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Abstract: The diagnosis of alcohol use disorder (AUD) remains a difficult challenge, and some 

patients may not be adequately diagnosed. This study aims to identify an optimum combination of 

laboratory markers to detect alcohol consumption, using data science. An analytical observational 

study was conducted with 337 subjects (253 men and 83 women, with a mean age of 44 years (10.61 

Standard Deviation (SD)). The first group included 204 participants being treated in the Addictive 

Behaviors Unit (ABU) from Albacete (Spain). They met the diagnostic criteria for AUD specified in 

the Diagnostic and Statistical Manual of mental disorders fifth edition (DSM-5). The second group 

included 133 blood donors (people with no risk of AUD), recruited by cross-section. All participants 

were also divided in two groups according to the WHO classification for risk of alcohol 

consumption in Spain, that is, males drinking more than 28 standard drink units (SDUs) or women 

drinking more than 17 SDUs. Medical history and laboratory markers were selected from our 

hospital’s database. A correlation between alterations in laboratory markers and the amount of 

alcohol consumed was established. We then created three predicted models (with logistic 

regression, classification tree, and Bayesian network) to detect risk of alcohol consumption by using 

laboratory markers as predictive features. For the execution of the selection of variables and the 

creation and validation of predictive models, two tools were used: the scikit-learn library for 

Python, and the Weka application. The logistic regression model provided a maximum AUD 

prediction accuracy of 85.07%. Secondly, the classification tree provided a lower accuracy of 79.4%, 

but easier interpretation. Finally, the Naive Bayes network had an accuracy of 87.46%. The 

combination of several common biochemical markers and the use of data science can enhance 

detection of AUD, helping to prevent future medical complications derived from AUD. 
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1. Introduction 

Alcohol dependence is a frequent medical problem in a wide variety of clinical 

settings and requires attention to reduce medical complications, establish appropriate 

treatments, and minimize the use of healthcare resources [1]. Alcohol abuse has harmful 

effects that can cause or contribute to multiple diseases [2] and even increase the risk of 

cancer [3,4] and deaths [5].  

Alcohol has also increased traffic accidents, trauma [6], absenteeism [7] at the 

workplace and school [8], job loss, violent behavior, and legal [9], family, economic, 

mental [10], and social problems [5]. Despite the significant benefits of alcohol abuse 

treatments [11], general practitioners only manage to diagnose a third of these patients 

[12]. Self-assessment questionnaires (for example, AUDIT (Alcohol Use Disorders 

Identification Test), CAGE (Cuttingdown, Annoyed, Guilt, Eyeopen), MAST (Michigan 

Alcohol Screening Test)) are typically used [13] to detect alcohol use disorder [14], but 

these can be misleading if patients are reluctant to reveal their patterns of alcohol use [15].  

Laboratory markers can corroborate clinical suspicion of alcohol abuse and facilitate 

patient monitoring and compliance with the recommendations. For instance, alcohol 

biomarkers are physiological indicators of alcohol exposure and can help detect AUD [16]. 

These biomarkers are more useful when used together with other information such as 

medical history. Biomarkers can be classified as direct and indirect [17]. Direct markers 

include detection of alcohol or its metabolites such as ethyl glucuronide, derivatives of 

acetaldehyde, phosphatidyl ethanol, and ethyl esters of fatty acids. These biomarkers have 

high specificity but low sensitivity due to their short plasma half-life. However, 

ethylglucuronide can be detected in urine up to 5 days and can inform us of chronic 

consumption by measuring it in the hair [18]. Regarding acetaldehyde derivatives, studies 

have described that they can be used as alcohol use markers in women [19]. Furthermore, 

the quantification by anti-adduct autoantibodies has been shown to have clinical value, 

differentiating abstinent users from alcohol users [20,21]. 

Indirect markers such as aspartate-aminotransferase (GOT/AST), alanine-

aminotransferase (GPT/ALT), gamma-glutamyltransferase (GGT), erythrocyte mean cell 

volume (MCV), uric acid, HDL-cholesterol, triglycerides, cholesteryl ester transfer protein 

(CETP), and total serum sialic acid (TSA) [22] help identify excessive alcohol use by 

detecting its toxic effects. They are inexpensive and widely available, but they have the 

disadvantage of low sensitivity and unspecificity [17]. In addition, the alcohol-induced 

thrombocytopenia can be the first signal of alcohol use disorder, also being a prognostic 

factor in the development of alcohol withdrawal syndrome and bleeding [23]. New 

biomarkers, more sensitive and specific, have been investigated in the last 30 years, with 

carbohydrate-deficient transferrin (CDT) being the most widely adopted [9,10]. An 

emerging biomarker is N-acetyl-Beta-Hexosaminidase (Beta-Hex), which could be used 

for acute alcohol intoxication, but has been used in preclinical research with rats, as well 

as some patients with Tay–Sachs disease with a diagnostic test. Therefore, alcohol 

researchers need to investigate more for using beta-Hex as a diagnostic tool [22].  

Some studies have used parallel testing, combining two or more laboratory tests to 

identify alcohol abuse with increased diagnostic accuracy [24–26]. For example, CDT and 

GGT combinations improve the diagnostic yield of any of these markers used alone 

[27,28]. Similarly, parallel tests with CDT, GGT, and MCV improve detection in women 

[29], while CDT and the AUDIT help detect alcohol use disorders in a regular workplace 

[30].  

An alternative strategy to specifically using alcohol biomarkers is the use of multiple 

routine laboratory tests and statistical methods [25,26,31]. For instance, the Early 
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Detection of Alcohol Consumption (EDAC) method uses a linear discriminant function 

[32] that analyzes 10 routine laboratory tests to generate a score for each subject. Each 

score and its associated probability value translate into the likelihood that the individual 

has a specific consumption pattern [25]. Ten laboratory measurements are included in the 

final regression equation: chloride, sodium, direct-to-total bilirubin ratio, blood urea 

nitrogen, high-density lipoprotein, monocyte count, phosphorus, platelets, aspartate 

aminotransferase, and mean corpuscular hemoglobin (HCM). In the validation data for 

this model, 98% of the 161 heavy drinkers and 95% of the 42 mild drinkers were correctly 

identified. Widespread adoption of these statistical methods is limited due to limited 

availability of the software and hardware packages required.  

In this study, we describe a laboratory model to predict patients' risk group of alcohol 

consumption using discriminant analysis. The laboratory parameters used are routinely 

included in clinical consultations. Hence, our study can facilitate the early and 

inexpensive diagnosis of alcohol use, as well as better treatment monitoring.  

We hypothesize that a combination of routine biochemical markers can predict the 

probability of alcohol consumption and improve the results obtained with standardized 

alcohol use questionnaires in patients with unknown risk [33] of alcohol consumption.  

2. Materials and Methods 

This study is a retrospective observational study in which the relationship between 

laboratory test results and patient alcohol consumption was analyzed. Participants were 

recruited from two different groups: patient from Addictive Behaviors Unit (ABU) and 

blood donors.  

The ABU group (retrospectively recruited) included patients according to the 

following criteria: (1) Patients who started treatment at ABU from Albacete in the 

detoxification phase due to alcohol consumption during 2013–2015 (selected 

retrospectively, from June 2014), at any age. (2) Patients who meet the diagnostic criteria 

for alcohol use disorder (AUD) specified in the Diagnostic and Statistical Manual of 

mental disorders fifth edition (DSM-5); they were correctly diagnosed by a mental health 

expert doctor. (3) Patient’s laboratory test results at the start of treatment in the ABU were 

available (up to 1 month prior or 90 days after). This information was extracted by 

consulting the ABU medical records and the laboratories database (in this case, for 

laboratory test results). Data were pseudo-anonymized by the research team, and 

participants could only be identified by their assigned code. The exclusion criteria were: 

(1) Serious mental illness incompatible with participation in the study (with consent). (2) 

Not having laboratory test results when they started in ABU treatment (up to 1 month 

before or 90 days after). (3) Patients who followed treatment with any drug that could 

disturb the blood parameters, from which the prediction was to be made. 

The other group (recruited by cross-section) was obtained from a sample of blood 

donors from Albacete. Serum samples from these donors were used to analyze the same 

analytical parameters collected (biochemical, hematological, and coagulation) in the ABU 

participants. The Spanish version of the 10-item AUDIT (Alcohol Use Disorder 

Identification Test) was administered as a written questionnaire to assess alcohol 

consumption in these participants, ruling out donors with risky alcohol consumption 

(AUDIT score > 8 in men or > 6 in women) [34]. AUDIT assesses the frequency and 

quantity of drinking (questions 1–3) and alcohol-related harm (questions 4–10). The 

study’s objectives were explained to these participants and written informed consents 

collected.  

All the blood parameters studied were: albumin, amylase, activated partial 

thromboplastin time, uric acid, basophils, basophils_percent, direct bilirubin, indirect 

bilirubin, total bilirubin, calcium, mean corpuscular hemoglobin concentration, creatine 

kinase, chlorine, coagulation, cholesterol, creatinine, eosinophils, eosinophils_percent, red 

blood cells, alkaline phosphatase, ferritin, fibrinogen C, gamma glutamyl transferase, 

globulins, glucose, aspartate aminotransferase, alanine aminotransferase, hemoglobin, 
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mean corpuscular hemoglobin, hematocrit, high-density lipoprotein cholesterol, red 

blood cells distribution width, platelet distribution width, International Normalized 

Ratio, potassium, lactate dehydrogenase, low-density lipoprotein cholesterol, white blood 

cells, lymphocytes, lymphocytes_percent, large unstained cells percent, large unstained 

cells, monocytes, monocytes_percent, myeloperoxidase index, neutrophils, 

neutrophils_percent, phosphorus, C-reactive protein, platelets, total proteins, 

tryglicerides, transferrin, urea, mean corpuscular volume, mean platelet volume, and 

sodium. 

A total of 337 participants were included in this study after exclusions (due to 

incomplete data), including 204 in the ABU group and 133 participants in the blood donor 

group. You can see the flow chart of the study in Figure 1. 

 

Figure 1. Flow chart of the study. 

Our sample had 253 male participants (75.3%) and 83 female participants (24.7%). 

The age of the participants ranged from 15 to 78. The mean age in the ABU participants 

was 45.5 years (Standard Deviation: SD = 10.06), and the mean age in the blood donor 

participants was 42.5 (SD = 10.89). 

We obtained some medical history in the ABU group: age, sex, address (if city or 

village), study level, marital status, age that alcohol consumption started, and 

consumption of other drugs (nicotine, cocaine…). The same variables were obtained from 

the blood donor group, except the last two ones. 

For the predictive analysis, participants were classified as alcohol consumption 

according to their average weekly consumption and gender, as per the WHO 
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classification. More specifically, a value of >28 SDUs (Standard Drink Unit) was used for 

men and >17 SDUs for women [35]. Alcohol consumption was measured in Standard 

Drink Units (SDUs), using the equivalence of 10 grams of pure alcohol = 1 SDU [36]. Then, 

we conducted a bivariate statistical analysis, correlating the lab test parameters analyzed 

with the number of SDUs consumed. Subsequently, three predictive models were created, 

using different approaches: logistic regression, classification tree, and Bayesian network.  

Complete participant data and variables’ definitions can be found in the 

supplementary information material. Supplementary Table S1: Variables’ definition used 

in the predictive model.  

We depurated the database, and the statistical analysis was carried out with SPSS 

program 25.0.0. Values were expressed as mean (SD), and results were considered to be 

statistically significant with a p value < 0.05. For the execution of the selection of variables 

and the creation and validation of predictive models, 2 tools were used: the scikit-learn 

library for Python and the Weka application. 

Scikit-learn with the Python [37] programming language is the most widely used 

data science tool today to perform predictive model building and processing tasks. 

Normally, it is only usable by people with programming knowledge such as computer 

engineers or mathematicians. In cases such as this article, the medical doctors contacted 

an expert in data science to explain and guide them in the process of discovering useful 

predictive models, with said data science expert taking charge of the programming part, 

always with the guidance and supervision of the clinician. Supplementary Information 

Figure S1 shows an extract from the notebook generated with the predictive analysis with 

Scikit-learn, used for the logistic regression model as well as for the classification tree 

model. 

It should be noted that both the database used and the code generated for this part 

of the predictive analysis were shared from an institutional repository of the University 

of Castilla La Mancha (UCLM), specifically in the section corresponding to the SIMD 

research group (Intelligent Systems and Data Mining), belonging to the contacted 

machine learning expert. The repository link is: https://github.com/UCLM-

SIMD/alcohol_risk_prediction (last access and update 25 October 2021). 

Weka [38] is an application developed by the University of Waikato, in New Zealand. 

This tool allows any trained user to perform various tasks of data science, such as variable 

selection, normalization, imputation of missing values, and predictive modeling. This is 

performed relatively easily thanks to its intuitive interface, as can be seen in Figure S2, in 

the Supplementary Information.  

The logistic regression model used automatic variables selection by Incremental 

Wrapper Subset Selection with replacement (IWSSr) [24]. In IWSSr, even if a variable has 

been selected, it may cease to be important in the presence of a new candidate variable. 

When performing a common forward search, the algorithm selects features according to 

their relevance for the prediction. However, it is possible that a previous relevant feature 

is discarded if other, more relevant features are included. For instance, if a patient shows 

symptoms of sinusitis or they feel cold, these might be good variables to predict the 

probability of having the flu. However, if we also learn that they have high fever, sinusitis 

is no longer an important feature to predict flu. This property of IWSSr becomes 

particularly relevant when the cost associated with each feature is considered. That is, if 

the discarded feature is more expensive than the new one (e.g., in our case, ferritin is more 

expensive than creatinine), our IWSSr method can lead to improvements both in terms of 

economic cost and algorithmic complexity.  

The classification tree (the second model created) creates easily interpretable models, 

creating a path from its root node through the value of the case to be classified in the 

selected variables until it reaches a leaf node, with an associated classification result. The 

third model-building process captures variables dependencies and builds the simplest 

and efficient model: a Naive Bayes network. Previously, the variables were discretized 
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following Fayyad and Irani’s method based on entropy (uncertainty) concerning the class 

(risk). 

All the predictive models created were validated with the LOO (leave-one-out 

validation) method. LOO is a good validation scheme when the number of samples is not 

large. Give a database with N samples, LOO trains the predictive classifier with N-1 

samples and then tests its prediction on the Nth sample, and this is repeated N times, each 

time with a different test sample. Then, metrics are computed based on the total positives 

(TP), total negatives (TN), false positives (FP), and false negatives (FN) performed by the 

classifier during the N train-test steps. 

As missing values in the variables were input, the mean of the corresponding 

analytical variable was applied. This was applied in the logistic regression and 

classification tree models. Data were normalized to mean 0 and variance 1 for the logistic 

regression models. The preprocessed imputation of missing values and normalization 

were always applied to the corresponding training set for each split in the LOO validation.  

3. Results 

The distribution by sex and age is similar in both groups. In the ABU group, the 

sample was represented by 78.4% men and 21.6% women. The blood donor group, and 

therefore participants without risk of exposure to alcohol, was made up of 133 

participants, distributed as 70.7% men and 29.3% women. 

The mean ages in both groups were comparable, 45 years old for participants in the 

ABU group, with a standard deviation of 10.05, and a mean of 41 years old for participants 

in the blood donor group, with a standard deviation of 10.89. They had age ranges of (15–

78) and (18–66), respectively, with the variances being homogeneous and reaching 

statistical significance (p < 0.000). 

Regarding the address, 72.7% lived in a town and 27.3% lived in a city. 

The marital status of both groups can be seen in Figure 2. 

 

Figure 2. Comparison of marital status for both groups, ABU and blood donors. 

The marital status of the ABU participants was: 52 single (25.5%), 97 married or in a 

stable union (47.5%), 51 separated or divorced (25%), 3 widowed (1.5%). Within other 

marital statuses, 5 lived with a partner, 1 had a stable partner but did not live with them, 

and 5 lived with a common-law partner. 

The marital status of the blood donor participants was: 37 single (27.8%), 91 married 

or in a stable union (68.4%), 3 separated or divorced (2.3%), 2 participants had other 

marital status (1.5%) (one lived as a couple and the other as a de facto couple). 

We also considered it important to observe the study level comparing both groups, 

which is represented in Figure 3. 
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Figure 3. Comparison of the study level for both groups (ABU and blood donors). 

The study level that predominated in users of the ABU was primary studies with 104 

participants (51%), 39 participants read and wrote but had no studies (19.1%), 29 

participants had secondary studies (14.2%), 15 participants had completed high school or 

professional training courses (7.4%), 9 had completed university studies (4.4%), and 3 

participants did not read or write (1.5%).  

The predominant study level of the blood donors in our sample was high school 

and/or professional training (50 blood donors, 37.6%), followed by 32 blood donors with 

secondary education (24.1%), 31 blood donors with primary education (23.3%), 19 blood 

donors with university studies (14.3%), and only 1 blood donor (0.8%) read and write but 

did not have studies. 

In our sample, the age of onset of alcohol consumption had a mean of 17 years old, 

with a standard deviation of 7.18 and a standard error of 0.507. 

Regarding the consumption of other drugs, the ABU’s participants had the following 

data recorded: tobacco, 135 participants (66.18); cannabis, 38 participants (18.62%), 

cocaine, 30 participants (14.7%); heroin, 5 participants (2.45%), benzodiazepines, 2 

participants; crystal meth, 2 participants; tripis or LSD, 2 participants (1% each one); and 

Popper and amphetamine, 1 participant each (0.5%). 

However, all heroin users reported quitting at the time of the interview, and reported 

previous use but not current use. 

The next section summarizes the main results obtained for the three predictive 

models created (with logistic regression, classification tree, and Naïve Bayes). Complete 

data can be found in Supplementary Information. 

Supplementary Information (online resource) Table S2 shows the correlation of 

different lab parameters with the binomial variable alcohol consumption of risk/no risk. S 

2.1 all participants, S 2.2 men, and S 2.3 women.  

Supplementary Information (online resource) Figure S3 shows the correlation of lab 

parameters with consumption (S 3.1 all participants, S 3.2 men, and S 3.3 women). 

Supplementary Information (online resource) Figure S4 shows the rate of participants 

with risk of alcohol consumption.  

3.1. Logistic Regression 

We tested three logistic regression models using different subsets of variables, and 

an example of manual use of these models can be found in Supplementary Material 

(Example S1). These models were created according to the results of our bivariable 

analysis.  

Table 1 shows the coefficients calculated for all the variables used, together with their 

confidence interval and their p values. 
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Table 1. Coefficients calculated in logistic regression, for all the variables used, together with the 

confidence interval and its p-value. Statistically significant ones are marked with *. 

Variable Coefficient Confidence Interval (95%) p Value 

Constant 0.826 0.084 1.569 0.029 

Study level −0.424 −0.973 0.125 0.130 

Age −0.191 −0.746 0.364 0.499 

Albumin 0.497 −1.215 2.209 0.570 

Uric acid −0.057 −0.635 0.521 0.846 

Basophils −1.907 −4.863 1.050 0.206 

Basophils % 1.898 −0.766 4.562 0.163 

Total bilirubin 0.283 −0.921 1.487 0.645 

Calcium 0.284 −0.493 1.061 0.474 

MCHC 1 −8.259 −15.893 −0.625 0.034 * 

Chlorine 1.029 0.320 1.737 0.004 * 

Cholesterol 0.826 −0.614 2.267 0.261 

Creatinine −0.608 −1.322 0.106 0.095 

Eosinophils −12.068 −23.030 −1.106 0.031 * 

Eosinophils % 11.639 −3.425 26.702 0.130 

Red blood cells −2.775 −10.355 4.804 0.473 

Alkaline phosphatase 1.125 0.244 2.006 0.012 * 

Ferritin 1.872 0.268 3.477 0.022 * 

Gamma glutamyl transferase −0.044 −2.222 2.134 0.968 

Globulins 0.533 −1.112 2.177 0.526 

Glucose −0.483 −1.082 0.115 0.114 

Aspartate aminotransferase 0.423 −1.778 2.624 0.706 

Alanine aminotransferase 0.503 −0.554 1.559 0.351 

Haemoglobin −8.424 −21.414 4.566 0.204 

Mean corpuscular haemoglobin 23.651 7.540 39.762 0.004 * 

Hematocrit 11.208 −2.673 25.089 0.114 

HDL- cholesterol −1.033 −2.066 0.001 0.050 

Red blood cells distribution width 0.818 0.158 1.477 0.015 * 

Platelet distribution width 0.491 −0.176 1.158 0.149 

Potassium 0.636 0.014 1.259 0.045 * 

Lactate dehydrogenase 0.412 −0.193 1.016 0.182 

LDL-cholesterol 0.310 −0.869 1.489 0.607 

White blood cells 205.737 15.672 395.801 0.034 * 

Lymphocytes −59.007 −113.951 −4.063 0.035 * 

% Lymphocytes 50.220 −20.111 120.550 0.162 

% Large Unstained Cells 17.875 −9.300 45.049 0.197 

Large Unstained Cells −20.052 −42.138 2.034 0.075 

Monocytes −14.328 −26.135 −2.521 0.017 * 

% Monocytes 12.3017 −2.676 27.280 0.107 

Myeloperoxidase index −0.180 −0.757 0.397 0.541 

Neutrophils −185.847 −358.363 −13.331 0.035 * 

% Neutrophils 60.0477 −22.608 142.704 0.154 

Phosphorus −0.422 −1.032 0.188 0.175 

Platelets −0.114 −0.790 0.563 0.742 

Total Proteins −1.113 −2.745 0.519 0.181 

Triglycerides −0.603 −1.554 0.348 0.214 
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Transferrin 0.143 −0.582 0.869 0.698 

Urea −1.238 −2.050 −0.426 0.003 * 

Mean Corpuscular Volume −22.442 −36.694 −8.190 0.002 * 

Mean Platelet Volume −0.463 −1.174 0.249 0.202 

Sodium −1.553 −2.430 −0.677 0.001 * 

SEX_woman −0.278 −1.021 0.464 0.462 
1 red cell mean corpuscular hemoglobin concentration. *: Statistically significant ones.  

The first logistic regression model resulted in an accuracy of 83.9%, a sensitivity of 

84.4%, and a specificity of 83.3%. Its positive predictive value was 84.4%, and the negative 

predictive value was 83.3%.  

Our statistical analysis revealed fifteen statistically significant variables within the 

model: mean corpuscular hemoglobin concentration, chlorine, eosinophils, alkaline 

phosphatase, ferritin, mean corpuscular hemoglobin, red blood cells distribution width, 

potassium, white blood cells, lymphocytes, monocytes, neutrophils, urea, mean 

corpuscular volume, and sodium. Therefore, we created a model using only these 

significant variables. The second simplified model resulted in an accuracy of 85.1%, a 

sensitivity of 86.7%, and a specificity of 85.4%. Its positive predictive value was 84.8%, 

and the negative predictive value was 85.4%.  

Finally, an automatic variable selection process using IWSSr was tested, which can 

be seen in Table 2. 

Table 2. Coefficients calculated for logistic regression model for ‘risk’ with automatic selection 

(IWSSr), for the variables used, together with the confidence interval and its p value. 

Variable Coefficient Confidence Interval (95%) p Value 

Constant 0.7079 0.263 1.153 0.002 

Mean corpuscular haemoglobin 1.3679 0.944 1.791 0 

Gamma glutamyl transferase 2.78 1.112 4.448 0.001 

Red blood cells distribution width 1.0657 0.663 1.469 0 

Creatinine −0.7371 −1.089 −0.385 0 

Total bilirubin 0.4942 −0.173 1.161 0.146 

Mean Platelet Volume −0.1804 −0.479 0.118 0.236 

Large Unstained Cells 0.4084 −0.938 1.755 0.552 

HDL-cholesterol −0.676 −1.093 −0.259 0.002 

This resulted in some variables being discarded (one of them was ferritin (more 

expensive)), resulting in a model with only 8 variables: mean corpuscular hemoglobin, 

gamma-glutamyl transferase, red blood cells distribution width, creatinine, total bilirubin, 

mean platelet volume, large unstained cells, and high-density lipoprotein cholesterol. This 

model provided very similar performance to the prior models, with an accuracy of 84.8%, 

a sensitivity of 83.8%, and a specificity of 83.2%. Its positive predictive value was 86.3%, 

and the negative predictive value was 83.2%.  

It is remarkable that there were 14 participants followed in the ABU and that they 

were classified as no risk for the predicted model, due to the number of SDUs declared in 

their consumption. With the result they obtained, they were considered positive by the 

model, and when calculating the sensitivity and specificity, they were by both considered 

as false positives among the 23 total false positives. 

3.2. Classification Tree 

Figure 4 shows the final classification tree produced. Although this presented a 

somewhat lower predictive accuracy than the logistic regression, classification trees are 

easier to interpret, as well as capable of explaining their inference process. Our 
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classification tree resulted in an accuracy of 79.4%, a sensitivity of 78%, and a specificity 

of 77.5%. Its positive predictive value was 81.3%, and the negative predictive value was 

77.5%. 

It is worth noting that there were 20 participants followed in the ABU and that they 

were classified as nonrisk due to the number of SDUs declared in their consumption, they 

were considered as positive by the classification tree, and when calculating the sensitivity 

and specificity, they were therefore considered as false positives. Furthermore, among the 

31 participants classified as false positives in the classification tree and 23 in the logistic 

regression (IWSSr), there were 14 coincidences. 
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Figure 4. Classification tree. In that figure, the square brackets are not bibliographic references. It shows the generated tree, whose initial root node is with the 

variable ferritin, and depending on whether its value is greater or less than 136.5, it continues with total proteins (TP), or gamma-glutamyl transferase (GGT), and 

later, depending on the value of these, it continues toward different variables, to finally reach the different sheets, in the lower part, that predict whether the 

participant is at risk or not at risk, with respect to risky alcohol consumption. 
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3.3. Bayesian Network 

This network, evaluated with all the variables or the subset resulting from an 

automatic variable selection process, gave its best results when using the 10 variables 

selected through the IWSS algorithm, starting with a subset without ferritin, as was the 

case with the logistic regression. The selected variables were: study level, basophils, 

creatinine, alkaline phosphatase, gamma-glutamyl transferase, mean corpuscular 

haemoglobin, hematocrit, red blood cells distribution width, lactate dehydrogenase, and 

urea. The accuracy was 87.5%, sensitivity was 88.3%, specificity was 86.6%, positive 

predictive value was 88.3%, and negative predictive value was 86.6%. The network 

created is shown in Figure 5, whose nodes contain the probability tables for risk and the 

discretized variables shown in Table 3. An interpretation example for this table is: given 

a patient at “risk” (according to the cut-off pattern used in this study), their probability of 

having a GGT value > 46.5 is 42.8%. If you are a “no risk” patient, only 7%. The 

Supplementary Material (Example S2) shows an example of prediction by using the 

Bayesian network.  

 

Figure 5. Prediction of alcohol use by 9 biomarkers and the study level using machine learning, 

obtained by a Bayesian network. BAS = Basophils, CREA = Creatinine, ALP = Alkaline phosphatase, 

GGT = Gamma glutamyl transferase, MCH = Mean corpuscular haemoglobin, HCT = Hematocrit, 

RDW = Red blood cells distribution width, LDH = Lactate Dehydrogenase. 

Table 3. Probability table for risk and the discretized variables in the Bayesian network. 

Variable Value Risk No risk 

Gamma glutamyl transferase 
≤46.5 0.572 0.929 

>46.5 0.428 0.071 

Mean corpuscular haemoglobin 
<31.3 0.25 0.8 

≥31.3 0.75 0.2 

Educational level 

1 0.020 0.003 

2 0.202 0.033 

3 0.526 0.282 

4 0.122 0.245 

5 0.082 0.312 

6 0.048 0.124 

Basophils 

≤0.01 0.009 0.107 

0.01–0.015 0.077 0.027 

0.015–0.02 0.003 0.216 

>0.02 0.911 0.649 

Creatinine 
≤1.025 0.871 0.598 

>1.025 0.129 0.402 

Alkaline phosphatase 

≤34 0.003 0.131 

34–84.5 0.771 0.810 

>54.5 0.226 0.058 

Hematocrit 
≤47.09 0.618 0.850 

>47.09 0.382 0.150 
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Red blood cells distribution width 
≤13.05 0.141 0.469 

>13.05 0.859 0.531 

Lactate Dehydrogenase 
≤256.5 0.836 0.985 

>256.5 0.164 0.015 

Urea 

≤23.5 0.415 0.070 

23.5–40.5 0.519 0.566 

>40.5 0.066 0.364 

As in the other methods used, the Bayesian network classifies as positive (risk 

drinkers) some participants followed in the ABU who would belong to the group of no 

risk by the declared SDUs. Specifically, of the 20 false positives in the sample classified by 

this method, 14 were participants followed up at the ABU and initially classified as not at 

risk. 

Figure 6 shows the predictive strength of each selected parameter, as measured 

individually with the Bayesian network classifier.  

 

Figure 6. Predictive strength of each parameter selected in the Bayesian network. 

In terms of accuracy, we can see that none of them present such a good value as all 

the factors together. That is, while selected factors were not capable of providing 

predictive power individually (ranging from 55 to 75%), when their interaction was used 

to feed the classifiers, the accuracy improved greatly up to 87.5%.  
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4. Discussion 

This study used three methods to predict alcohol use disorder with a combination of 

biomarkers and medical information using machine learning and data science. As far as 

we know, this is one of the few studies to compare the discrimination accuracy of 48 

combined biomarkers at the same time. In total, 52 variables were tested (48 numerical 

variables and 4 categorical variables) in the predictive model for detecting alcohol use.  

There is also evidence of the usefulness of some biomarkers individually, for 

example, the relationship between the lower platelet counts (<119 k/mL) and higher risk 

for complicated alcohol withdrawal syndrome [39]; however, our best predicted model 

using the Bayesian network did not select the platelet count with the best variables for 

combining. Regardless, this parameter was selected in the classification tree, just as the 

mean platelet volume was necessary for the prediction by logistic regression with IWSSr.  

Another study [40], similar to ours, used machine learning and combined 

psychological variables, substance use history, demographics variables, family history, 

and three laboratory biomarkers (thyroid stimulating hormone, hematocrit, and 

hemoglobin A1C percentage). 

Some authors used machine learning in the prediction of AUD, with other features, 

such as electrophysiological (electroencephalogram coherence), psycho-social genetic 

information [41], and multimodal biomarkers; another study tested if risk factors for 

alcohol use disorders (family history, male sex, impulsivity, low level of response to 

alcohol) predicted the rate of binging throughout the alcohol self-intravenous 

administration session [42]. In the study of [43], they tested 38 features (sex and age), 

history of smoking, and some biomarkers (chemistry, liver function, hematology, and 

lipids).  

A systematic literature review by Ebrahimi et al. described the more important 

studies for AUD prediction using machine learning in the last 10 years. It concluded that 

several features were used for prediction, such as demographics, drinking behavior, 

family history, and electronic health records, but the lack of deep learning techniques for 

predicting AUD is evident and they suggested, as future research, challenges for the 

prediction of AUD [44]. 

Choosing a combination of variables can improve the predictive value of the 

variables separately. As can be seen in Figure 6, this clearly proves that predictive features 

should not be selected by evaluating them in a univariate manner, but multivariate 

evaluation is most advisable. The parameter predictive power individually is not so high 

(ranging from 55 to 75%), but when the parameters interact, the accuracy improves greatly 

up to 87.5%. 

Our study selected the optimum combination of biomarkers as objective data by 

three different types of predicted models to overcome the weakness of self-assessment 

questionnaires, where people can deny or minimize the quantity or frequency of their 

patterns of alcohol use [45]. Our tool had a sensitivity from 78% with the classification tree 

to 88.3% with the Bayesian network, and a specificity from 77.5% with the classification 

tree to 86.6% with Bayesian network. Although the logistic regression’s accuracy was 

good, it did not fit the data used excessively well (R2 = 67%). The classification tree, despite 

its low accuracy (79.4%), had the advantage of interpretability. Our three predicted 

models (Logistic Regression (IWSSr), Classification Tree, Bayesian network) had positive 

predicted values of 86.3%, 81.3%, and 88.3% and negative predicted values of 83.2%, 

77.5%, and 86.6%, respectively. If we pay attention to the false positives (FP) with the three 

predictive models, there were some coincidences, regardless of the predictive model used. 

In the logistic regression model, 14 false positives in ABU participants were present in the 

23 participants classified as no risk with our cut point of SDUs at the beginning of the 

prediction. In the classification tree model, of the 31 FPs, 20 were ABU participants labeled 

as “No Risk,” and of those 31 FPs of the tree, 13 of the 23 FPs of the logistic regression 

matched. Of those 13, two different classifiers failed, indicating that perhaps the number 

of weekly SDUs consumption was not real. Finally, paying attention to the FP with the 
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Bayesian network, of the 20 FP, 14 belonged to ABU participants relabeled as “no risk,” 

again implying that something was happening with the SDUs recognized for these 

participants. One of the possible reasons for these numerous coincidences may be that 

people with alcohol use disorders sometimes minimized their consumption and 

frequency. Therefore, although according to our cut point, they were labeled as “no risk,” 

their blood test parameters applied to the regression model predicted that they consume 

alcohol. We checked the medical histories of these participants, and most of them had 

alcohol-related medical problems in their personal medical history (trauma, heart attack, 

transient ischemic accident, cerebral vasculopathy, pancreatitis, legal problems…), so we 

have the hypothesis that they could have minimized the consumption of alcohol. 

Only a few studies have attempted the combined use of biomarkers and data science. 

Some articles combined screening questionaries with some biomarkers, presenting a 

sensitive tool for detecting alcohol use. The study of [46] combined CAGE with GGT, and 

they guessed a good tool for detecting alcohol dependence. Another one of [47] combined 

two different markers (CDT and GGT) to increase diagnostic accuracy for alcohol use 

disorder.  

Other studies combined biological markers with a questionnaire and clinical 

parameters for improving the recognition of heavy drinkers [48]. It is similar to our 

Bayesian network in that one of the selected variables for the best prediction is 

“educational level,” clinical information that is easy to obtain in a patient's interview. 

A recent study found an association of the elevation of 2-hydroxy-3-methylbutyric 

with self-reported alcohol intake, and its higher level was associated with the risk of 

hepatocarcinoma (OR = 2.54; 95%CI = 1.51–4.27) and pancreatic cancer (OR = 1.43; 95% CI 

1.03–1.99) [4]. This other study [49] combined two indirect biomarkers (mean corpuscular 

volume and CDT) with one direct biomarker (Peth) for detection of alcohol ingestion, and 

they compared the results with a measure of blood alcohol concentration.  

This study [50] validated a new method for the simultaneous determination of four 

alcohol biomarkers, namely, ethyl glucuronide (EtG), ethyl sulfate, N-acetyltaurine, and 

16:0/18:1-phosphatidylethanol (Peth). It was developed and validated using human whole 

blood. Although the N-acetyltaurine needs further studies for global use, and an adequate 

cut-off concentration has to be defined, the parallel detection of EtG and Peth in one 

chromatographic method contributes to a more precise result than detection separately.  

This study serves as a focus point to search for efficient combinations of direct 

markers, and thus in the future, studying their pharmacokinetics and pharmacodynamics 

could help to better understand the different patterns of alcohol consumption, as well as 

being able to prevent the complicated alcohol withdrawal syndrome. Nowadays, these 

blood determinations are not universalized and are not accessible to most hospitals, so for 

now, we can use the combinations of indirect markers to improve diagnosis.  

The present study had some strengths, including a sufficient sample size (n = 334) 

and a clinically strict diagnosis for AUD by experts in the field, from addictive unit care. 

We checked all drugs [51] people took as chronic treatment and the presence of active 

viral hepatitis that could affect the biomarkers values (transaminases). We excluded 

people from blood donors with AUDIT score > 8 for men and > 6 for women to ensure 

that almost every patient from that group was not exposed or minimally exposed to 

alcohol. Furthermore, we divided the two groups for the predicting model to avoid that 

bias, depending on the cut point of SDUs. For that reason, in the predicted model, some 

people from the ABU group received the label “no risk,” but none of the blood donors 

received the label “risk.” 

However, this study had several limitations. First, the retrospective part was based 

on the clinical history of ABU participants; thus, we consider that the predicted model´s 

sensitivity and specificity would have been better if we had an objective measure of SDUs, 

and not only the patient’s version. In the future, we plan to conduct a prospective study, 

with an alcohol test (breathalyze) of participants, to not need the SDU cut-point.  
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Secondly, we did not use the CDT, which is one of the most specific biomarkers [52], 

but this was because our laboratory does not use this biomarker routinely, and we wanted 

a tool that could be used in any consultation at primary care or hospitalized participants 

with the standard basic blood test.  

Thus far, as there is no ideal validated biomarker, which is essential to explore new 

combinations of biomarkers [10] and discover new ways to detect alcohol use with 

inexpensive and accessible tools, using data science combined with medical knowledge. 

We are currently working on a project, creating an app for smartphones or computers, 

where you can fill in the biomarker value in each box to obtain the result of the predicted 

model (Bayesian network), so it will be easy to use and you will be able to do it at the 

patient’s bedside.  

A future study will be to validate the predictive model by a computer or smartphone 

app, where it will be possible to write the biomarker value and receive from the 

application the predicted label. Secondly, another project will be to create a system for 

detecting when a patient underestimates the alcohol quantity; for example, 14 participants 

were labeled as no risk, and the predicted model classified them as at risk. Is the predictive 

model making mistakes, or did the patient not say the correct alcohol quantity consumed? 

In addition, 10 of them were labelled as at risk for the three predicted models, so 

something about it has to be resolved in the future.  

5. Conclusions 

By combining several biochemical markers, clinical history (study level), and 

machine learning, we can enhance the detection of AUD, helping to prevent future 

complications from alcohol use. Our best predictive model to predict risky alcohol 

consumption, with an accuracy of 87.5%, using a Bayesian network, selected the best 

combination of nine biomarkers (basophils, creatinine, alkaline phosphatase, gamma-

glutamyl transferase, mean corpuscular haemoglobin, hematocrit, red blood cells 

distribution width, lactate dehydrogenase, and urea) and the study’s level, being able to 

predict if the biomarkers alterations of our patients could be secondary to alcohol 

consumption. It had a sensitivity of 88.3% and a specificity of 86.6%. The selected variables 

were easy to obtain, even in emergency services, so if the model was validated, it could 

be an accessible tool for several doctors in many departments (emergencies, traumatology, 

psychiatry, internal medicine, general practice doctor), advocating for an early diagnosis 

of AUD and anticipating the possible problems derived from its consumption.  
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