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Abstract: Background: Trans-nasal evaporative cooling is an effective method to induce intra-arrest
therapeutic hypothermia in out-of-hospital cardiac arrest (OHCA). The use of supraglottic airway
devices (SGA) instead of endotracheal intubation may enable shorter time intervals to induce cooling.
We aimed to study the outcomes in OHCA patients receiving endotracheal intubation (ETI) or a
SGA during intra-arrest trans-nasal evaporative cooling. Methods: This is a pre-specified sub-study
of the PRINCESS trial (NCT01400373) that included witnessed OHCA patients randomized during
resuscitation to trans-nasal intra-arrest cooling vs. standard care followed by temperature control at
33 ◦C for 24 h. For this study, patients randomized to intra-arrest cooling were stratified according to
the use of ETI vs. SGA prior to the induction of cooling. SGA was placed by paramedics in the first-tier
ambulance or by physicians or anesthetic nurses in the second tier while ETI was performed only
after the arrival of the second tier. Propensity score matching was used to adjust for differences at the
baseline between the two groups. The primary outcome was survival with good neurological outcome,
defined as cerebral performance category (CPC) 1–2 at 90 days. Secondary outcomes included time to
place airway, overall survival at 90 days, survival with complete neurologic recovery (CPC 1) at 90 days
and sustained return of spontaneous circulation (ROSC). Results: Of the 343 patients randomized to
the intervention arm (median age 64 years, 24% were women), 328 received intra-arrest cooling and
had data on the airway method (n = 259 with ETI vs. n = 69 with SGA). Median time from the arrival of
the first-tier ambulance to successful airway management was 8 min for ETI performed by second tier
and 4 min for SGA performed by the first or second tier (p = 0.001). No significant differences in the
probability of good neurological outcome (OR 1.43, 95% CI 0.64–3.01), overall survival (OR 1.26, 95%
CI 0.57–2.55), full neurological recovery (OR 1.17, 95% CI 0.52–2.73) or sustained ROSC (OR 0.88, 95%
CI 0.50–1.52) were observed between ETI and SGA. Conclusions: Among the OHCA patients treated
with trans-nasal evaporative intra-arrest cooling, the use of SGA was associated with a significantly
shorter time to airway management and with similar outcomes compared to ETI.

Keywords: cardiac arrest; intra-arrest hypothermia; airway management

1. Introduction

Out-of-hospital cardiac arrest (OHCA) is a major public health concern, affecting
approximately 275,000 individuals each year in Europe [1]. The overall OHCA mortality
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rate is approximately 90%, with lifelong disabilities being common among the survivors [2].
Airway management and ventilation is an important element of the advanced cardiac life
support (ACLS) protocol, which has been formulated in order to improve outcomes for
OHCA victims [3]. Currently, most patients receive advanced airway management during
resuscitation, either using endotracheal intubation (ETI) or a supraglottic airway (SGA) [4].

ETI has been used by emergency medical services (EMS) since the 1970s [5]. However,
several studies have questioned the safety and effectiveness of ETI performed by EMS in the
pre-hospital setting [6,7]. The potential harms of pre-hospital ETI include unrecognized tube
misplacement or dislodgement, iatrogenic hyperventilation and chest compression interruptions
during placement [8–10]. SGA insertion is most often simpler and faster to insert than ETI [11],
which results in higher success rates and fewer interruptions in the administration of chest
compressions [12–14]. Despite the supposed benefits of SGA, several observational studies have
suggested that ETI may be associated with better outcomes than SGA [15]. However, recent
randomized controlled trials have raised some controversies on this issue [13,14]. Thus, the
optimal strategy for airway management in OHCA remains unclear.

Targeted temperature management remains an important intervention that may in-
fluence survival with good neurological function among cardiac arrest patients [16]. In
particular, intra-arrest cooling using trans-nasal evaporative cooling may provide some
benefits on neurologic recovery in patients with initial shockable rhythms (i.e., ventricular
fibrillation or pulseless ventricular tachycardia) [17–19]. Trans-nasal evaporative intra-arrest
cooling has emerged as a promising therapeutic strategy in OHCA [18,20,21]. The use of
SGA in these cases has the potential to shorten the time to successful airway management
and thereby enable a shorter time to start cooling. However, as SGA may be associated with
an increased risk for aspiration, it is important to examine the safety of advanced airway
management in the setting of trans-nasal evaporative intra-arrest cooling therapy.

In this sub-study of the PRINCESS trial, we aimed to compare the effect on neurologic
outcome among OHCA patients that had received airway management with ETI versus
SGA prior to trans-nasal evaporative intra-arrest cooling.

2. Methods
2.1. Study Design

We performed a post hoc sub-analysis of data from the PRINCESS trial, which
is a multicenter randomized clinical trial that compared trans-nasal evaporative intra-
arrest cooling to the standard ACLS in a bystander-witnessed OHCA (Trial registration:
NCT01400373) [20]. Ethics and institutional committees in each of the participating coun-
tries approved the study protocol [22]. Written informed consent was obtained from the
next of kin or a legal representative after hospital admission and from each study partici-
pant who regained mental capacity. In this sub-analysis, the patients in the intervention
arm in PRINCESS were the primary study population that was subsequently divided into
two groups depending on the strategy for airway management.

2.2. Study Participants

We included bystander witnessed OHCA randomized to the intervention arm in
the PRINCESS trial. The exclusion criteria were age ≥80 years; an etiology of cardiac
arrest due to trauma, head trauma, severe bleeding, drug overdose, cerebrovascular ac-
cident, drowning, smoke inhalation, electrocution, or hanging; hypothermia at the time
of evaluation; an anatomical barrier preventing the insertion of intra-nasal catheters; an
existing do-not-attempt resuscitation order; known terminal illness; known or clinically
apparent pregnancy; known coagulopathy (except when therapeutically induced); need for
supplemental oxygen; ROSC prior to randomization; and EMS response time (i.e., from
collapse to EMS arrival) greater than 15 min. In this sub-study of the PRINCESS trial, we
also excluded study participants who were randomized to the control group as well as
study participants who were initially randomized to the intervention group but did not
receive intra-arrest cooling. Patients were divided into two different treatment groups



J. Clin. Med. 2022, 11, 6370 3 of 12

depending on the airway management technique used prior to trans-nasal evaporative
cooling (i.e., those receiving ETI versus those receiving SGA).

2.3. Emergency Medical Services

All study sites had two-tiered EMS systems where the first vehicle used bag mask
ventilation only or SGA with bag-valve ventilation connected to the SGA prior to the arrival
of the second tier. The second tier was manned by physicians or anesthetic nurses, trained
in advance airway management including placing an SGA and endotracheal intubation. In
addition, the intra-arrest cooling equipment was carried by the second tier. Thus, patients
could have had the SGA placed by paramedics from the first vehicle and subsequently,
cooling was started after randomization and application of trans-nasal evaporative cooling
by the crew in the second tier. Among patients receiving bag mask ventilation by the
paramedics, ETI was performed after the arrival of the second tier. The use of SGA could
also be due to ETI being difficult to perform in the field. No data were collected on the
number of intubation attempts or change in airway strategy. The confirmation of the tube
was undertaken with end tidal CO2, but this was only recorded in a limited number of
patients and not presented in this analysis.

2.4. Exposure

The exposure of interest was defined as the type of airway management technique
used prior to cooling. All of the study participants included in the PRINCESS trial were
treated with advanced airway management prior to randomization using either ETI or an
SGA [22]; patients were therefore divided into two different treatment groups depending
on the airway management technique used prior to trans-nasal evaporative cooling.

2.5. Treatment

The RhinoChill™ device delivers a mixture of air or oxygen and a chemically inert
cooling liquid (perfluorohexane) via nasal catheters directly into the nasal cavity, with the
goal of primarily cooling the brain [20,21,23]. Trans-nasal evaporative cooling is maintained
until hospital arrival, and whenever possible until systemic cooling is initiated. The study
participants received standard post-resuscitation care upon admission to the intensive
care unit (ICU). Intravenous sedation, analgesia, and neuromuscular blockade were used
according to the institutional cooling protocols. The targets for respiratory management,
blood pressure, and glucose control have been previously described [22]. The study
participants were treated with targeted temperature management at 32–34 ◦C for 24 h.

2.6. Outcome

Neurological outcome assessment was performed at 90 days via a structured telephone
interview or during a follow-up appointment using the cerebral performance categories
(CPC) scale [24]. The primary outcome of this study was survival with good neurologic
outcome (CPC 1–2) at 90 days. The secondary outcomes were overall survival at 90 days,
survival with complete neurologic recovery (CPC 1) at 90 days, and hospital admission
with the sustained return of spontaneous circulation (ROSC) (defined as ROSC >20 min).
Additional safety parameters that were investigated included the time until successful
airway management, the time until the initiation of intra-arrest cooling, arterial blood
gas parameters, and the prevalence of pneumonia. The time until successful airway
management was defined as the time interval that elapsed between EMS arrival at the site
of the arrest and the time of successful airway device placement. Similarly, we defined the
time until the initiation of trans-nasal evaporative cooling as the time duration between
EMS arrival and the initiation of intra-arrest cooling.

2.7. Statistical Analysis

Continuous variables were presented as means and standard deviations (SD) if nor-
mally distributed, or as medians and interquartile ranges (IQR) if not normally distributed.
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Categorical variables were reported as counts and percentages. We assessed the group
differences in continuous variables using either the Mann–Whitney U-test or Student’s
T-test, as appropriate. Group-wise differences in categorical variables were assessed using
Pearson’s chi-squared test.

A range of factors may influence the decision of EMS personnel to use one advanced
airway device or strategy over any other form of airway management. Therefore, we
used propensity score matching to balance known confounding variables across the two
treatment groups, in a manner reminiscent of that conducted in the work of Hasegawa et al.
and McMullan et al. [4,7]. Propensity scores were calculated using a logistic regression
model with the following independent variables: EMS response time, age, sex, bystander
CPR, initial rhythm, etiology, and body mass index (BMI). Propensity score matching (1:2)
was carried out using the nearest neighbor method with a caliper width of 0.2. We used the
standardized mean difference (SMD) to examine group differences in the covariates before
and after matching. We fit a series of conditional logistic regression models to evaluate the
association between each outcome variable and airway management strategy. We calculated
bootstrapped 95% confidence intervals for the odds ratios using 1000 bootstrapped datasets.

We used multiple imputation by chained equations (mice) to impute missing data, gen-
erating five imputed datasets [25]. The analysis described above was separately performed
in each of the imputed datasets. The resulting regression coefficients and test statistics were
subsequently pooled across all imputed datasets [25,26].

3. Results
3.1. Study Population

Of the 343 patients who were allocated to intra-arrest cooling in the PRINCESS trial, six
did not receive the assigned intervention, and data on airway management were missing for
nine study participants (Figure 1). Thus, the study cohort consisted of 328 patients; 259 (79%)
received orotracheal intubation (ETI group), while in the SGA group, six were treated using a
laryngeal tube and the others (n = 63) with a laryngeal mask airway. Patients who were treated
with SGA were older (p = 0.03) and had a higher BMI (p = 0.01) than patients who were treated
with ETI (Table 1). After propensity score matching, all baseline characteristics were adequately
balanced between groups (Supplementary Materials, Supplementary Figure S1). No significant
differences in the arterial blood gas parameters at the time of hospital admission were observed
between groups after propensity score matching (Table 2). Missing entries amounted to 3.32%
of the included data (Supplementary Materials, Supplementary Table S1).
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Table 1. Demographics before and after propensity score matching. Data after propensity score
matching corresponded to that of one of the five imputed datasets that were generated follow-
ing multiple imputation by chained equations (mice). Abbreviations: BMI = body mass index,
CPR = cardiopulmonary resuscitation, EMS = emergency medical services, ETI = endotracheal intu-
bation, SD = standard deviation, SGA = supraglottic airway, SMD = standardized mean difference,
Q1 = first quartile, Q3 = third quartile.

Unmatched Matched

ETI (N = 259) LMA (N = 69) SMD ETI (N = 126) LMA (N = 67) SMD

Sex

Female 64 (24.7%) 18 (26.1%) 0.03 28 (22.2%) 18 (26.9%) 0.10

Male 195 (75.3%) 51 (73.9%) −0.03 98 (77.8%) 49 (73.1%) −0.10

Location

At home 126 (55.5%) 46 (70.8%) 0.31 85 (67.5%) 47 (70.1%) 0.06

Other 16 (7.0%) 4 (6.2%) −0.08 10 (7.9%) 4 (6.0%) −0.06

Outside 54 (23.8%) 5 (7.7%) −0.60 9 (7.1%) 5 (7.5%) 0.03

Public place 31 (13.7%) 10 (15.4%) 0.08 22 (17.5%) 11 (16.4%) −0.06

Etiology

Other 34 (14.3%) 13 (20.6%) 0.21 27 (21.4%) 15 (22.4%) 0.00

Suspected cardiac 204 (85.7%) 50 (79.4%) −0.21 99 (78.6%) 52 (77.6%) 0.00

Bystander CPR

No 89 (35.7%) 23 (35.9%) 0.07 48 (38.1%) 27 (40.3%) 0.03

Yes 160 (64.3%) 41 (64.1%) −0.07 78 (61.9%) 40 (59.7%) −0.03

EMS arrival time (minutes)

Median (Q1–Q3) 7.0 (5.0, 10.0) 7.5 (4.0, 12.0) 0.04 8.0 (5.0, 11.0) 8.0 (4.5, 11.5) −0.11

Time to ROSC (minutes)

Median (Q1–Q3) 22.0 (15.0, 37.0) 23.5 (14.8, 29.5) −0.28 24.0 (15.5, 40.5) 25.0 (17.0, 36.0) 0.11

Hospital admission time (minutes)

Median (Q1–Q3) 48.0 (37.0, 59.0) 48.0 (39.0, 58.0) −0.45 46.0 (35.0, 56.5) 51.0 (42.0, 58.8) 0.30

Initial rhythm

Non-shockable 149 (57.8%) 47 (68.1%) 0.22 84 (66.7%) 45 (67.2%) 0.02

Shockable 109 (42.2%) 22 (31.9%) −0.22 42 (33.3%) 22 (32.8%) −0.02

Age (years)

Mean (SD) 61.6 (12.1) 65.4 (12.3) 0.31 64.8 (10.7) 65.5 (12.2) 0.05

BMI

Median (Q1–Q3) 26.2 (24.2, 29.3) 27.8 (25.4, 30.9) 0.31 27.8 (24.7, 30.1) 27.8 (25.0, 30.5) 0.02

Table 2. Patient characteristics at hospital admission. The presented results correspond to data
obtained after propensity score matching for one of the five imputed datasets that were generated
following multiple imputation by chained equations (mice). Abbreviations: PaCO2 = partial pressure
of carbon dioxide, PaO2 = partial pressure of oxygen, SD = standard deviation, Q1 = first quartile,
Q3 = third quartile.

ETI LMA p Value

Lactate (mmol/L) n = 24 n = 17 0.491

Mean (SD) 11.1 (4.9) 10.5 (5.3)

Median (Q1–Q3) 11.2 (9.2, 13.2) 10.0 (7.0, 13.3)

Range (Min–Max) 3.2–21.0 2.6–19.0

PaCO2 (mmHg) n = 26 n = 19 0.491
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Table 2. Cont.

ETI LMA p Value

Mean (SD) 60.6 (25.5) 64.9 (32.2)

Median (Q1–Q3) 54.0 (38.6, 84.0) 60.8 (46.9, 72.0)

Range (Min–Max) 33.0–113.2 33.0–178.5

PaO2 (mmHg) n = 26 n = 18 0.390

Mean (SD) 86.7 (48.1) 96.7 (46.6)

Median (Q1–Q3) 74.8 (48.6, 106.3) 86.6 (65.7, 127.3)

Range (Min–Max) 31.5–202.5 30.3–213.0

pH n = 24 n = 20 0.683

Mean (SD) 7.0 (0.2) 7.1 (0.2)

Median (Q1–Q3) 7.0 (6.9, 7.2) 7.0 (6.9, 7.2)

Range (Min–Max) 6.7–7.4 6.7–7.3

Mean arterial pressure (mmHg) n = 24 n = 17 0.233

Mean (SD) 82.9 (24.2) 90.3 (23.9)

Median (Q1–Q3) 84.5 (63.0, 94.0) 92.0 (71.0, 107.0)

Range (Min–Max) 43.0–140.0 55.0–132.0

3.2. Outcome Measures

No significant differences between ETI and SGA were observed on the occurrence of
survival with good neurologic outcome, CPC 1-2 at 90 days (OR 1.43, 95% CI 0.64–3.01),
overall survival at 90 days (OR 1.26, 95% CI 0.57–2.55), survival with complete neurologic
recovery at 90 days (OR 1.17, 95% CI 0.52–2.73) or hospital admission following sustained
ROSC (OR 0.88, 95% CI 0.50–1.52), as can be seen in Figure 2.
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logistic regression models that were fitted using propensity score matched data to examine the safety
of ETI and SGA in patients with out-of-hospital cardiac arrest.



J. Clin. Med. 2022, 11, 6370 7 of 12

3.3. Time until Successful Airway Device Placement and the Initiation of Intra-Arrest Cooling

The time until airway management was available for 276 out of 328 study participants
(84%). The median time from EMS arrival at the scene until successful airway management
was 8 (interquartile range 4–12 min) minutes in the ETI group and 4 min in the SGA
group (interquartile range 2–7 min), p = 0.001 (Figure 3A). However, we did not find any
statistically significant difference between the SGA- and ETI groups regarding the time
until the initiation of hypothermia treatment, which was on average 14 min in the ETI
group (interquartile range 8–20) and 15 min in the SGA group (interquartile range 11–25),
p = 0.053 (Figure 3B).
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Figure 3. Time until successful advanced airway management (A) and time to start of intra-arrest
cooling (B). Box-and-whisker plots depicting the time until successful airway management in the
ETI and SGA groups, respectively. Medians and quartiles were estimated using quantile regression
for each imputed dataset and subsequently averaged across all imputed datasets. Likewise, the
Mann–Whitney U-test was performed in each imputed dataset and the results were pooled across all
available imputed datasets.

The time until the initiation of intra-arrest cooling therapy was associated with survival
with good neurological outcome (defined as CPC 1-2, OR 0.96 [0.92–1.00], p = 0.045), overall
survival (OR 0.95 [0.91–0.99], p = 0.017), and survival with complete neurologic recovery
at 90 days (defined as CPC 1, 0.95 [0.90–0.99], p = 0.018), as shown in the Supplementary
Materials (Supplementary Table S2). In contrast, we did not observe any statistically
significant association between the likelihood of achieving sustained ROSC and the time of
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intra-arrest cooling. Moreover, we found no statistically significant association between
the endpoints of this study and the time until successful airway device placement. Thus,
whereas the time until the initiation of intra-arrest cooling has a statistically significant
association with both neurological outcomes and overall survival in OHCA patients, the
time until successful airway device placement does not have any significant relationship to
patient outcomes.

3.4. Infections

The incidence of infections prior to hospital discharge was reported in conjunction with
the PRINCESS trial by all participating centers (Figure 4). Approximately 20% of patients
suffered from some form of infection during their hospital stay, with pneumonia accounting
for the majority of these cases. We found no statistically significant differences between the
ETI- and SGA groups in the proportion of patients who suffered from pneumonia during
their hospital stay (p = 0.579).
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4. Discussion

In this sub-analysis of the PRINCESS trial, we observed that SGA is feasible to use
without any safety aspects reported prior to induction of trans-nasal evaporative cooling in
OHCA and it significantly shortened the airway management time compared to ETI; SGA
was not associated with any worsening in the gas exchange on arterial blood gas or with
patient outcomes.

Trans-nasal evaporative intra-arrest cooling is an emerging therapeutic option in the
management of OHCA patients which has, as the only cooling method, been shown to
be safe and effective in inducing intra-arrest cooling at the scene of the arrest. Although
not currently part of routine medical practice, trans-nasal evaporative intra-arrest cooling
therapy has already been implemented in some clinical settings for the treatment of OHCA.
Furthermore, trans-nasal evaporative intra-arrest cooling will continue to be investigated
in clinical trials. Therefore, it is important to establish the safety of advanced airway
management in the setting of trans-nasal evaporative intra-arrest cooling. In this study,
we observed a shorter time period to successful airway management in the SGA group
compared to intubation, but no differences in terms of sustained ROSC, overall survival,
neurological recovery, the prevalence of pneumonia, or arterial blood gas parameters.

We observed that patients who were treated with SGA were on average older and
had a higher BMI than patients who were treated with ETI. Although these imbalances
were adjusted for in the subsequent analyses, we cannot dismiss the possibility of residual
confounding due to one or several unmeasured parameters such as the lack of equipoise at
the baseline including the expertise of centers. Therefore, we believe that there is a need for
an external validation to confirm our results.

Despite concerns regarding an increased aspiration risk following trans-nasal evapo-
rative cooling, we did not find any significant differences between the ETI and SGA groups
concerning the proportion of patients suffering from pneumonia or arterial blood gas
parameters on admission to hospital. Despite a limited sample size, these findings further
support our other results, which suggest that ETI and SGA have similar safety profiles in
the setting of trans-nasal evaporative intra-arrest cooling.

We observed a statistically significant difference between the ETI and SGA groups in
the time elapsed until successful airway placement in the setting of trans-nasal evaporative
intra-arrest cooling therapy. This result is in agreement with that of earlier studies on
the topic of advanced airway management in OHCA [5,11]. However, we observed no
statistically significant differences concerning the time until the initiation of trans-nasal
evaporative intra-arrest cooling therapy. This result is most likely attributed to logistics, as
the cooling device was carried by the second-tier vehicles and not by the paramedics in the
first-tier ambulances. The pre-hospital physicians generally arrived at the site of the arrest
later than the paramedics. Thus, although the patient’s airway may have been secured
using a SGA by the paramedic prior to the arrival of the pre-hospital emergency medicine
physicians, intra-arrest cooling could only be initiated once the physician had arrived at
the site of the arrest, making the time to hypothermia largely independent of the time until
successful airway management.

This secondary analysis of the PRINCESS trial had several limitations. The study of
two subgroups receiving different airway strategies within the intervention arm of the
PRINCESS trial introduced a risk of selection bias. Although the treatment groups had
similar baseline characteristics and propensity score matching was performed, the risk
of residual confounding could not be eliminated. An additional limitation of this study
is the fact that ETI and SGA could not be compared to bag-valve mask ventilation, as
successful advanced airway management was specified as a requirement for inclusion in
the PRINCESS trial [22]. In addition, the time elapsed from EMS arrival and successful ETI
including the time interval between the arrival of the first- and second-tier vehicle and time
interval for the ETI procedure, which may have enabled the SGA, could be undertaken
by the first-tier team, to be placed faster. Furthermore, data on the quality of CPR such as
information regarding chest compression interruption were unavailable and could thus not
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be included in this analysis. We also lacked information on the intubation attempts and
where SGA was placed due to intubation failure.

5. Conclusions

In this sub-study of the PRINCESS trial, a shorter time period to successful airway
management was observed in the SGA group when compared to ETI. No differences in
clinically relevant outcomes such as survival with good neurologic outcome and overall
survival were observed between groups. This study might help to design future trials using
trans-nasal evaporative cooling to minimize the time to induce cooling.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/jcm11216370/s1. Figure S1: Covariate balance. Standard-
ized mean differences before and after propensity score matching. Standardized Mean Differences
(SMDs) at baseline (orange) and after propensity score matching (blue). The adjusted variables are
displayed on the y-axis. SMD > 0.1 was considered to be indicative of a statistically significant group
difference; Figure S2: Prehospital response times. Time from cardiac arrest to arrival of medical
emergency services (EMS) and Acute life support (ALS) vehicle. The figure shows the arrival times
(in minutes) of EMS and ALS for the ETI and SGA groups, respectively; Table S1: Missing data for
the predictor variables (where present). Abbreviations: BMI = Body mass index in units of kg/m2,
CPR = Cardiopulmonary resuscitation, EMS = Emergency medical services; Table S2: The relation-
ship between study endpoints and the time until the initiation of intra-arrest cooling and the time
until successful airway device insertion, respectively. These results were obtained using univariate
logistic regression in the unmatched dataset. Abbreviations: CPC = Cerebral Performance Category,
OR = Odds ratio, CI = Confidence interval, Q1 = First quartile, Q3 = Third quartile.
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