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Abstract: Background: With ideal mean arterial pressure (MAP) targets in resuscitated out-of-hospital
cardiac arrest (OHCA) patients unknown, we performed a meta-analysis of randomised controlled
trials (RCTs) to compare the effects of higher versus lower MAP targets. Methods: We searched four
databases until 1 May 2023 for RCTs reporting the effects of higher MAP targets (>70 mmHg) in
resuscitated OHCA patients and conducted random-effects meta-analyses. The primary outcome was
mortality while secondary outcomes were neurological evaluations, arrhythmias, acute kidney injury,
and durations of mechanical ventilation and ICU stay. We conducted inverse-variance weighted strata-
level meta-regression against a proportion of non-survivors to assess differences between reported
MAPs. We also conducted a trial sequential analysis of RCTs. Results: Four RCTs were included.
Higher MAP was not associated with reduced mortality (OR: 1.09, 95%-CI: 0.84 to 1.42, p = 0.51),
or improved neurological outcomes (OR: 0.99, 95%-CI: 0.77 to 1.27, p = 0.92). Such findings were
consistent despite additional sensitivity analyses. Our robust variance strata-level meta-regression
revealed no significant associations between mean MAP and the proportion of non-survivors (B: 0.029,
95%-CI: −0.023 to 0.081, p = 0.162), and trial sequential analysis revealed no meaningful survival
benefit for higher MAPs. Conclusions: A higher MAP target was not significantly associated with
improved mortality and neurological outcomes in resuscitated OHCA patients.

Keywords: out-of-hospital cardiac arrest; blood pressure; haemodynamics; neurologic deficits;
meta-analysis

1. Introduction

Out-of-hospital cardiac arrest (OHCA) portends dismal outcomes [1]. Only 40% of
those admitted to hospital following OHCA survive to hospital discharge; even fewer
have neurologically intact survival [2,3]. Narrowing the gap between survival to hospital
admission and discharge would save many lives, underscoring the urgent need to improve
post-arrest care. Brain injury accounts for two-thirds of deaths in patients resuscitated from
OHCA [2], yet therapies reducing the impact of global cerebral ischaemia following cardiac
arrest remain unclear. The mechanisms of brain injury following OHCA, and subsequent
resuscitation, are complex. Many pathways are activated between hours and days after
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the return of spontaneous circulation (ROSC), providing a potential treatment window for
neuroprotection after ROSC [4–7].

One key element of neuroprotection is optimising cerebral blood flow, which is deter-
mined by mean arterial pressure (MAP) and cerebrovascular resistance. There is limited
evidence on haemodynamic management after resuscitation, and the optimal MAP is unclear.
Based on guidelines in sepsis [8], current guidelines recommend a MAP ≥ 65 mmHg [9],
which may provide inadequate cerebral oxygenation during the critical initial 6–12 h of inten-
sive care unit (ICU) stay (in the delayed hypoperfusion phase) [10,11]. Landmark clinical trials
have not yet substantiated these guidelines. A prior systematic review suggested improved
clinical outcomes with higher MAP targets (MAP 65–90 mmHg, SBP of 90–100 mmHg) [12].
However, this review was limited by observational data and significant variations in haemo-
dynamic thresholds among studies, thus precluding a meta-analysis. Subsequent randomised
controlled trials (RCTs) failed to detect differences in outcomes between different MAP targets,
and no prior meta-analysis of the trials has been conducted [13–15].

The conflicting findings in the prevailing evidence highlight the need for an updated
review of the literature. Accordingly, we report this systematic review of RCTs to compare
the effects of higher versus lower MAP targets in the early post-resuscitation phase on
survival and neurological outcomes, by adopting a clearly defined MAP target.

2. Methods
2.1. Search Strategy and Selection Criteria

We registered this study on PROSPERO (CRD42022319242) and conducted it in ad-
herence with the Preferred Reporting Items for Systematic Reviews and Meta-analyses
Statement (Supplementary Table S1) [16]. We collaborated with a medical information
specialist and searched MEDLINE via Pubmed, Embase, Cochrane, and Scopus using the
keywords “out-of-hospital cardiac arrest” and “blood pressure” from origin through 1 May
2023 (Supplementary Table S2). We reviewed the reference lists of included studies and
review articles. We included studies reporting on the effects of MAP after being resuscitated
from OHCA. We excluded animal studies, correspondences, reviews, and non-English
publications. In cases where the same patient data were reported in two or more studies
(i.e., overlapping data), we included the largest study. Furthermore, prior RCTs had used
varying thresholds for higher MAPs (between 72 mmHg and 85–100 mmHg) [13,15]. In
order to comprehensively evaluate these available RCTs, we prespecified 70 mmHg as the
threshold value in our meta-analysis. To be included, studies must report one group with
a MAP ≤ 70 mmHg, and another with >70 mmHg. For studies which report a range of
MAP targets (e.g., 65–75 mmHg), we used the median value (70 mmHg) to represent the
MAP of the group. If any were available, studies with more than two study groups were
also included.

2.2. Data Collection and Risk of Bias Assessment

We collected data using a prespecified data extraction form (Supplementary Table S3).
We rated the intra-study risk of bias using the Cochrane Risk-of-Bias (RoB) Tool 2.0 for
RCTs [17]. We assessed the overall certainty of evidence using the Grading of Recommenda-
tions, Assessment, Development and Evaluations (GRADE) approach [18]. The screening
of studies, data collection, and risk of bias assessment were conducted independently in
duplicate by CJWL, VY, and RRL; conflicts were resolved by consensus, KR, or SLL.

2.3. Data Synthesis

The primary outcome was pooled mortality while secondary outcomes included
favourable neurological recovery, defined by a Cerebral Performance Category (CPC)
score of 1–2 or modified Rankin score (mRS) of 0–2 [19,20], or neuron-specific enolase
levels at 48 h, which have been recommended as part of multimodal neuromonitoring in
post-resuscitation care [21]. We also analysed incidences of arrhythmias and acute kidney
injury (AKI) as well as days of intensive care unit (ICU) stay and mechanical ventilation as
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secondary outcomes. Other complications were not consistently reported; we report these
outcomes qualitatively. Statistical analyses were performed using R4.0.5 using the meta,
robumeta, and metafor packages. We did random-effects meta-analyses (DerSimonian and
Laird) based on the logit transformation and computed 95% confidence intervals (CIs) using
the Clopper–Pearson method [22–25]. Dichotomous outcomes are presented as pooled
odds ratios (OR), and continuous outcomes as pooled mean differences, each with their
corresponding 95% CIs. We also pooled hazard ratios (HRs), where reported.

We conducted three separate sensitivity analyses for this study. First, in view of one
of the studies reporting a MAP range of 65–75 mmHg, of which we took the median
70 mmHg to be the target MAP of the group, we conducted a sensitivity analysis excluding
this study. Secondly, to account for the low number of RCTs on this topic, investigate
differences between RCTs and observational studies, and improve the precision of our
estimates, we further conducted a sensitivity analysis including only selected observational
studies meeting our prespecified MAP criteria that had 70 mmHg as a MAP threshold.
Finally, we further explored the possibility of a dose–response relationship of MAP targets
between 70–80 mmHg and above 80 mmHg. We assessed for publication bias by visually
inspecting funnel plots and Egger’s test.

We conducted a prespecified subgroup analysis based on the number of centres
involved and the duration of follow up (discharge to 30 days or 90 to 180 days). Where not
presented, we derived the means and standard deviations from the data presented in each
study in accordance with Wan et al. [26]. We assessed the inter-study heterogeneity using
GRADE, using the I2 values, tau-squared values, and p-value from the Cochran Q test, as
well as qualitatively by visualising forest plots [27]. A p-value of <0.05 was considered
significant in our analysis.

Furthermore, we used inverse-variance weighted strata-level meta-regression to derive
a summary effect estimate of the pooled proportion of non-survivors at various MAPs.
We collected MAP values for each group amongst any studies that reported mean MAP
values, and derived means from any studies reporting median MAP values. We estimated
the standard errors using robust variance estimates by clustering the pooled proportions
around each unique study identifier to account for intra-study correlation. We regarded the
study identifier as a random-effects variable and incorporated the reported mean MAPs as
an independent variable, which was modelled as a continuous variable.

Finally, for all outcomes, we conducted a trial sequential analysis (TSA) using TSA
v0.9.5.10 (www.ctu.dk/tsa, accessed on 10 May 2023), assessing efficacy based on the
O’Brien–Fleming alpha-spending function, and futility based on the beta-spending function.
TSA combines cumulative meta-analysis with a sample size calculation to evaluate a
cumulative pooled effect after an additional trial is included based on the information
size thus obtained in a similar fashion to group sequential monitoring boundaries in
RCTs during interim analyses [28]. We estimated the required information size (RIS) and
cumulative Z-scores using the relative risk reduction and baseline estimates of the low
MAP group based on the results of our meta-analysis. We estimated the variance of the
pooled estimate and heterogeneity using the TSA software. We assumed a type I error of
5% and a power of 80%. A p-value of <0.05 was defined as statistically significant for our
analyses. We performed all statistical analyses using R 4.0.5.

3. Results
3.1. Study Details and Demographics

Of 7127 references, we reviewed 153 full texts (Figure 1). Ultimately, four RCTs (533 pa-
tients with MAP ≤ 70 mmHg, 527 patients with MAP > 70 mmHg) met our inclusion
criteria [13–15,29]. Of these four studies, two RCTs compared a target MAP of 65 mmHg with
higher targets of 85–100 and 72 mmHg, respectively [13,29], and one compared a target MAP
of 70 mmHg with higher targets of 80–100 mmHg [14], while the final study compared a target
MAP of 63 mmHg to 77 mmHg [15]. The general characteristics of these studies can be found
in Table 1. All studies involved centres from Europe; the mean age and the proportion of males

www.ctu.dk/tsa
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between both groups were similar (Supplementary Table S4a–c). Other clinical characteristics
are tabulated in Supplementary Table S5a,b. MAPs were recorded or maintained across a
range of 36–48 h across RCTs, though there was also heterogeneity between each study’s
protocol. Treatment details across studies are compiled in Supplementary Table S6a,b.
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Table 1. Summarised demographics table for included randomised controlled trials. [13–15,29]
(Abbreviations: CPR: cardiopulmonary resuscitation, OHCA: out-of-hospital cardiac arrest, PEA:
pulseless electrical activity, VF: ventricular fibrillation, VT: ventricular tachycardia).

Study Continent Hospitals Location Sample Size Male
Patients

Age (years),
Mean ± SD

Arrest
Location

Bystander CPR /
Defibrillation

Presenting
Rhythm

Ameloot
2019 [13] Europe 2 OHCA

102
65 mmHg:

51
85-100

mmHg: 51

77 (75.5%)
38
39

65 ± 13
65 ± 12

Public: 26
Witnessed: 46

Public: 22
Witnessed: 44

26
30

VF: 30, VT: 2,
PEA: 2,

Asystole: 16
VF: 34, VT: 2

PEA: 4,
Asystole: 11

Grand
2020 [29] Europe 1 OHCA

49
65 mmHg:

26
72 mmHg:

23

43 (87.8%)
24
19

59 ± 13
63 ± 10

Witnessed
26
20

CPR: 24
Defibrillatiion: 4

CPR: 20
Defibrillation: 6

Shockable
23
22

Jakkula
2018 [14] Europe 7 OHCA

120
65-75

mmHg: 60
80-100

mmHg: 60

98 (81.7%)
48
50

61 ± 11
58 ± 14

Home: 32
Public: 28
Home: 28
Public: 32

CPR
51
47

N/A

Kjaergaard
2022 [15] Europe 2 OHCA

789
63 mmHg):

396
77 mmHg:

393

636 (80.6%)
320316

62 ± 14
63 ± 13

Witnessed
333
339

CPR: 339
Defibrillation: 84

CPR: 340
Defibrillation: 98

Shockable: 332
PEA: 14

Shockable: 335
PEA: 21
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3.2. Assessment of Study Quality

The risk of bias for the included studies is summarised in Supplementary Table S7a,b.
In brief, all RCTs were all rated as either ‘low’ risk of bias or ‘some concerns’. The GRADE
assessment of evidence is summarised in Supplementary Table S8.

3.3. Primary Meta-Analysis

A higher MAP of >70 mmHg did not significantly improve mortality (OR: 1.09, 95%-CI:
0.84–1.42, p = 0.51, moderate certainty, Figure 2). Visual inspection of funnel plots did
not reveal a likelihood of publication bias. Pooling the reported HRs from three RCTs
yielded similar results (HR: 1.09, 95%-CI: 0.88–1.35, p = 0.42, Figure 3). Sensitivity analysis
excluding the RCT with a median target of 70 mmHg also revealed no significant changes
in survival (OR: 1.13, 95%-CI: 0.86–1.49, p = 0.40). As no studies were rated to have a high
risk of bias, we did not conduct the sensitivity analysis excluding studies with a high risk
of bias.
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For each study, the dot represents the overall effect estimate, the corresponding line represents the
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To account for the low number of RCTs, we included two observational studies [30,31]
meeting our prespecified MAP criteria in another sensitivity analysis to improve the
precision of our estimates (741 patients ≤ 70 mmHg; 1292 patients > 70 mmHg). Across
eight pairwise comparisons in these six studies, a higher MAP did not improve mortality
(OR: 0.85, 95%-CI: 0.60 to 1.22, p = 0.39). Other observational studies were excluded due
to unsuitable MAP targets [32,33], inappropriate haemodynamic parameters [34], lack of
mortality data [35,36], and overlaps of data [37]. We further explored the dose–response
relationship of MAP on mortality using 70–80 mmHg and >80 mmHg as our thresholds.
Using both 70–80 mmHg (2 studies, OR: 1.13, 95%-CI: 0.84–1.52, p = 0.41) and >80 mmHg
(2 studies, OR: 0.96, 95%-CI: 0.55–1.68, p = 0.89) revealed no substantial differences to
our results.
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Subgroup analysis did not find significant interaction effects based on the centre number
(pinteraction: 0.73), and duration of follow up (pinteraction: 0.79 (Supplementary Table S9).

Our robust variance strata-level meta-regression between strata-level logit-transformed
proportions of mortality and reported mean MAP levels also revealed no significant as-
sociations between mean MAP and mortality (B: 0.017, 95%-CI: −0.073 to 0.11, p = 0.55,
Figure 4). Our TSA of mortality revealed an extremely large RIS of 16,341 (Supplementary
Table S10). Neither a statistically nor clinically significant reduction in mortality was noted
in the primary analysis.
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Figure 4. Robust variance estimate regression of the effect of mean arterial pressure upon logit-
transformed mortality. The blue dots correspond to included studies and their relative sample sizes,
the orange line denotes the regression, and grey boundaries denote the confidence intervals of the
regression line.

3.4. Secondary Outcomes

MAP > 70 mmHg was neither significantly associated with favourable neurological
assessments (4 studies, OR: 0.99, 95%-CI: 0.77–1.27 p = 0.92, moderate certainty, Figure 5)
nor lower NSE levels (4 studies, MD: 0.55, 95%-CI: −1.67 to 2.78, p = 0.63, low certainty).
MAP > 70 mmHg was not significantly associated with reductions in arrhythmia (2 studies,
OR: 0.67, 95%-CI: 0.18–2.50, p = 0.56, low certainty) or AKIs (2 studies, OR: 0.74, 95%-CI:
0.27–2.03, p = 0.56, low certainty). There was a significant reduction in both days of mechanical
ventilation (3 studies, MD: −0.91 days, 95%-CI: −1.51 to −0.31, p = 0.0029, high certainty) and
ICU length of stay (3 studies, −0.78 days, 95%-CI: −1.54 to −0.021, p = 0.044, high certainty)
with MAP > 70 mmHg.

Trial sequential analysis for these outcomes (Supplementary Table S10) revealed that
MAP > 70 mmHg only had a significant clinical benefit in reducing mechanical ventilation,
reaching the required information size and crossing the TSA-adjusted boundary for benefit.
Despite a statistically significant benefit, TSA demonstrated that the required information
size was not reached in ICU length of stay.

Forest plots for these outcomes are found in Supplementary Table S11, and a summary
of all pooled outcomes can be found in Table 2. The details of other complications including
bleeding, infection, and seizures are recorded in Supplementary Table S12a,b.
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Table 2. Combined outcomes table for pooled estimates for mortality and pooled estimates for
secondary outcomes. (Abbreviations: CI: confidence interval, HR: hazard ratio, mcg/L: microgram
per litre, MD: mean difference, OR: odds ratio).

Outcome Studies Pairwise
Comparisons

Pooled
Estimate 95%-CI p-Value CERTAINTY OF

EVIDENCE

Primary outcome

Mortality 4 4 OR: 0.1.09 0.84 to 1.42 0.51 Moderate

Mortality including
observational studies 6 8 OR: 0.85 0.60 to 1.22 0.39 -

Mortality for pooled HRs 3 3 HR: 1.09 0.88 to 1.35 0.42 -

Secondary outcomes

Favourable neurological
outcome 4 4 OR: 0.99 0.77 to 1.27 0.92 Moderate

Level of neuron-specific
enolase (mcg/L) 4 4 MD: 0.55 −1.67 to +

2.78 0.63 Low

Arrhythmias 2 2 OR: 0.67 0.18 to 2.50 0.56 Low

Acute kidney injury 2 2 OR: 0.74 0.27 to 2.03 0.56 Low

Mechanical ventilation
duration (days) 3 3 MD: −0.91 −1.51 to

−0.31 0.0029 High

Intensive care unit length
of stay (days) 3 3 MD: −0.78 −1.54 to

−0.021 0.044 High

In summary, our meta-analysis of four RCTs revealed that higher MAPs were not
associated with reduced mortality or improved neurological outcomes, despite additional
sensitivity analyses. Our robust variance strata-level meta-regression also revealed no
significant associations between mean MAP and proportion of non-survivors, and trial
sequential analysis revealed no meaningful survival benefit for higher MAPs. Aside from
reducing ICU length of stay and mechanical ventilation time, were no significant benefits
to higher MAPs in other secondary outcomes.

4. Discussion

In our meta-analysis of 1060 patients, we found that higher MAP targets of >70 mmHg
were not associated with improved survival in resuscitated OHCA patients, nor did it
affect neurological outcomes and incidence of arrhythmias and AKI. However, there were
reductions in mechanical ventilation time and ICU stay.

Neuroprotection after cardiac arrest involves balancing cerebral oxygen delivery and
utilisation by optimising cerebral blood flow. In narrowed and right-shifted zones of au-
toregulation, higher MAP may ensure adequate cerebral perfusion [38]. Our findings stand
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in contrast to these theoretical benefits and prior reviews of observational studies [12],
with neutral findings consistent across included RCTs [15] and trials on other forms of
shock [39,40]. Selection and survivorship bias and baseline differences due to inadequate
confounder adjustment may account for the discordance between observational and ran-
domised data [33,41,42]. Indeed, our sensitivity analysis, which included observational
studies, showed a trend towards improved mortality but was statistically not significant.
Such findings serve to highlight the differences between observational studies and RCTs
but also further confirm the nonsignificance between higher and lower MAPs. Our TSA
of mortality not only revealed no significant benefit but also an extremely large RIS of
over 16,000 needed to determine any meaningful benefit, which may not be feasible in
this population.

Whilst there is no consensus on what MAP targets improve outcomes, MAP targets
between 72 mmHg–100 mmHg have been investigated [13,29]. Thus, our literature-based
MAP threshold of 70mmHg was advantageous as it allowed us to comprehensively evaluate
all available trials while ensuring consistency. Our sensitivity analysis exploring various
MAP targets also suggested no benefit. However, several factors may have influenced this,
including variability in MAP targets used in included RCTs leading to imprecision, duration
of maintaining target MAPs (between 36 and 48 h), time to reach target MAP [14,15], and
time from ROSC to randomisation, leading to inconsistency.

Resuscitated OHCA patients are heterogeneous, and cerebral dysregulation may
manifest differently in each patient [38,43,44], therefore the influence of MAP on cerebral
perfusion differs between patients and within each patient across different timepoints
after ROSC. These patients may benefit from individualised, as opposed to static MAP
targets, which may explain the neutral findings from our analysis of RCTs deploying static
MAP targets. Future studies employing multimodal neuromonitoring after ROSC to guide
individualised hemodynamic management are needed.

One aspect that may be explored in further studies would be the impact of arrest aeti-
ologies on subsequent haemodynamic management, something that has not been elicited
in prior RCTs. It is possible that patients with cardiac arrest due to cardiac aetiologies such
as acute coronary syndrome or heart failure may not benefit from higher MAP targets, as
the increased vasopressor use may increase afterload and oxygen consumption of the heart,
further aggravating myocardial injury [45]. Indeed, increased vasopressor use has been
associated with higher mortality in myocardial infarction-induced cardiogenic shock [46].
On the other hand, arrests due to non-cardiac aetiologies may benefit from higher MAP
targets, where the resuscitated heart might be able to cope with increased vasopressor use.
Data stratified by aetiology of arrests were unfortunately not available in existing published
trials, but this is an area of exploration that might inform the design of future trials.

Our findings of reduced days of mechanical ventilation and ICU stay in higher MAPs,
with overall benefit in days of mechanical ventilation affirmed by TSA, are worth discussing.
It is possible that these findings are coincidental and related to the influence of mortality on
such time-dependent variables, that is, individuals who died earlier did not have improved
mortality but paradoxically had lower lengths of stay and ventilation times. However, the
converse may also be true—a potential benefit of higher MAPs might be that they could
improve organ perfusion and enhance recovery times in patients that do end up surviving
the initial arrest. However, these findings may not be clinically meaningful given the lack
of corroboration with improved mortality and neurological outcomes in other analyses.

As the first meta-analysis comparing MAP targets, this study provides a clearer picture
of the existing evidence. Additionally, we also applied a robust search strategy validated
by our medical information specialist, with comprehensive inclusion and exclusion criteria
to reduce the risk of bias and confounders in analysis. By strictly including studies that
met our criteria for MAP targets, we limited the concerns of heterogeneity between studies
that affected prior systematic reviews and ensured consistency across our studies. We were
also able to assess for potential sources of heterogeneity through subgroup analysis, and
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sensitivity analyses ensured results remained robust even when accounting for factors such
as even higher MAP targets.

Nevertheless, there are limitations to our study that require consideration. First,
there are few well-conducted, well-powered RCTs, and our analysis may still lack power.
While we attempted to address this by including observational studies to complement the
randomised data, we could not include all observational studies due to our strict criteria,
which was necessary to enhance consistency. Second, while we selected 70 mmHg as
a threshold based on prior literature, there are no existing guidelines recommending a
specific MAP target. This selection can be seen as at the discretion of the authors and can
be interpreted as aggregating trials with non-homogenous MAP targets. We attempted
to overcome these limitations by conducting sensitivity analyses assessing 70–80 and
>80 mmHg, but outcomes for still higher MAP targets remain unknown. Finally, our results
were all from centres in Europe, and may not represent patients from other regions where
no data have been published. Given differences in healthcare practices and selection criteria,
there may be differences in outcomes [47–49]

In conclusion, the meta-analysis of higher MAP targets of above 70 mmHg shows
that they are not significantly associated with improved survival and better neurological
outcomes after cardiac arrest. While concordant with recent RCTs, significant limitations
regarding existing research preclude strong or definitive conclusions from the results.
Instead, these results provide a guide for further research, suggesting that evaluation of
individualised (as opposed to static) blood pressure targets and other clinical parameters
may be warranted.
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