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Abstract: Since the birth of Louise Brown in 1978, more than nine million children have been
conceived using assisted reproductive technologies (ARTs). While the great majority of children
are healthy, there are concerns about the potential epigenetic consequences of gametes and embryo
manipulation. In fact, during the preimplantation period, major waves of epigenetic reprogramming
occur. Epigenetic reprogramming is susceptible to environmental changes induced by ovarian
stimulation, in-vitro fertilization, and embryo culture, as well as cryopreservation procedures. This
review summarizes the evidence relating to oocytes and embryo cryopreservation and potential
epigenetic regulation. Overall, it appears that the stress induced by vitrification, including osmotic
shock, temperature and pH changes, and toxicity of cryoprotectants, might induce epigenetic and
transcriptomic changes in oocytes and embryos. It is currently unclear if these changes will have
potential consequences for the health of future offspring.

Keywords: human in-vitro fertilization (IVF); assisted reproductive technology (ART); cryopreservation
procedure; vitrification; epigenetics modifications; offspring health

1. Introduction

Over the past forty years, ART has been steadily on the rise, allowing millions of
infertile couples to conceive. Currently, it is estimated that over nine million children have
been conceived using ART [1,2]. While the number of IVF cycles varies widely worldwide,
approximately 5% of births are secondary to the use of ART in some European countries [2].
The main driver of IVF utilization is individuals being affected by infertility (approximately
15% of couples). However, there is a continuous rise in the number of individuals who
freeze their eggs or embryos for future use [2–7]. For example, nearly 310,000 frozen
embryo transfer (FET) cycles were performed in Europe in 2018 [2].

Current evidence indicates that ART is safe; however, an association between ART and
an increased incidence of low birth weight, birth defects, altered growth, and metabolic
disorders has been reported [8,9]. These findings might be secondary to epigenetic dysreg-
ulation of gametes and embryos [10–12]. Given the continuous rise in the number of cycles
that involve oocytes and embryo cryopreservation, it is critical to understand whether
cryopreservation is harmful to the future health of children. In this manuscript, we describe
the impact that vitrification has on potential epigenetic modifications and consequences for
future offspring health.

2. Increased Use of Oocyte and Embryo Vitrification in ART Practice

The advancements in oocyte cryopreservation found a perfect application for fertility
preservation for social reasons or in patients affected by cancer. Indeed, societal changes
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have resulted in the postponement of the age of the first pregnancy [1,2], at the time when
diminished ovarian reserve significantly reduces the chance of success. Therefore, multiple
patients aim to freeze their eggs for future use. In the UK, elective egg freezing is the fastest
growing fertility treatment, with an increase of 10% per year [13]. In Spain, egg freezing
cycles increased from 4% of total vitrification procedures to 22% in 10 years [14]. In the
USA, fertility preservation cycles increased from 9607 in 2017 to 13,275 in 2018; similar
trends have been observed in other countries [15,16].

Egg freezing is also used by young cancer patients, since treatment for malignancies
might negatively affect future fertility [17,18]. According to the International Agency for
Research on Cancer, in 2020, there were an estimated 19.3 million new cancer cases, with
nearly 10 million cancer deaths. Female breast cancer has surpassed lung cancer as the
most commonly diagnosed cancer, with more than two million new cases per year [17].

Another important application of oocyte cryopreservation is in egg donor programs [19].
Since the description by Trounson of the first successful pregnancy following oocyte do-
nation in Australia [20], the number of oocyte donation cycles has doubled in the last
decade. For example, in the USA, the number of cycles increased from 10,801 in 2000 to
24,300 in 2016 and 49,193 in 2017 [21]. In 2017, 17,099 donors underwent an average of
2.4 oocyte collections [22]. The need for finding a large number of egg donors has resulted
in the creation of multiple oocyte banks. In particular, an oocyte bank performs the egg
retrieval and cryopreservation of oocytes, which are later transported to the receiving clinic.
Then, the imported oocytes, in the IVF laboratory of the recipient center, are warmed,
fertilized with the ICSI technique using fresh or frozen sperm, cultured, and transferred to
the recipient’s uterus or possibly biopsied for PGT procedure and frozen again [23–26].

Several studies have analyzed the efficiency of oocyte vitrification. Importantly, egg
donor vitrification provides high survival rates after warming and a similar pregnancy rate
compared to cycles performed using fresh donor oocytes (Figure 1) [25–28].
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Figure 1. Description of the imported oocyte donation program from a foreign oocyte bank. eSET,
elective single embryo transfer; ICSI, intracytoplasmic sperm injection; MII, metaphase II oocyte; OS,
ovarian stimulation.

In addition to egg freezing cycles, the ART field has assisted in a significant increase in
embryo freeze-all cycles. It has been estimated that 600,000 embryos were stored from 2004
to 2013 in the USA alone, and 309,475 FET were completed in 2018 in Europe (Figure 2) [2].
Reasons for embryo cryopreservation are multiple and include storage of surplus em-
bryos following a fresh transfer [29,30], fertility preservation for cancer patients, and
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pre-implantation genetic testing (Table 1) [31,32]. Additional reasons include abnormalities
of the stimulation cycle, including elevated progesterone at the time of trigger (which has
been reported to have a negative impact on pregnancy outcomes [33]) or prevention of
ovarian hyperstimulation syndrome, a potentially life-threatening complication [34–36].
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Figure 2. Proportion of fresh and frozen embryo transfers (FETs) performed in Europe (data 1997–
2018). Adapted with permission from Wyns and colleagues [2].

Table 1. Main indications for the application of human embryo cryopreservation.

Embryo Cryopreservation in ART Practice

Preimplantation genetic testing

Genetic assessment is facilitated by the opportunity to utilize
the cryopreservation method to store embryos to be transferred
in a future cycle, and to overcome the time interval between the

blastocyst biopsy and genetic result

Avoiding ovarian hyperstimulation syndrome (OHSS)
When a fresh embryo transfer cannot be performed due to the
risk of OHSS, embryos might be cryopreserved and used in a

future cycle

Increasing the policy of elective single embryo transfer (eSET)

The cryopreservation of surplus embryos is considered a valid
method to reduce the number of embryos transferred during a

fresh cycle and to thus minimize the risk of multiple
pregnancies and to increase the policy of eSET—as well as to

reduce the need for repeated stimulation cycles

Embryo freezing for cancer patients In women with a stable partner about to go through
gonadotoxic/chemotherapy treatment for cancer

Elevated progesterone or other
conditions, such as endometriosis

Elevated progesterone in the late follicular phase has a negative
impact on pregnancy outcomes; or other conditions and

medical pathology that might affect fertility

It is important to note that FET is associated with a higher birth weight compared
to fresh embryo transfer and no embryo freezing [37–39]. A meta-analysis of 26 studies
reported that singletons born following freezing and thawing had higher birth weights,
were large for gestational age, and the pregnancy had an increased risk of hypertensive
disorders [40]. An increased birthweight in ART babies conceived following FET has been
reported by several authors [41–44]. At present, it is unclear whether the vitrification
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procedure itself, the use of cryoprotective agents (CPAs), the drugs used for endometrial
preparation, or parental infertility are responsible for the higher birthweight in offspring.
However, since no difference in birth weight has been observed when embryos are trans-
ferred in a natural cycle, it is possible that the drugs applied for endometrial preparation
might be responsible for that condition [45].

3. Cryopreservation and Cryoprotectants

Cryopreservation enables the long-term preservation of tissue or cells at ultra-low
temperatures (stored in liquid nitrogen at −196 ◦C) in a state of suspended animation. This
process interrupts all biological activities and maintains cell viability and physiological
competency for future use. The first report of a live birth following the transfer of a
cryopreserved and thawed embryo was recorded in Australia by Trounson and Mohr in
1983 by the “slow freezing” procedure [46]. Later, in the 1990s, a great advancement in
the field was achieved with the introduction of the “vitrification” protocol in Japan and
Australia [4,5,47]. Vitrification was rapidly adopted since it achieved better outcomes
in terms of gamete and embryo survival and higher pregnancy rates, compared to slow
freezing [29,30,48]. Vitrification is performed using a high concentration of CPAs. These
agents increase viscosity and inhibit ice crystal formation, inducing the solution to enter a
“glassy state” [7]. The success of vitrification is correlated with several factors, such as the
temperature in the vitrification and warming steps, which depends on the choice of carrier
used (open or closed vitrification) and, most importantly, the concentration and type of
CPAs used (Table 2). Regarding the temperature, it has been clearly shown that the warming
rate is as important as the cooling rate. Seki and Mazur reported that cryo-damage might
also be induced by re-crystallization in the warming step. They examined the relationship
between cooling versus warming rates in a mouse model and concluded that a warming
rate of at least 3000 ◦C/min is imperative to obtain an acceptable survival rate above
80% [49]. CPAs play a critical role in the success of cryopreservation and are classified into
two categories: Permeating and non-permeating agents. The first group includes small
molecular weight compounds (less than 400 Da) that can cross cell membranes and, once
inside, protect the cell from cryo-induced damage. Permeating agents include ethylene
glycol (EG), dimethyl sulfoxide (DMSO; an amphipathic molecule), propylene glycol or
1,2 propanediol (PG), glycerol (GLY), formamide (FMD), methanol (METH), and butanediol
(BD; 2,3-butanediol). DMSO and glycerol are the two most used (Table 3). Non-penetrating
CPAs are non-diffusible, normally have a higher molecular weight, and therefore cannot
cross the cell membrane. Examples are trehalose, sucrose, glucose, mannitol, galactose, and
polyvinylpyrrolidone (PVP). These molecules induce an osmotic gradient that removes
water from inside to outside the cell (dehydration), reducing the temperature at which ice
starts to form and thus preserving membranes and intracellular structures [50,51].

Table 2. Membrane permeability coefficient of some cryoprotectants (Times 10−5 cm/s).

Cryoprotectant Red Blood Cells at 4 ◦C
Study Reference [52]

Sperm Cells at 22 ◦C
Study Reference [53]

Oocytes at 22 ◦C
Study Reference [54]

Methanol 11.35 N/A N/A

Formamide 8.05 N/A N/A

Ethylene glycol 3.38 13.2 1.95

Dimethyl sulfoxide 1.30 1.33 2.60

Propylene glycol 1.79 3.83 3.83

Glycerol 0.58 3.50 Low
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Table 3. Minimal concentration required to vitrify (C-Vit) for some permeating cryoprotectants at a
pressure of 1 atmosphere according to Fahy and colleagues 1984 [55].PG, propylene glycol; DMSO,
dimethyl sulfoxide; EG, ethylene glycol; GLY, glycerol.

Cryoprotectants Concentration Required to Vitrify (C-Vit) %/Volume

DMSO 49–50

PG 43.5

EG 55

GLY 65

4. Potential Damaging Effects of Cryopreservation

The principal problem that can occur with cryopreservation is the formation of ice
crystals. Human embryos and oocytes contain a high content of water, which might be
converted into ice, causing irreversible damage and cellular death. This concern was ele-
gantly described by Mazur in 1963 [56]. The sharp reduction of temperature might lead
to cold-shock harm and impair the function of several sensible structures located in the
oocyte cytoplasm, including membrane permeability, cytoskeleton architecture, and, impor-
tantly, the meiotic spindle apparatus [57,58]. The meiotic spindle is a cytoskeletal structure,
formed of microtubules and associated proteins [59]. It is considered an indicator of oocyte
health; its stability is linked with normal fertilization and is directly responsible for the
correct segregation of chromosomes, avoiding errors in chromatin division, accountable
for aneuploidies and miscarriage [60]. It is well established that temperature changes can
debilitate meiotic spindle stability [61]. At a temperature of 33 ◦C or lower, the meiotic spin-
dle starts to depolymerize, and only a few minutes of exposure to non-physiologic pH or
temperature is sufficient to induce disassembly of the spindle [62]. Several studies on both
animals and humans have demonstrated a negative association between temperature, as
well as osmolality on normal microtubule disassembly, and spindle alterations [59–63]. Ad-
ditional impairment following cooling and warming includes premature hardening of the
zona pellucida (ZP), which is essential at the time when sperm fertilizes the oocyte. These
facts indicate the use of ICSI to fertilize oocytes. However, questions remain concerning the
impact of ZP hardening and implantation of the embryo [64]. It is also possible to observe
cryo-damage to intracellular organelles, as well as an increased risk of parthenogenetic
activation of the oocytes [65]. Oocyte exposure to CPAs might cause ultrastructural modifi-
cation of the mitochondria and smooth endoplasmic reticulum [66,67]. Animal studies have
suggested that oocyte cryopreservation, particularly vitrification, might be associated with
increased levels of reactive oxygen species (ROS) and apoptotic events [68–70], which might
alter the epigenetic mechanisms associated with oocyte competence and future embryo
development and viability [70,71]. In particular, DMSO is a known radical scavenger and,
as an antioxidant, helps to protect cells from the damage caused by free radicals. How-
ever, at normal or decreased levels of ROS, it may restrict cell metabolism by scavenging
the electrons needed for ATP production. Therefore, a decrease in DMSO-induced ATP
might cause downstream effects that may disrupt cellular function, fetal development,
and implantation potential [72–75]. Finally, over the past few years, several reports have
shown the detrimental effects of cryopreservation programs on the epigenetic makeup of
the embryo, protein expression, and DNA integrity [76–80], as well as alteration of such
genes involved in critical biological processes [79–81], inducing an increase in free radical
production and apoptosis [81–85].

5. Epigenetic Changes Occurring during Preimplantation Embryo Development

In 1942, Conrad Waddington, a biologist at Edinburgh University, was the first to
emphasize the importance of environmentally directed changes during the early stages of
mammalian embryo development and introduced the term “Epigenetics”. Epigenetics is a
gene-regulatory mechanism that leads to heritable changes in gene function that are not
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associated with changes in DNA sequence [86]. The importance of epigenetics in the ART
field is secondary to the fact that epigenetic changes can be caused by different environ-
mental agents and that important epigenetic changes occur during embryo development.
There are two epigenetic reprogramming phases. The first resets DNA methylation marks
in primordial germ cells (PGCs) when they migrate to the fetal gonadal ridge. The second
wave of DNA methylation changes occurs during the early stage of embryo development,
following fertilization; the parental genome is actively demethylated, while the maternal
genome is passively demethylated with a wave of re-methylation at the blastocyst stage
(Figure 3) [87–89]. In summary, the epigenome of the preimplantation embryo is highly
susceptible to external and internal modifications.
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these can act synergistically, causing more negative effects.

DNA methylation is the most investigated epigenetic process and involves the ad-
dition of a methyl group at the 5′ carbon position of the cytosine pyrimidine ring in the
context of CG dinucleotide (CpG sites). Those epigenetic modifications are maintained by
daughter cells throughout cell divisions by DNA methyltransferases (DNMTs). To date,
five different types of DNMTs have been identified: Dnmt1, Dnmt2, Dnmt3a, Dnmt3b, and
Dnmt3L [90,91]. DNA methylation is generally correlated with gene silencing, but it is also
involved in other regulatory mechanisms such as imprinting or X-chromosome inactivation
and silencing of centromeric sequences [90–92]. Additional epigenetic regulations comprise
post-translational histone modifications, including acetylation, methylation, phosphoryla-
tion, and glycosylation ubiquitination [6]. Histone lysine acetylation is particularly impor-
tant, since it plays a role in cellular differentiation and might be associated with disease
processes [93]. This histone modification is regulated by histone acetyltransferases (HATs)
and histone deacetylases (HDACs) and is generally associated with transcriptionally active
regions of the genome, as it relaxes the chromatin structure, allowing for increased accessi-
bility of the DNA to transcription factors and other regulatory proteins [92–94]. Acetylation
leads to open chromatin configuration, enhances transcriptional activity, and encourages
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transcription factor binding to DNA. On the contrary, deacetylation is correlated with tran-
scriptional inactivation and gene silencing [94]. SUMOylation and de-SUMOylation marks
indicate the addition and removal of SUMO (small ubiquitin-related modifier) polypeptides
on lysine residues [95], which are essential for the occurrence of oocyte maturation, meiotic
resumption, and spindle formation [95–97]. Finally, another newly identified epigenetic
modification is lactylation, affected by cellular lactate levels, which directly stimulates gene
transcription [98].

An important subgroup of genes affected by epigenetic regulation are imprinted
genes [99,100]. Currently, around 150 genes have been identified in mice, and less than
100 in humans [100]. A list of the current mammalian imprinted genes is available online at
[https://www.otago.ac.nz/biochemistry/research/facilities/otago652955.html, accessed
on 1 January 2023]. These genes are characterized by a monoallelic expression that is
dependent on the parental origin of the allele. The parental imprint is linked to differential
epigenetic labeling of parental alleles, and importantly is established during gametogenesis
and maintained during the early stage of preimplantation embryo development [101–103].
The correct expression of those imprinted genes depicts a critical role in growth and de-
velopment and are prevalently located in the placenta and brain [104–107]. Examples
include loss of imprinted DNA methylation at the Kvdmr icr, found in ART-conceived
children with Beckwith–Wiedemann syndrome (BWS) [108] or gain of methylation because
of maternal uniparental disomy on chromosome 7 at the Mest icr in approximately 10% of
Silver–Russell Syndrome (SRS) cases, as well as Angelman syndrome (AS) and Prader–Willi
syndrome [106–113]. While epigenetic changes can affect the individual, new evidence sug-
gests that there could be a transgenerational transmission of epigenetic information [114].
It is therefore possible that the presence of chemical compounds such as cryoprotective
agents could alter the reprogramming machinery and cause long-term risk of disease, as
postulated by the Developmental Origin of Health and Disease [115–118].

6. Potential Impact of Vitrification on the Epigenome of Oocytes and Embryos

In the past few years, several research groups have investigated the relationship
between vitrification and epigenetic disruption in early embryo development [119]. The
most studied molecule and the one most widely used is DMSO. DMSO may impact
cellular functions, metabolism, enzyme activities, cell growth, and apoptosis, as well
as might induce alterations in microRNAs (miRNA) and epigenetic changes [120,121].
Studies have shown that DMSO has temperature-, time-, and concentration-dependent toxic
effects [73,74]. Studies focusing on the effect of DMSO and epigenetic changes have reported
that DMSO interferes with the activity of the enzyme DNMT3a, even though the specific
mechanism is unknown [119–121]. Studies on animal models have shown that following
vitrification-warming of mouse oocytes, the expression of the imprinted gene Kcnq1ot1
decreased significantly [122]. Chen and collaborators reported that following vitrification
of mature bovine oocytes, the expression of imprinted genes Peg10, Kcnq1ot1, and Xist in
blastocysts obtained by ICSI increased abnormally [123]. The same group in a subsequent
publication found that vitrification of mouse MII oocytes affected the expression of the
maternally imprinted genes Peg3, Peg10, and Igf2r in oocytes, and maternally imprinted
genes Peg3 and Peg10 and paternal imprinted gene Gtl2 in cleavage stage embryos [124].
Another study found that methylation of imprinted genes H19, Peg3, and Snrpn decreased
in mouse blastocysts obtained from vitrified mouse oocytes [125]. Comparable results have
been reported by other authors, showing a reduction in the overall DNA methylation level
in oocytes and early embryos following the vitrification process [126,127]. In summary,
animal models suggest that vitrification may affect the normal expression of imprinted
genes by changing the DNA methylation level, affecting the regulatory region of those
genes (Table 4).

https://www.otago.ac.nz/biochemistry/research/facilities/otago652955.html
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Table 4. Summary of both human and animal studies showing the effects of vitrification on DNA
methylation and histone modifications. GV, oocyte at germinal vesicle stage; MII, oocyte at metaphase
II stage; IVM, in vitro maturation; 5hmC, 5-hydroxymethylCytosine; 5mC, 5-methylCytosine; DMR,
differentially methylated regions.

Study
[Ref.]

Materials:
Human or Animal

Oocytes or
Embryo Analyzed

(n)

Technology of
Assessment

Studied
Sequences
or Genes

Main Findings

De Munck et al.
[128]

(Human)
Mature (MII)

donated oocytes

31 embryos (Day 3)
from 17 fresh
oocytes and

14 after vitrification

Immunofluorescence
(5mC, 5hmC)

Global
Analysis

No differences in
fluorescence intensities

between embryos from fresh
and vitrified oocytes

Liu et al.
[129]

(Human)
Vitrified mature

oocytes (MII), and
MII from GV

matured in-vitro

56 in vivo MII, 106
MII from GV

matured in-vitro,
122 MII from
vitrified GV

Immunofluorescence
(5mC)

Global
analysis

No significant differences in
fluorescence intensities

between groups

Al-Khtib
et al. [130]

(Human)
GV oocytes

donated
for research and

IVM to MII

77 MII after IVM
from 184 vitrified
GV stage, and 85

MII from
120 fresh GV

Pyrosequencing

Methylation profile
of H19 and

KCNQ1OT1,
H19DMR

and KvDMR1

Oocyte vitrification at the GV
stage does not affect the
methylation profiles of

H19-DMR and KvDMR1

Cantatore et al.
[131]

(Mouse)
Cleavage stage
embryos and

blastocysts from
vitrified

MII oocytes

Two-cell embryos
and blastocysts

from
vitrified oocytes

q-PCR Igf2r and Gtl2 No significant
differences observed

Zhao et al. [126] (Bovine)
Oocytes

Vitrified MII
oocytes

matured in-vitro

Single-cell
whole-genome

methylation
sequencing

Global
analysis

Peg3 methylation level
significantly

decreased in the
derived blastocysts

Chen et al. [124] (Mouse)
Oocytes

MII oocytes and
two-cell
embryos

q-PCR and
bisulfite

sequencing

Gtl2, H19, Igf2,
Peg3, Peg10, Igf2r

Peg3, Peg10, and Igf2r were
significantly different in MII

oocytes and two-cell
embryos

after vitrification

Chen et al. [123] (Bovine)
Oocytes

Vitrified MII
oocytes

matured in vitro
q-PCR

Peg3, Peg10,
Kcnq1ot1,
Xist, Igf2r

Peg10, Kcnq1ot1, and Xist
significantly increased

after vitrification

Cheng et al. [76] (Mouse)
Blastocysts

Blastocysts from
vitrified

MII oocytes

Bisulfite
sequencing H19, Peg3, Snrpn

No significant differences
in oocytes; decrease in

blastocysts after
oocyte vitrification

Ma et al. [122] (Mouse)
Oocytes

Mature metaphase
II oocytes

WGBS combined
with RNA-seq

Global
analysis

Kcnq1ot1 was significantly
downregulated in the

vitrified oocytes

Jahangiri et al.
[132]

(Mouse)
Embryos

Mouse blastocysts
from vitrified

two-cell embryos
q-PCR H3, H19 and Mest

The expression level of the
chosen imprinted genes
increased significantly in

experimental groups
compared to

in vivo blastocysts

Movahed et al.
[133]

(Mouse)
Embryos

Mouse blastocysts
from vitrified

two-cell embryos
q-PCR Gtl2 and Dlk1

Gtl2 was downregulated
and Dlk1 was
upregulated

after vitrification
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Table 4. Cont.

Study
[Ref.]

Materials:
Human or Animal

Oocytes or
Embryo

Analyzed (n)

Technology of
Assessment

Studied
Sequences
or Genes

Main Findings

Barberet et al. [134] (Human)
Placenta Human placenta Pyrosequencing

and q-PCR

H19, IGF2,
KCNQ1OT1

SNURF

The placental DNA
methylation levels of

H19/IGF2 were lower in the
fresh embryo transfer group

than in the control
(H19/IGF2-seq1) and frozen

embryo transfer
(H19/IGF2-seq2) groups

Yao et al. [135] (Human)
Placenta

Human placenta
obtained from

vitrified embryos

q-PCR, Western
blotting,

and pyrosequencing
SNRPN

The expression level of
SNRPN increased
after vitrification

Human studies are limited. A study on the effects of DMSO on the DNA methylation
profile in human cardiac microtissues found dysregulation of DNA methylation pathways.
Methyltransferase DNMT1, a key factor for the maintenance of DNA methylation, as well
as DNMT3A, essential for both de novo and maintenance of DNA methylation, were
upregulated, while TET1, which plays an important role in active de-methylation, was
downregulated [121]. Overall, no or limited changes in DNA methylation and imprinted
gene expression were found in human oocytes or embryos following vitrification (Table 4).
The imprinted genes H19 and Kcnq1ot1 showed no differences in DNA methylation in
vitrified oocytes. In this study immature oocytes were donated after egg retrieval, and
after vitrification warming were in-vitro matured to MII stage [130]. Liu and colleagues
estimated the effects of vitrification on nuclear configuration and global DNA methylation
in GV-stage oocytes after vitrification warming and in-vitro maturation to MII stage. They
found no significant differences in the distribution of mitochondria and global DNA methy-
lation patterns between the groups. However, the authors reported a significantly higher
abnormal configuration of the spindle following vitrification [129]. De Munck reported
no significant change in the overall DNA methylation level of in-vitro cultured eight-cell
embryos derived from vitrified oocytes [128]. Huo and colleagues, using 16 donated human
MII oocytes, observed that a total of 1987 genes were differentially expressed following
oocyte vitrification warming compared to fresh mature oocytes and found that about 82%
of these genes were downregulated, while 18% were upregulated [136]. Those genes in-
volved in several critical biological processes, such as two meiosis-related genes, Ncapd2
and Tubgcp5, were significantly downregulated following oocyte vitrification. In addition,
cryopreservation might induce histone changes in oocytes and preimplantation embryos.
Suo and colleagues found that the acetylation status of histone H4 at lysine K12 in mouse
oocytes was significantly increased in cryopreserved compared to fresh oocytes [137]. An-
other study evaluated the consequences of mouse embryo vitrification at two cell stages
on specific histone marks (H3K9 methylation and H3K9 acetylation) for the genes Igf2
and Oct4. The authors found no significant difference in the expression level of these
genes and their histone marks in vitrified and non-vitrified embryos, while only embryo
culture induced changes on these loci [138]. Other pathways that were altered following
vitrification included several physiological processes, such as oogenesis, cellular response
to heat, microtubule-based processes, methylation, ubiquinone biosynthetic processes,
sister chromatid migration, DNA repair, oxidative phosphorylation, and ATP metabolic
processes [139–142]. The authors also investigated the time of storage of vitrified oocytes in
nitrogen and found no alteration in gene expression, suggesting that overall, the potential
damage resulting from oocyte vitrification might be associated with the cryopreservation
process itself rather than the storage [136]. This finding was confirmed by Stigliani and
collaborators, who analyzed the gene expression status between surviving warmed oocytes
after three and six years of storage in liquid nitrogen and found no differently expressed
genes [143]. The effects of the length of freezing embryos in liquid nitrogen on thawing
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survival, blastocyst viability, and implantation were recently investigated by Yan and
colleagues, who evaluated pregnancy outcomes following different lengths of storage
(from less than three years up to 10 years). The authors found a reduced survival rate for
blastocysts that were stored for longer than six years. Similarly, clinical pregnancy and
live birth rates were significantly decreased in blastocysts stored for more than six years
compared with the group frozen for less than three years. No difference was reported in
the rates of miscarriage and ectopic pregnancy [144]. In summary, while epigenetic changes
in oocytes and embryos following cryopreservation exist, their significance and clinical
consequences remain to be fully elucidated [145–148]. Future studies are needed to clarify
this important issue [148].

7. Potential Impact of Vitrification on the Epigenome Spermatozoa

Sperm cryopreservation is an essential component of ART that has wide clinical ap-
plications while being critical for cancer patients to protect their fertility before receiving
chemotherapy or radiotherapy [149–151]. Cryopreservation of human sperm has been
practiced for more than 50 years [151]. In the past decade, sperm vitrification has been
shown to achieve a higher survival rate and reduced sperm DNA damage compared to
slow-freezing protocols [151–154]. Several studies have investigated the impact of sperm
cryopreservation on epigenetic markers, including DNA methylation, histone modification,
and non-coding RNA molecules [155–162]. De Mello and co-authors investigated the effect
of CPA, methanol, ethyl glycol, and glycerol dimethylsulfoxide on DNA methylation of
Colossoma macropomum sperm and embryo evolution and found that the cryoprotectants
investigated induced an overall reduction in DNA methylation levels in spermatozoa,
and also caused a significant delay in embryonic development [163]. In contrast, a study
by Depince and collaborators reported that DNA methylation of zebrafish spermatozoa
significantly increased after cryopreservation with methanol [164]. Salehi and colleagues
studied DNA methylation and histone modification, as well as cellular features, including
membrane integrity, mitochondria activity and apoptosis, and fertility potential, of rooster
semen before and after cryopreservation. The results showed that cryopreservation leads
to significantly reduced values of the parameters examined when correlated with fresh
samples. Furthermore, there was a significant reduction in H3K9 acetylation and H3K4
methylation compared to the fresh samples [165]. Another study showed that cryopro-
tectant and freezing–thawing protocols significantly increased global DNA methylation
levels in ram spermatozoa [166]. Additionally, a study on humans by Khosravizadeh and
co-authors investigated the effects of cryopreservation on DNA methylation in promoter
regions of the SNURF–SNRPN and UBE3A imprinted genes, PWS-ICR, and AS-ICR in the
chromosome 15q11–q13 region [167]. The authors reported the cryopreservation method to
be safe concerning DNA methylation in the chromosome 15q11–q13 region. They found
that exposure to cryoprotectants had no significant effect on ROS levels and DNA fragmen-
tation. Neither cryopreservation nor exposure to cryoprotectant significantly affected DNA
methylation of the selected gene regions. However, DNA fragmentation had a positive
correlation with DNA methylation of AS-ICR [167]. Different mechanisms could lead
to epigenetic changes following cryopreservation. First, cryoprotectant agents could be
responsible. For example, CPA, a widely used agent for sperm cryopreservation, is cyto-
toxic and can harm sperm cells, causing osmotic injury and physiological alterations and
potentially influencing the epigenetic state of sperm cells indirectly [149,154–157]. Second,
raising the level of ROS during the freezing–thawing process [156,159–161] might induce
site-specific hypermethylation through either the upregulation of DNA methyltransferases
(DNMTs) or the formation of new DNMT-including complexes [158,159]. It is important
to emphasize that sperm epigenetic changes could be secondary to additional factors,
including sperm manipulation alone or patient characteristics [166–170]. For example, it
is well known that oligospermic men have more epigenetic changes than normospermic
men [160–162]. However, the number of studies currently available on the topic is still
limited. Given the relatively low number of studies conducted using human spermatozoa,
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additional multicenter studies utilizing the same cryopreservation protocols and DNA
methylation analysis are needed to clarify the issue.

8. Conclusions

In the last decade, advancements made in the field of cryobiology have contributed
to the increased success of ART. However, concerns about the association between cry-
opreservation and alteration in epigenetic reprogramming exist. This is relevant, given
the association between epigenetic changes and future offspring health. Unfortunately,
evidence is lacking, and the number of published reports is limited. Future studies and
utilization of novel technologies (such as single-cell sequencing and epigenomics) are
needed to fully assess the potential epigenetic aberration that occurs at the time of oocytes
or embryo cryopreservation, in order to improve its safety and efficacy in ART.
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