1334 subjects

Region 4 relative to 1:
HR = 2.75, 95%CI 1.27–45.95,
p = 0.01.
Correlation of NYHA and
ACC/AHA stages with regions:
r = 0.56 and 0.67.

LVEF, left ventricular ejection fraction; LV, left ventricle; RV, right ventricle; MAE, mean absolute error; DSC, dice
similarity coefficient; CLAS, Co-Learning of Segmentation and Tracking on Appearance and Shape Level; AUC,
area under the receiver operating characteristic curve; CNN, convolutional neural network; GT, ground truth;
GLS, global longitudinal strain; HCM, hypertrophic cardiomyopathy; PAH, pulmonary arterial hypertension;
HFpEF, heart failure with preserved ejection fraction; HF, heart failure; ICC, intraclass correlation coefficient; TDA,
topological data analysis; HR, hazard ratio; CI, confidence interval; NYHA, New York Heart Association; ACC,
American College of Cardiology; AHA, American Heart Association.

4. AI’s Application in Left Ventricular Systolic Function—GLS

LVEF is one of the main indexes of cardiac systolic function. However, it is not sensitive
for the identification of early ventricular systolic dysfunction. The guidelines published
by the Heart Failure Association of the European Society of Cardiology (ESC) [33] pointed
out that GLS was superior to LVEF in the evaluation of subclinical ventricular systolic
dysfunction due to it being stable and repeatable. Therefore, the guidelines recommended
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using GLS to detect subclinical ventricular systolic dysfunction. The current challenge is
that GLS post-processing is time-consuming. Hence, researchers have turned to AI to meet
these challenges (Table 2).

4.1. Automatic Assessment of GLS

AutoStrain is an application integrated into the EPIQ CVx system that can measure
GLS automatically. A study [34] showed that AutoStrain was feasible in 99.5% of patients.
However, there was discordance between automated, semi-automated, and manual mea-
surements (automated vs. manual GLS: r = 0.685, bias = 0.99%; semi-automated vs. manual
GLS: r = 0.848, bias = −0.90%; automated vs. semi-automated GLS: r = 0.775, bias = 1.89%).
Approximately 40% of patients needed manual correction after automated assessments.
Therefore, it is necessary to strike a balance between the post-processing speed and accuracy
of assessment so that automatic software can be widely used in clinical practice and assist
doctors in evaluating patients’ myocardial motion quickly and accurately.

At present, automatic assessment is still based on speckle tracking echocardiogra-
phy. It tracks the deformation of local speckles between two consecutive frames, which
is easily affected by the signal-to-noise ratio of the images. Furthermore, post-processing
is time consuming. Therefore, researchers first proposed the optical flow estimation algo-
rithm based on CNN called EchoPWC-Net [22,35]. By calculating the displacement vector
changes of pixels in the region of interest in two consecutive frames, EchoPWC-Net quickly
and accurately estimated the myocardial motion and fully automatically assessed GLS.
Based on 200 cases of 2D echocardiography, the study compared EchoPWC-Net and the
commercial semi-automatic software (EchoPAC). The results showed that GLS assessed by
the two methods had a highly significant correlation (r = 0.93). First, compared with the
sparse speckles of speckle tracking echocardiography, the optical flow estimation algorithm
was able to calculate the dense optical flow field of myocardial motion and capture more
effective pixel information. Second, the optical flow estimation reduced the post-processing
time (single view < 5 s; the average of three views was 13 s), making it possible to measure
GLS in real time in the future. In addition, the optical flow algorithm for the fully auto-
mated measurement of GLS eliminated intra- and inter-observer variability and had good
repeatability. However, the robustness of the model for different image qualities needs to
be further evaluated.

Evain E. et al. [36] developed a new optical flow estimation algorithm based on
PWC-Net. The results showed that the algorithm accurately assessed GLS in the echocar-
diography sequences. There was a powerful correlation between automated and manual
GLS (r = 0.77). In addition, the study proposed a method to generate simulation datasets (in-
cluding artifacts or not) to simulate the diversity of datasets in the real world and improve
the robustness of the model.

It can be seen that AI algorithms help to improve the accuracy and real-time capability
of GLS measurement, thus assisting clinicians in evaluating left ventricular systolic function
comprehensively and accurately.

4.2. Disease Diagnosis

The strain parameters generated by the post-processing of echocardiography can
faithfully reflect myocardial systolic and diastolic deformation, which is helpful for the
early diagnosis and prognosis of cardiac dysfunction. However, these high-dimensional
data usually contain redundant information, which poses a challenge for data mining
and interpretation. Their clinical application is hampered by the lack of feature extraction
capability of traditional analysis methods, and hence cannot provide sufficient information
for clinicians to make clinical decisions quickly and accurately. This is where AI rises to the
occasion. AI has strong feature extraction capability and performs well in analyzing high-
dimensional and complex data. It is widely used in the differential diagnosis of diseases.

Narula S. et al. [25] developed an integrated model (SVM, RF, and ANN) with echocar-
diographic images of 77 patients with physiological myocardial hypertrophy and 62 pa-
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tients with hypertrophic cardiomyopathy. Combined with strain parameters, the model
successfully distinguished the physiological and pathological patterns of myocardial hyper-
trophy and identified hypertrophic cardiomyopathy with a sensitivity of 0.96 and specificity
of 0.77.

Sengupta P.P. et al. [26] conducted a study including 50 patients with constrictive
pericarditis, 44 patients with restrictive cardiomyopathy, and 47 controls. Based on the
strain parameters, they developed an associative memory classification algorithm and took
pathological results as the gold standard. The results showed that the algorithm effectively
distinguished constrictive pericarditis and restrictive cardiomyopathy (AUC 0.96).

Zhang J. et al. [27] conducted a study including 217 patients with coronary heart
disease and 207 controls. Based on two-dimensional speckle tracking echocardiographic
and clinical parameters, they integrated various classification methods by stacking learning
strategies to build a prediction model for coronary heart disease. The results showed that
the integrated model combined the advantages of multiple classification models. The
classification accuracy of coronary heart disease in the test set was 87.7%, the sensitivity
was 0.903, the specificity was 0.843, and the AUC was 0.904, which was significantly higher
than that of a single model.

Apart from directly using GLS data, researchers also explored disease phenotypes
based on strain curves. Loncaric F. et al. [37] conducted a study including 189 patients with
hypertension and 97 controls. Based on the strain curve and pulse Doppler velocity curve
of mitral and aortic valves, an unsupervised ML algorithm was developed to automatically
identify the patterns in the strain and velocity curves throughout cardiac cycles. The
algorithm successfully divided hypertension into four different functional phenotypes (P1,
healthy; P2, transitional; P3, functional remodeling in response to pressure overload; and
P4, related to a higher burden of comorbidities and differences in clinical management in
female patients). In addition, Yahav A. et al. [38] developed a fully automated ML algorithm
based on strain curves. The strain curve was successfully divided into physiological, non-
physiological, or uncertain categories with a classification accuracy of 86.4%.

AI performs well in mining nonlinear characteristic relationships hidden in data, but
the lack of interpretability limits its clinical application. Improving the interpretability of AI
algorithms and promoting the adaptation of AI-aided diagnosis systems to clinical practice
is essential for future research.

Table 2. Studies of AI’s Application in Left Ventricular Systolic Function—GLS.

Authors Year Task Models Dataset Results

Kawakami H. et al. [34] 2021 GLS assessment AutoStrain 561 subjects

Automated vs. manual GLS:
r = 0.685, bias = 0.99%.
Semi-automated vs. manual GLS:
r = 0.848, bias = −0.90%.
Automated vs. semi-automated
GLS: r = 0.775, bias = 1.89%.

Salte I.M. et al. [22] 2021 GLS assessment EchoPWC-Net 200 studies EchoPWC-Net vs. EchoPAC:
r = 0.93, MD 0.3 ± 0.3%.

Evain E. et al. [36] 2022 GLS assessment PWC-Net >60,000 images Automated vs. Manual GLS:
r = 0.77, MAE 2.5 ± 2.1%.

Narula S. et al. [25] 2016 Disease detection
(ATH vs. HCM)

Ensemble model
(SVM, RF, ANN)

77 ATH,
62 HCM patients Sensitivity 0.96; specificity 0.77.

Sengupta P.P. et al. [26] 2016 Disease detection
(CP vs. RCM) AMC

50 CP patients,
44 RCM patients,
and 47 controls

AUC 0.96.

Zhang J. et al. [27] 2021 Disease
detection(CHD)

Two-step
stacking

217 CHD
patients,

207 controls

Sensitivity 0.903; specificity 0.843;
AUC 0.904.

Loncaric F. et al. [37] 2021 Disease detection
(HT) ML 189 HT patients,

97 controls HT is divided into 4 phenotypes.
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Table 2. Cont.

Authors Year Task Models Dataset Results

Yahav A. et al. [38] 2020
Disease detection

(strain curve
classification)

ML 424 subjects

Strain curve is divided into
physiological, non-physiological,
and uncertain categories
(accuracy 86.4%).

Pournazari P. et al. [39] 2021
Prognosis
analysis

(COVID-19)
ML 724 subjects

BC (AUC 0.79). BC + Laboratory
data + Vital signs (AUC 0.86).
BC + Laboratory data + Vital
signs + Echos (AUC 0.92).

Przewlocka-Kosmala
M. et al. [40] 2019 Prognosis

analysis (HFpEF) Clustering

177 HFpEF
patients,

51 asymptomatic
controls

HFpEF is divided into 3
prognostic phenotypes.

GLS, global longitudinal strain; MD, mean difference; MAE, mean absolute error; ATH, athletes; HCM, hypertrophic
cardiomyopathy; SVM, support vector machine; RF, random forest; ANN, artificial neural networks; CP, constrictive
pericarditis; RCM, restrictive cardiomyopathy; AMC, associative memory classifier; AUC, area under the receiver
operating characteristic curve; CHD, coronary heart disease; HT, hypertension; ML, machine learning; HFpEF, heart
failure with preserved ejection fraction; BC, baseline characteristics; Echos, echocardiographic measurements.

5. Challenges and Future Directions

In recent years, AI-enhanced echocardiography has attracted extensive attention. How-
ever, it is in the initial stage of development and still faces many challenges. Firstly, the lack
of a large sample and pluralistic and standardized datasets hamper the integration of AI
into echocardiographic practice. Secondly, AI-related clinical research is scientifically ori-
ented, requiring every sonographer of the research team to identify and refine vital scientific
issues in daily clinical practice, which could be time consuming and infeasible. In addition,
traditional ML and DL algorithms have their respective merits and defects. The traditional
ML algorithms can be applied to small-sample datasets with certain interpretability, but
this does not guarantee exhaustive feature extraction. DL has unique advantages in the
data analysis of large samples, but the results lack interpretability, and the sample shortage
may lead to model overfitting and limited generalization ability. Therefore, combining
traditional ML and DL algorithms might improve the interpretability and sensitivity of in-
telligent medical prediction models, which is essential for solving critical clinical problems.
Additionally, the exploration and application of AI in multimodal imaging are bringing
new insights into modern medicine. We are expecting that, in the future, multimodality
information such as ultrasound imaging, magnetic resonance imaging, and clinical data
could be integrated into a one-stop AI diagnostic model, simplifying clinical diagnoses and
the treatment process and improving the detection rate of diseases.
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33. Čelutkienė, J.; Plymen, C.M.; Flachskampf, F.A.; de Boer, R.A.; Grapsa, J.; Manka, R.; Anderson, L.; Garbi, M.; Barberis, V.; Filardi,
P.P.; et al. Innovative imaging methods in heart failure: A shifting paradigm in cardiac assessment. Position statement on behalf of
the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018, 20, 1615–1633. [CrossRef] [PubMed]

34. Kawakami, H.; Wright, L.; Nolan, M.; Potter, E.L.; Yang, H.; Marwick, T.H. Feasibility, Reproducibility, and Clinical Implications
of the Novel Fully Automated Assessment for Global Longitudinal Strain. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr.
2021, 34, 136–145. [CrossRef]

35. Leeson, P.; Fletcher, A.J. Let AI Take the Strain. JACC. Cardiovasc. Imaging 2021, 14, 1929–1931. [CrossRef] [PubMed]
36. Evain, E.; Sun, Y.; Faraz, K.; Garcia, D.; Saloux, E.; Gerber, B.L.; De Craene, M.; Bernard, O. Motion estimation by deep learning in

2D echocardiography: Synthetic dataset and validation. IEEE Trans. Med. Imaging 2022. [CrossRef] [PubMed]
37. Loncaric, F.; Marti Castellote, P.-M.; Sanchez-Martinez, S.; Fabijanovic, D.; Nunno, L.; Mimbrero, M.; Sanchis, L.; Doltra, A.;

Montserrat, S.; Cikes, M.; et al. Automated Pattern Recognition in Whole-Cardiac Cycle Echocardiographic Data: Capturing
Functional Phenotypes with Machine Learning. J. Am. Soc. Echocardiogr. Off. Publ. Am. Soc. Echocardiogr. 2021, 34, 1170–1183.
[CrossRef]

38. Yahav, A.; Zurakhov, G.; Adler, O.; Adam, D. Strain Curve Classification Using Supervised Machine Learning Algorithm with
Physiologic Constraints. Ultrasound Med. Biol. 2020, 46, 2424–2438. [CrossRef] [PubMed]

39. Pournazari, P.; Spangler, A.L.; Ameer, F.; Hagan, K.K.; Tano, M.E.; Chamsi-Pasha, M.; Chebrolu, L.H.; Zoghbi, W.A.; Nasir, K.;
Nagueh, S.F. Cardiac involvement in hospitalized patients with COVID-19 and its incremental value in outcomes prediction. Sci.
Rep. 2021, 11, 19450. [CrossRef]

40. Przewlocka-Kosmala, M.; Marwick, T.H.; Dabrowski, A.; Kosmala, W. Contribution of Cardiovascular Reserve to Prognostic
Categories of Heart Failure With Preserved Ejection Fraction: A Classification Based on Machine Learning. J. Am. Soc. Echocardiogr.
Off. Publ. Am. Soc. Echocardiogr. 2019, 32, 604–615. [CrossRef]

http://doi.org/10.1016/j.jacc.2016.08.062
http://www.ncbi.nlm.nih.gov/pubmed/27884247
http://doi.org/10.1161/CIRCIMAGING.115.004330
http://www.ncbi.nlm.nih.gov/pubmed/27266599
http://doi.org/10.1186/s12911-021-01535-5
http://doi.org/10.1016/S2589-7500(21)00235-1
http://doi.org/10.1056/NEJMra1916062
http://doi.org/10.1161/CIRCIMAGING.120.012293
http://doi.org/10.1002/ejhf.1330
http://www.ncbi.nlm.nih.gov/pubmed/30411833
http://doi.org/10.1016/j.echo.2020.09.011
http://doi.org/10.1016/j.jcmg.2021.05.012
http://www.ncbi.nlm.nih.gov/pubmed/34147450
http://doi.org/10.1109/TMI.2022.3151606
http://www.ncbi.nlm.nih.gov/pubmed/35157582
http://doi.org/10.1016/j.echo.2021.06.014
http://doi.org/10.1016/j.ultrasmedbio.2020.03.002
http://www.ncbi.nlm.nih.gov/pubmed/32505614
http://doi.org/10.1038/s41598-021-98773-4
http://doi.org/10.1016/j.echo.2018.12.002

	Left Ventricular Systolic Function Assessment in Clinical Practice 
	AI’s Application in Left Ventricular Systolic Function Assessment 
	Key Concepts in AI 
	AI in Echocardiography 

	AI’s Application in Left Ventricular Systolic Function—LVEF 
	Cardiac Segmentation 
	Automatic Assessment of LVEF 
	Disease Diagnosis 

	AI’s Application in Left Ventricular Systolic Function—GLS 
	Automatic Assessment of GLS 
	Disease Diagnosis 

	Challenges and Future Directions 
	References

