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Abstract: Pooling radiomic features coming from different centers in a statistical framework is
challenging due to the variability in scanner models, acquisition protocols, and reconstruction settings.
To remove technical variability, commonly called batch effects, different statistical harmonization
strategies have been widely used in genomics but less considered in radiomics. The aim of this
work was to develop a framework of analysis to facilitate the harmonization of multicenter radiomic
features extracted from prostate T2-weighted magnetic resonance imaging (MRI) and to improve the
power of radiomics for prostate cancer (PCa) management in order to develop robust non-invasive
biomarkers translating into clinical practice. To remove technical variability and correct for batch
effects, we investigated four different statistical methods (ComBat, SVA, Arsynseq, and mixed effect).
The proposed approaches were evaluated using a dataset of 210 prostate cancer (PCa) patients
from two centers. The impacts of the different statistical approaches were evaluated by principal
component analysis and classification methods (LogitBoost, random forest, K-nearest neighbors, and
decision tree). The ComBat method outperformed all other methods by achieving 70% accuracy
and 78% AUC with the random forest method to automatically classify patients affected by PCa.
The proposed statistical framework enabled us to define and develop a standardized pipeline of
analysis to harmonize multicenter T2W radiomic features, yielding great promise to support PCa
clinical practice.

Keywords: MRI; radiomics; batch effects; prostate cancer; PCA

1. Introduction

Radiomics is a quantitative approach to medical imaging that aims at enhancing
the data available to clinicians by means of advanced mathematical analysis [1,2]. The
key advantage of radiomics is the automatic extraction of high-dimensional quantitative
features from medical images containing information on tumor pathophysiology. These
features can be used later to facilitate clinical decision making by means of building
predictive models for diagnosis and prognosis purposes [3].

In particular, the rapid development of medical imaging techniques and modalities
has demonstrated great value in the screening, diagnosis, treatment response measurement,
and prognosis evaluation of prostate cancer (PCa) [4]. PCa is the second most diagnosed
cancer worldwide in men [5]. In fact, radiomic investigation has been intensively used for
PCa detection, localization, staging, aggressiveness assessment, treatment decision-making
assistance, and PCa patient follow-up. Recent studies have demonstrated that multipara-
metric magnetic resonance imaging (mpMRI) could be a better radiomic biomarker than
systematic TRUS biopsy to investigate suspected PCa patients [6]. Several studies have
been published so far on the diagnostic and prognostic roles of radiomics for PCa [7].
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The increased interest in the application of radiomics in the clinical field has brought
the need to carry out large multicenter studies and consequently to establish transparency
in radiomics-based models. As a result, various initiatives have acknowledged the need for
radiomics standardization to increase repeatability and to bring radiomics research into
clinical practice [8]. Among them, the Image Biomarker Standardization Initiative (IBSI)
aims to address the difficulty in reproducing and validating radiomics. In fact, standard-
ized definitions of radiomics features with verifiable reference values are lacking, and the
image processing schemes required to compute features are not implemented consistently.
Moreover, the reporting in several studies is insufficiently detailed to reproduce findings [9].
According to a recent review [10], only few studies referred to the IBSI guidelines or used
software for radiomic features extraction that was IBSI-compliant (e.g., PyRadiomics). A
standardized methodology for extracting and processing the features is required because
many institutions employ various imaging methodologies and tools, which might directly
affect radiomic characteristics and delay the conversion of radiomic results into clinical
practice. The effect of feature normalization choice on the reproducibility of results is an
important and frequently undervalued part of the radiomic framework of analysis. Normal-
ization standards are needed for quantitative radiomic features to reduce within-bias effects
and between-bias effects. The first are associated with differences in scale, range, and statis-
tical distributions, while the second are called batch effects and are associated with technical
variations induced by different scanners or protocols and samples labeled at different times.
Given the above, there is an unmet need to establish robust pre- or post-image-acquisition
methods for radiomics data harmonization. There are some image-acquisition factors that
generate radiomics variability. These variability-causing factors are the “batch effects” [11].
It is well known that high degrees of skewness in untransformed features can artificially
lower p-values in statistical analysis [12]. Additionally, failing to normalize features and
using incorrect normalizing techniques during post-processing steps may cause individual
features to be over-represented or under-represented in statistical analyses, which could
eventually introduce bias into generated models. Standards for normalizing quantitative
radiomic characteristics appear to be lacking in the extant literature. On the other hand,
several efforts have been shown to improve normalization procedures for image intensity
values as a crucial pre-processing step. In fact, before extracting quantitative radiomic
characteristics, image variability and normalization stages are crucial correction methods
for imaging-related batch effects [13–18]. Different techniques were presented in a recent
review [18], such as the standardization of image acquisition, the post-processing of raw
sensor-level image data, data augmentation techniques, and style transfer.

Moreover, in a multicenter study, despite the normalization step, the radiomics data
were affected by unwanted variation, i.e., batch effects, caused by image acquisition [19].
In this case, batch-removal statistical approaches are necessary to harmonize the data
from all different batches into the same space, removing the non-biological effects. Recent
studies [3,20] have shown that the choice of normalization approach influences quantita-
tive radiomic analysis in breast cancer. Methods such as scaling, z-score, robust z-score,
and upper-quartile normalization were less harsh than log-transformation, quantile, and
whitening. However, care should be taken when applying a log-transformation to radiomic
data since it is possible to exacerbate rather than decrease the skewness of the distribu-
tion. On the other hand, the quantile normalization method transforms original data to
remove undesirable technical variation. Although this method has proved to be effective in
practice, it has the danger of removing important data and artificially introducing features
that are hardly distinguishable between samples [21]. The use of whitening normalization
with PCA can make a more substantial normalization of the features to give it zero mean
and unit covariance, resulting in decorrelated transformed features [22]. However, this
transformation has the drawback of stretching all input dimensions (including noise) to the
same size, which can substantially amplify data noise.

Additionally, the majority of radiomics investigations have been retrospective single-
center studies, and the majority of published models did not include external validation. In
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fact, one of the most challenging aspects is related to the different characteristics of medical
images when acquired on different scanner models from different manufacturers using
different acquisition protocols and reconstruction settings, which is currently an unavoid-
able scenario in clinical practice. It has been demonstrated that radiomic characteristics are
sensitive to this heterogeneity, which makes it difficult to pool data for statistical analysis
and/or machine learning (ML) in order to create reliable models. Recent reviews [18,19,23]
discussed existing methods to perform data integration and harmonization with the aid
of reducing the unwanted variation associated with batch effects. Different techniques
of removing batch effects have been widely used when combining data from different
experiments consisting of two or more microarray gene expression datasets exploited in
a downstream analysis. The different batch effect removal methods can be categorized
into three groups: location-scale (LS), matrix factorization (MF), and discretization meth-
ods, which include methods such as the identification of reproducible feature intensity
harmonization, ComBat and its derivatives, and normalization using deep learning [18].

Less interest has been shown in radiomics. However, the most used methods to remove
the batch effects in radiomics are the ComBat method and its variations [11,18,24–26]. One
study by Ibrahim et al. [27] presented a framework involving a robust radiomics analysis
and the application of a post-reconstruction feature harmonization method using ComBat
to remove batches affecting radiomic features. A similar framework was used in another
study [28] to assess the performance of ComBat on a CT phantom dataset obtained with
the same acquisition and reconstruction parameters, except for the in-plane resolution, on
two CT scanner models.

Only a few studies investigated a method other than ComBat, for instance, singular
value decomposition and voxel size [11].

Therefore, this study aimed to develop a statistical framework of analysis to facili-
tate the harmonization of multicenter radiomic features to develop robust non-invasive
biomarkers to translate to clinical practice by investigating different batch effect removal
methods that are widely used in genomics but less considered in radiomics. The rationale
behind this study was also to investigate which batch effect methods are more effective for
removing the center effect while retaining the pathophysiological information in order to
facilitate multicenter studies and the exportation of a radiomic model to different centers.

This framework was developed considering T2W MR images due to the high spatial
resolution and the superior anatomical details they provide [29,30].

2. Materials and Methods
2.1. Datasets
2.1.1. Center 1

Patient imaging and histopathology records were collected at H.S. Maria delle Grazie,
Italy. Prior to the MR examination, informed consent was acquired. This retrospective study
comprised 152 individuals who received prostate MRI between April 2013 and September
2018 due to increased PSA levels and/or the clinical suspicion of PCa and, subsequently,
biopsy. Further information can be found in Brancato et al. [31]. The study was conducted
in accordance with the Declaration of Helsinki, and the study protocol was approved by
the ethics committee of the Istituto Nazionale Tumouri “Fondazione G. Pascale” (protocol
number 1/20). Biopsy results were considered the gold standard. In particular, lesions
were classified as positive for PCa in cases of GS ≥ 3 + 3.

2.1.2. Center 2

Patient imaging and histopathology records were collected at H.S. Maria di Terni,
Italy. Informed consent was obtained before MR examination. In total, 58 patients who
underwent MRI of the prostate between July 2015 and October 2021 due to elevated PSA
levels, and/or the clinical suspicion of PCa and, subsequently, biopsy were included in
this retrospective study. The study was conducted in accordance with the Declaration
of Helsinki, and the study protocol was approved by the Regional Ethics Committee of
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Umbria (protocol number 25069/22/ON). Biopsy results were considered the gold standard
(PCa-positive lesions in cases of GS ≥ 3 + 3).

2.2. Image Acquisition

For center 1, the MRI acquisition protocol included T2W, T1W, DCE-MRI, and DWI
(b values of 50, 400, and 1000 s/mm2) images. The DWI included an apparent diffusion
coefficient (ADC) map generated at the time of acquisition. Patients were injected with the
contrast agent Gadoteridol (Gd-HP-DO3A; Pro Hance, Bracco Diagnostics, Princeton, NJ,
USA) at a dose of 0.1 mL/kg before DCE-MRI acquisition. All patients were imaged using a
MAGNETOM-Avanto scanner (Siemens Healthcare, Erlangen, Germany) at 1.5 T with both
an endorectal coil and a phase-array pelvic coil. For center 2, the MRI acquisition included
T2W images, T1W images, and DWI (b value range of 0–2000 s/mm2) including an ADC
map generated at the time of acquisition. All patients were imaged using a MAGNETOM-
Verio scanner (Siemens Healthcare, Erlangen, Germany) at 3 T with both an endorectal coil
and a phase-array pelvic coil. The technical parameters of the MRI sequences are detailed
in the Supplementary Materials.

2.3. Biopsy Protocol

All prostatic biopsies were TRUS-guided and performed under anesthesia using
an 18-gauge Tru-Cut needle. Each patient underwent both systematic biopsies (average
of 12 random samples of the entire prostate gland) and target biopsies (at least three
samples taken from each lesion identified by MRI). The number of randomly taken samples
depended on the dimensions of the prostate gland, and the number of target samples
depended on the dimensions of each lesion. Target sampling was carried out utilizing an
MRI/TRUS fusion, alternately employing the cognitive approach or specialized software,
along with ultrasound platforms from different manufacturers. The gross description
included the number and core lengths of the needle biopsies. The specimens were fixed
in buffered 10% formalin and routinely processed. Thin sections of four microns were cut
and stained with hematoxylin and eosin (H&E). Supplementary Materials were performed
for possible immunohistochemical stains to prove the loss of basal cells in small foci of
cancer (p63 and high-molecular-weight keratin), combined with other antibodies that are
overexpressed in prostatic cancer (anti-AMACR/p504S). One senior pathologist (with more
than 10 years of experience in prostate specimen interpretation), who was blinded to the
MRI reports, reviewed the pathological slices and classified the tumors according to the 4th
WHO classification, further grading them using GS and the cancer group grade. The final
pathology report also included the tumor extent in each needle biopsy and the percent core
involvement by tumor.

2.4. Image Processing and Radiomics Feature Extraction

Two experienced radiologists were asked to draw 3D regions of interest (ROIs) in the
biopsied lesions in consensus while also looking at the b = 1000 (for center 1) and b = 1500
(for center 2) DWI volume. Lesions were segmented utilizing in-house-developed software
for region labeling. The radiologists were blinded to both the histology results and all
clinical information related to the retrospective prostate MR images during the segmen-
tation procedure. Normalization was applied to T2W image intensities prior to radiomic
feature extraction. Specifically, intensities were centered at their respective means with
standard deviations of all grey values in the original image [32–35]. B-spline interpolation
was used to correct variability from parameters related to voxel size and to unify the voxel
size across the cohort. In particular, MR images were resampled to an isotropic voxel size
of 2 × 2 × 2 mm3 to compromise between in-plane and out-of-plane information interpola-
tion [9,36]. As suggested by the PyRadiomics community, each image was discretized by
resampling the grayscale values using a fixed bin width, allowing us to obtain an ideal bin
count in the range of 16–128. Therefore, a preliminary extraction of the grayscale ranges
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was performed within all ROIs, and the optimal bin width of 3, which maximized the
number of ROIs falling in the above-mentioned range of bins, was chosen.

A total of 1302 radiomics features were extracted from segmented ROIs using the open-
source Python package PyRadiomics (https://pyradiomics.readthedocs.io/en/latest/, ac-
cessed on 1 July 2022). The extracted radiomics features comprised five groups: (1) 14 shape
features; (2) 18 first-order features (intensity statistics); (3) 74 multidimensional texture
features, including 23 gray-level co-occurrence matrix (GLCM), 16 gray-level size zone ma-
trix (GLSZM), 16 gray-level run length matrix (GLRLM), 14 gray-level dependence matrix
(GLDM), and 5 neighboring gray-tone difference matrix (NGTDM) features; 1196 transformed
first-order and textural features, including (4) 736 wavelet features in frequency channels
LHL, LLH, HHH, HLH, HLL, HHL, LHH, and LLL, where L and H are low- and high-pass
filters, respectively; and (5) 460 LoG-filtered features with sigma values ranging from 1.0 to
5.0 and step size = 1. The first-order and multidimensional texture features (groups (2) and
(3)) were grouped together and are referred to as “original features” The computing algo-
rithms can be found at www.radiomics.io (accessed on 1 July 2022) and the IBSI presented a
document to standardize the nomenclature and definition of radiomic features [9].

2.5. Techniques for Radiomics Variability Batch Correction

There are different sources of variability due to biological (between subjects) and
technical effects (everything downstream from obtaining radiomic features).

Relevant sources of technical variability (batches) were identified for further correction.
The main sources of unwanted variation were due to differences in acquisition parameters,
acquisition protocols, site procedures, scanner configurations, imaging reconstruction
techniques, image analysis, and other intrinsic features as well as unknown factors [1].
Although the usual approach in batch correction is to protect the known informative
covariates and remove all remaining heterogeneity, some methods could remove unknown
but important biological differences between samples.

2.5.1. ComBat

ComBat correction was applied using the SVA package (by Jeffrey T. Leek, https:
//bioconductor.org/packages/release/bioc/html/sva.html, accessed on 1 January 2022)
from R version 3.6.1 [37].

The ComBat approach was first employed in genomics, but it is now commonly
utilized in radiomics as well. ComBat is primarily based on an empirical Bayes framework
to eliminate batch effects. The ComBat method determines a batch-specific transformation
aimed at expressing all data in a common space devoid of center effects and has shown
robustness with small sample sizes. In radiomics, ComBat works by first standardizing the
data. Then, hyperparameters, which are used to compute the empirical Bayes estimates of
conditional posterior means feature-wise by center for the center effects parameters, are
estimated by the method of moments.

2.5.2. SVA

SVA, among other methods, has been developed to account for the unknown/latent
batch variables for high-throughput platforms [38]. This leads to the detection of fea-
tures that are consistently different between groups, removing all common sources of
latent variation. However, in some cases, latent variables may be important sources of
biological variability [37]. This approach has previously been shown to result in more
accurate and stable gene rankings, improved false discovery estimation, and correct p-value
distributions [39]. For radiomics studies, it has not been widely used.

2.5.3. ARSyNseq Method

ARSyNseq (ASCA (ANOVA-simultaneous component analysis) removal of system-
atic noise) is a novel strategy based on the ASCA model developed by Smilde et al. [40]
to remove structural noise from microarray datasets. ASCA combines analysis of vari-

https://pyradiomics.readthedocs.io/en/latest/
www.radiomics.io
https://bioconductor.org/packages/release/bioc/html/sva.html
https://bioconductor.org/packages/release/bioc/html/sva.html
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ance (ANOVA) and principal components analysis (PCA) to analyze multifactorial omics
datasets. ASCA has been used for exploratory analysis and for the identification of respon-
sive genes in transcriptomics [41]. Therefore, ARSyNseq uses the PCAs of the ANOVA
parameters and residuals in the ASCA model in order to identify and distinguish noise
and signals in microarray data. Following this decomposition, the relevant data ele-
ments are reconnected to reconstruct a filtered gene expression matrix that is free of
structural biases. To the best of the authors’ knowledge, only genomics research has used
the ARSyNseq technique.

2.5.4. Mixed Effect Model

In genomics, batch effects can be modeled in mixed effects models in which all cells
from each batch share a random effect. Variations of mixed effect models include the nested
fixed effect models and nested mixed effect models, which were designed for scRNA-
seq, and they belong to the single-gene-based methods, which ignore potential common
information shared among all genes, which in turn might result in a loss of power [42].

The mixed effect model assumes the batch effect to be a random variable, and these are
usually assumed to follow a normal distribution. Therefore, there is no hard assumption
that the average batch effect in the given data is the same across groups, even though on
the population level (when the number of batches is infinite) we assume the average to
be the same [38]. To the best of the authors’ knowledge, the mixed effect model has never
been used for multicenter radiomics studies.

2.6. Framework of Radiomic and Statistical Analysis

The proposed framework of analysis is shown in Figure 1. MRI images were acquired
with different acquisition protocols from centers 1 and 2. In particular, T2W images were
explored and radiomic features were extracted to explore the radiomics variability and
identify the sources of variability in the multicenter study. ADC images were also explored,
and radiomic features were extracted, but batch effects were not visible.
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Then, image post-processing and batch correction methods were implemented to
reduce the radiomics variability. First, extracted radiomic features were scaled. Each
radiomic feature was centered and scaled according to the generic function in R: scale.
This was performed to minimize their basic differences in scale and range [20]. Second,
the scaled radiomic features were further normalized by a quantile normalization method.
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The original data were transformed using the quantile normalization approach. Quantile
normalization, which transforms the original data to remove unwanted technical variation
by forcing the observed distributions to be the same as the average distribution, which is ob-
tained by taking the average of each quantile across samples, was used as the reference [43].
Castaldo et al. [3,20] showed that quantile normalizations outperformed other normaliza-
tion techniques to characterize cancer subtypes, grades, and aggressiveness. Third, four
different batch correction methods were implemented: ComBat, SVA, ARSyNseq, and a
mixed effect model. Principal components analysis (PCA) was used to assess the impact of
harmonization. Moreover, different classification approaches (LogitBoost, random forest,
K-nearest neighbors, and decision tree) were trained, validated, and tested using the princi-
pal components (PCs) of each transformed dataset to automatically detect patients affected
by PCa.

A statistical analysis and classification were performed using R software (version 3.6.1,
Vienna, Austria) [44]. Continuous variables were expressed as means, standard deviations
(SD), medians, and ranges. The Shapiro–Wilk test was used to determine the normality
of data. Radiomics data were tested for normality before and after the application of the
normalization methods. The Wilcoxon rank-sum test or t-test were used, as required, for
comparisons between groups. Categorical variables were expressed as percentages and
were compared using the chi-square test or Fisher’s exact test. A p-value less than 0.05 was
considered significant. Holm’s correction was used for multiple-hypothesis correction, if
necessary. Patients with multiple lesions were considered as single patients.

2.6.1. PCA

A PCA was applied to radiomic features in five datasets: (1) untransformed scaled ra-
diomic features; (2) transformed radiomic features with ComBat; (3) transformed radiomic
features with SVA; (4) transformed radiomic features with ARSyNseq; and (5) transformed
radiomic features with the mixed effect model. Cumulative variance was set to 60% to select
the minimum number of PCs. To find the batch removal strategies that could best describe
the variance in the data using PCA, we investigated PC1 and 2 of the untransformed scaled
radiomic characteristics. For each dataset, the loading and variable contributions were
investigated. The PCs selected for all methods were then investigated via the Wilcoxon
sign rank test among positive and negative biopsies.

2.6.2. Classification Approaches

On the basis of PCs that could account for 60% of the cumulative variance, classifica-
tion methods were considered to automatically classify positive biopsies to PCa. These
approaches were investigated in order to empirically determine the impacts of the batch
effect methods. The dataset was split into 80% for training and cross-validation and 20% for
testing. The rationale behind this division was that, to minimize bias and overfitting issues,
a classifier should be tested on a separate set of data. We performed “stratified sampling”,
where the split of training and testing was made by preserving the percentage of samples
for each class (positive and negative biopsies).

Repeated (N = 100) 10-fold cross validation was employed. Since there was a ~34% rate
of events (negative biopsy), we employed a synthetic minority over-sampling technique
(SMOTE) to facilitate the training of the models.

Four traditional classification methods were investigated: additive logistic regression
(LogitBoost), namely a boosting algorithm that operates as an approximation to additive
modeling on the logistic scale using the maximum Bernoulli likelihood; random forest trees
(RF), namely an ensemble learning method for classification that operates by building a
multitude of decision trees during training and outputting the class that is the mode of the
classes (classification) [44]; k-nearest neighbors (KNN), which finds a group of K objects in
the training set that are the closest to the test object and bases the assignment of a label on
the predominance of a particular class in the neighborhood [45]; and decision trees (ctree),
which are built from a set of training data using the concept of information entropy [46].
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Regarding model parameters, we employed the default configuration provided in
RStudio for LogitBoost and RF [47]. For LogitBoost, the number of boosting iterations was
set to 100. In the random forest analysis, the number of available variables for splitting
at each tree node was calculated as the square root of the number of predictor variables
(rounded down). Due to the binary nature of the classification problem, K equals 1, 3, 5,
7, and 9 were used in the KNN’s training. Decision trees were created by adjusting the
minimum number of instances per leaf from 2 to 20 and the confidence factor for pruning
from 0.05 to 0.5.

These classification methods were chosen based on the small sample size and the
existing literature. In fact, LogitBoost, decision trees, and KNN have been widely used in
PCa detection [4].

To assess the impacts of the batch removal approaches for radiomic analysis, binary
performances were obtained for each ML method across all methods used in this work.
In addition, 95% confidence intervals (CIs) are also reported for all binary performances
for the repeated 10-fold cross validation. The best-performing model was chosen as the
classifier with the highest accuracy, which is a reliable estimator of both sensitivity and
specificity rates; in the case of equal accuracy, the one with the highest AUC was picked.
A Wilcoxon sum-rank test was used to compare the categorization algorithms over 100
repeats. The values of accuracy and AUC were also graphically investigated via boxplots.
R software (version 3.6.1, Vienna, Austria) [33] was used to build the classifiers.

3. Results
3.1. Study Population

For this study, 154 PCa lesions were identified in 152 patients (102 patients with
positive biopsies and 50 patients with negative biopsies) at center 1, and 58 PCa lesions
were identified in 58 patients (35 patients with positive biopsies and 23 patients with
negative biopsies) at center 2. The demographics and clinical characteristics of the study
population are reported in Table 1.

Table 1. Clinical details and biopsy results on per-patient and per-lesion bases.

Value (Patient-Based) Value (Lesion-Based)

Positive Biopsy Negative Biopsy Positive Biopsy Negative Biopsy

No. of patients/lesions
(n (%)) 137 (65.24) 73 (34.76) 139 (65.57) 73 (34.43)

Median age
(y (range)) 68 (52–81) 64 (54–78) - -

Mean PSA
(ng (SD)) 11.57 (11.69) 8.66 (6.17) - -

Mean PSA density
(ng/mL (SD)) 0.27 (0.33) 0.12 (0.09) - -

Mean prostate volume
(cm (SD)) 50.84 (26) 76.78 (41.65) - -
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Table 1. Cont.

Value (Patient-Based) Value (Lesion-Based)

Positive Biopsy Negative Biopsy Positive Biopsy Negative Biopsy

Prostatic zone

PZ (n (%)) - - 104 (49.52) 52 (24.53)

TZ (n (%)) - - 35 (16.67) 21 (10)

Gleason score

3 + 3 (PCa) (n (%)) - - 63 (45.32) -

>3 + 3 (CS-PCa) (n (%)) - - 76 (54.68) -

PSA = prostate-specific antigen; PCa = prostate cancer (defined as Gleason score ≥ 3 + 3); CS-PCa = clinically
significant prostate cancer (defined as Gleason score ≥ 3 + 4); SD = standard deviation; PZ = peripheral zone;
TZ = transition zone.

3.2. Batch Effect Removal
3.2.1. Radiomic Feature Characterization via PCA

PCA was applied to radiomic features in five datasets: (1) untransformed scaled ra-
diomic features; (2) transformed radiomic features with ComBat; (3) transformed radiomic
features with SVA; (4) transformed radiomic features with ARSyNseq; and (5) transformed
radiomic features with a mixed effect model.

The results (Figure 2) showed that 3 PCs explained 60% of the total variance in the
case of untransformed radiomic features; 4 PCs explained 60% of the total variance in the
case of transformed ComBat radiomic features; 10 PCs explained 60% of the total variance
in the case of transformed SVA radiomic features; and 4 PCs explained 60% of the total
variance in the case of transformed ARSyNseq and mixed effect model radiomic features.

J. Clin. Med. 2023, 12, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 2. Cumulative variance plots for the 5 datasets, based on a threshold of 0.6. (A) Untrans-
formed scaled; (B) quantile: (C) ComBat; (D) SVA; (E) ARSyNseq; and (F) mixed effect model. 

The top 10 radiomic features that contributed to the PCs for each method are reported 
in Supplementary Figure S1.  

Figure 3 shows the PCA scatter plots of top two principal components of the radiomic 
features across the two labels (centers) using untransformed data or data transformed 
with the four batch removal methods.  

Figure 2. Cumulative variance plots for the 5 datasets, based on a threshold of 0.6. (A) Untransformed
scaled; (B) quantile: (C) ComBat; (D) SVA; (E) ARSyNseq; and (F) mixed effect model.



J. Clin. Med. 2023, 12, 140 10 of 19

The top 10 radiomic features that contributed to the PCs for each method are reported
in Supplementary Figure S1.

Figure 3 shows the PCA scatter plots of top two principal components of the radiomic
features across the two labels (centers) using untransformed data or data transformed with
the four batch removal methods.
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Scatterplots of the top two principal components of PCA visually demonstrate the
efficiency of ComBat, ARSyNseq, and the mixed effect model in removing the differences
in radiomic features between labels while shifting the data to different locations. On the
contrary, transformation by only quantile normalization (Figure 3B) was not sufficient to
remove any batch effect. In the same way, SVA did not allow data from two labels to overlay
each other. Moreover, as shown in the table below the graphs in Figure 2, the PC1 of SVA
was lower than the untransformed PC1. This result clearly demonstrated that SVA was not
removing the batch effect. Therefore, for the remaining analyses SVA was excluded.

Statistical analyses were carried out for the PCs of each method (ComBat, ARSyNseq,
and mixed effect) to investigate statically significant differences among positive (class 1)
and negative (class 2) biopsies via the Wilcoxon sign rank test.

As shown in Figure 4, none of the PCs computed for the ComBat method resulted in
statistical differences among the two classes. Only PC3 showed a p-value of 0.05.
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As shown in Figure 5, only PC1 computed for the ARSyNseq method resulted
in statistical differences among the two classes. In fact, PC1 showed a significant in-
crease (p-value = 0.012) in patients with negative biopsies compared to patients with
positive biopsies.
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As shown in Figure 6, none of the PCs computed for the mixed effect method resulted
in statistical differences among the two classes.
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Figure 6. Box plots for mixed effect method between negative biopsy (class 0) and positive biopsy
(class 1).

3.2.2. PCa Patients Classification Methods

A total of 210 patients, of which 137 had positive biopsies and the remaining 73 patients
had negative biopsies, were employed to train, validate, and test four classifiers by using
the PCs for each method (ComBat, ARSyNseq, and the mixed effects model). The classifica-
tion algorithms were trained and validated on 80% of the data and tested on the remaining
20% of the data using the first four PCs to automatically classify patients with positive
biopsies (Class 1).

For the ComBat method, the performance measures are reported in Figure 7A. The
best classifier, with an accuracy value of 70% and an AUC of 78%, was random forest, as
shown in Figure 7B.
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Figure 7. Performance measures to classify patients with positive biopsies for the ComBat method.
(A) Algorithm performance via PCs to classify patients with positive biopsies for the ComBat method.
(B) ROC curves of the four classifiers. PPV: positive predictive value; NPV: negative predictive
value; AUC: area under the curve; LB: LogitBoost; RF: random forest; KNN: k-nearest neighbors; CI:
confidence interval.
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For the ARSyNseq method, the performance measures are reported in Figure 8A. The
best classifier, with an accuracy value of 59% and an AUC of 58%, was KNN (K = 3), as
shown in Figure 8B.
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Figure 8. Performance measures to classify patients with positive biopsies for the ARSyNseq method.
(A) Algorithm performance via PCs to classify patients with positive biopsies for the ARSyNseq
method. (B) ROC curves of the four classifiers. PPV: positive predictive value; NPV: negative
predictive value; AUC: area under the curve; LB: LogitBoost; RF: random forest; KNN: k-nearest
neighbors; CI: confidence interval.

For the mixed effect method, the performance measures are reported in Figure 9A.
The best classifier, with an accuracy value of 55% and an AUC of 62%, was KNN (K = 3), as
shown in Figure 9B.
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Figure 9. Performance measures to classify patients with positive biopsies for the mixed effect
method. (A) Algorithm performance via PCs to classify patients with positive biopsies for the mixed
effect method. (B) ROC curves of the four classifiers. PPV: positive predictive value; NPV: negative
predictive value; AUC: area under the curve; LB: LogitBoost; RF: random forest; KNN: k-nearest
neighbors; CI: confidence interval.

As shown in Figure 10, the ComBat method outperformed the other methods (AR-
SyNseq and mixed effects) in terms of accuracy (Figure 10A), whereas, as shown in Fig-
ure 10B, the AUC values for the ComBat method were significantly higher for LB and the
RF classifier but were lower for KNN and decision tree than for the ARSyNseq and mixed
effect methods.
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Figure 10. Comparison of each classifier (LB: LogitBoost, RF: Random Forest, KNN: k-nearest
neighbors, ctree: decision tree) for each batch removal method used to classify patients with positive
biopsies. (A) Boxplot of accuracy values. (B) Boxplot of AUC values.

4. Discussion

This study investigated the pooling of radiomic features extracted from T2W images of
PCa patients from different centers in a statistical framework. We developed a framework of
analysis to facilitate the harmonization of multicenter radiomic features to develop robust
biomarkers in PCa clinical practice. We investigated different normalization approaches
(ComBat, SVA, mixed effect, and Arsynseq). The proposed approaches were evaluated
using a dataset of 210 PCa patients from two centers and considering T2W axial images. It
is worth noting that the choice of considering T2W sequences for framework development
was determined by its characteristic high spatial resolution and superior anatomical details,
which are crucial for the early detection and characterization of PCa [29,30].

ADC maps were also explored, as they have been shown to be useful for prostate
cancer identification [4]. However, no batch effects were shown. Therefore, for this study
we focused on T2W axial images.

The impacts of the different normalization approaches were evaluated by PCA. The
proposed framework of analysis enabled the standardization of a pipeline of analysis in
order to harmonize multicenter prostate T2W radiomic features, which may lead to more
precise PCa assessment.

Variations in scanner models, reconstruction methods, and acquisition techniques are
common in multicenter research and long-term retrospective investigations. Although
batch effects can be reduced by careful experimental design, they cannot be eliminated
unless the whole study is performed in a single batch. Moreover, combining data from
different centers without carefully removing batch effects can lead to misleading results,
e.g., higher ML performances. In fact, the bias introduced by the non-biological nature of
the batch effects can mask or confound true biological differences. Therefore, it is necessary
to identify and remove the batch effects before proceeding to the downstream analysis [48].

In this circumstance, there is an urgent need for harmonization in order to train
and test efficient models. The harmonization could happen by (1) harmonizing images
(i.e., pre-processing and extracting radiomic features) and (2) harmonizing features (i.e.,
post-processing after extracting radiomic features). The first approach relies on the stan-
dardization of acquisition protocols and reconstruction settings, which are available in
existing guidelines such as the IBSI [9]. However, although following standards and guide-
lines may help reduce multicenter effects, it may not be enough to entirely compensate
for them. Therefore, approach (2), addressing the issue in the radiomic feature domain,
is still relevant. Several statistical methods exist to perform normalization or batch effect
correction. The most used batch effect correction method in radiomics is ComBat. However,
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to the best of the authors’ knowledge, an extensive comparison of ComBat with other
methods remains to be investigated. Therefore, we selected methods that were mainly used
in genomics to investigate the reliability and robustness of those methods in radiomics. To
compare these methods, we proposed a framework of analysis in order to reduce the batch
effect in multicenter studies.

After radiomic features were extracted from MRI images from center 1 and center
2, they were scaled and grouped in one dataset. For the first step to reduce the between-
subjects bias effect, which alters the comparison of the radiomic features in different patients
(namely technical effects due to their basic differences in scale, range, and statistical distri-
butions), we applied the quantile normalization method, which was shown to outperform
other methods in [3], since samples were assumed to be normalized prior to batch effect
correction [4]. In fact, while normalization makes the samples more comparable, it only
aligns their global patterns. Therefore, batch effects affecting the data might still represent
a major source of variance, even after normalization. Thus, the diagnosis of batch effects is
most informative when performed on normalized data [5]. In order to reduce the batch
effect, ComBat, SVA, ARSyNseq, and mixed effect models were applied. To investigate
the effects of batch effect normalization methods, PCA, which is the most common feature
reduction method, was employed, and the classification methods were evaluated to investi-
gate the patients affected by PCa. PCA was chosen as an explorative tool to visualize how
different batch methods are able to disclose different aspects of the data in the scores and
the accompanying loadings. Furthermore, it allows the identification of the most important
radiomic features for the characterization of prostate cancer by analyzing the loadings in
order to generate a combined radiomic signature [6].

PCA was applied to different datasets based on the four batch effect normalization
approaches to investigate the differences among them. By investigating the cumulative vari-
ance, we could observe that the case of ComBat provided comparable results to ARSyNseq
and the mixed effect model, whereas the SVA method needed 10 PCs to explain 60% of
the total variance. Moreover, the scatterplots of the top two principal components of PCA
visually demonstrate that SVA did not allow data from two labels to overlay each other.
Moreover, PC1 of SVA was lower than the untransformed PC1. This result clearly demon-
strated that SVA was not removing the batch effect. Therefore, SVA was excluded. ComBat,
ARSyNseq, and mixed effect showed comparable results, identifying those methods as
promising techniques for radiomics studies.

The same radiomic features contributed to the four PCs for the ARSyNseq and mixed
effect methods, whereas different radiomic features contributed to the PCs for the ComBat
method. This stresses that, while working with quantitative radiomic characteristics,
extreme care must be taken because by using different normalization approaches we can
obtain different findings.

To further investigate the roles that batch effect normalization methods have on the
PCA-based framework, we investigated whether the PCs were able to differentiate among
patients with PCa via classification approaches. The main aim of using the classification
methods was to investigate the impacts of the batch effect normalization methods and the
use of PCA on classification performances.

In terms of accuracy, ComBat achieved the highest accuracy value of all classification
methods by outperforming the ARSyNseq and mixed effect methods. By using PCs
normalized via the ComBat effect, we were able to automatically detect, with 70% accuracy
and 78% AUC, patients with PCa by using the random forest method. One possible
reason for the low accuracy of the model could be the small size of the patient sample.
In fact, more diverse data in the training set led to higher performance. However, these
results are comparable a study by Ligero et al. [11], which showed that ComBat had the
highest improvement of radiomics-based classification in both the phantom and clinical
applications (K-means purity of 65.98 vs. 73.20). On the other hand, Da Ano et al. [24]
achieved better results. In fact, RF provided the best classification accuracy (79–89%) with a
modified version of ComBat. In accordance with other studies [11,24,26], we demonstrated
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that the ComBat method was more effective for removing the batch effect and automatically
classifying PCa patients. Moreover, the Combat approach is suitable for small sample sizes
and can remove batch effects among multiple batches. The ComBat function is able to
remove both known batch effects and other potential latent sources of variation [48]. In the
same way, ARSyNseq is a flexible approach for the correction of systematic biases in single
omic datasets for both declared (batches) or hidden sources of technical noise [41]. On the
other hand, mixed effect models correct for batch as a random effect [49].

In our study, ARSyNseq and mixed effect method based corrections improved the
reproducibility of the radiomics features, although these could have suffered from overcor-
rection, leading to a loss of biological meaning. Overall, as a rule of thumb, when there are a
large number of known or unknown potential confounders, surrogate variable adjustment
may be more appropriate. Alternatively, when one or more biological groups is known to
be heterogeneous and there are known batch variables, direct adjustment may be more
appropriate [37]. However, one of the limitations of ComBat is that it centers the data to the
overall grand mean of all samples, which results in an adjusted data matrix that is shifted
to an arbitrary location that no longer coincides with the location of any of the original
centers. Another disadvantage is that ComBat relies heavily on labeled data [18].

Moreover, another study [27] investigated the concordance (reproducibility) of features
after ComBat harmonization, demonstrating that ComBat cannot be applied to all radiomic
features but rather a percentage of features, depending on the data being harmonized.
Therefore, ComBat harmonization should not be blindly performed on patient data but
following the estimation of adjustment parameters on a phantom dataset [27].

Therefore, future researchers should better evaluate the best methods for their case
studies. Furthermore, researchers should bear in mind that the focus of harmonization
techniques must be the standardization of radiomic feature values across different imaging
settings and patient populations.

Moreover, future studies will also investigate different and consistent radiomic models
based on normalization using deep learning before and after batch effect removal as well
as performance improvement after batch effect removal. In fact, as outlined by a recent
review [18], deep learning solutions (e.g., generative adversarial networks and neural style
transfer techniques) are gaining momentum for addressing variability, especially across
multicenter radiomic studies.

We present a statistical framework combining several approaches to generate a quantita-
tively robust and replicable radiomic signature, which may result in more precise PCa diag-
nosis and prognosis and help clinicians in decision making towards personalized medicine.

However, this study presents some limitations. The primary drawback of our investi-
gation was the small size of the patient sample, which precluded further confirmation in a
larger cohort. Our findings will thus require validation in larger cohorts.

Another limitation of our study was that unknown biological differences such as
“lesion/disease dependent characteristics” could have been removed. In fact, it has proven
difficult to separate heterogeneity due to technical differences from that due to unknown
biological differences. Additionally, the current batch correction methods are intended to
be used each time a new dataset is created due to specific differences in sample conditions
and experimental techniques. In fact, if new data have to be harmonized, then they
must be added to the existing pool of data to perform correctly [18,19]. Moreover, our
findings should be confirmed by using other cancer types for other imaging protocols
and scanners, and the actual effect on diagnostic performance using clinical data needs to
be demonstrated.

5. Conclusions

In conclusion, the predictive ability of the radiomic models was improved with harmo-
nization, with ComBat providing the best results. This was observed consistently through
all machine learning pipelines and performance metrics. However, all batch effect re-
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moval methods presented in this study appear promising to address the batch effects in
multicenter radiomic studies and to possibly raise the statistical power of those studies.

Moreover, we proposed a framework of analysis that enables us to standardize a
pipeline of analysis to harmonize multicenter prostate T2W radiomic features.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jcm12010140/s1, Figure S1: Top 10 radiomic features that con-
tributed to the PCs. (A) Untransformed only scaled; (B) ComBat; (C) SVA; (D) ARSyNseq and (D)
Mixed effect model.
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