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 Algorithms used 

1.1 Stepwise logistic regression based on P values with no adjustment (stepP) 

The predictors were fitted into a multivariable, stepwise bidirectional selection procedure based on 
[1]. Starting from a model with all predictors included, a stepwise selection procedure was used to 
remove variables based on P >0.05. As some removed variables might improve the model once other 
predictors are removed, the procedure also allows adding back already removed variables. No 
adjustment was made to the p-value threshold.  

1.2 Stepwise logistic regression based on P values with adjustment (stepPAdj) 

The same multivariable, stepwise bidirectional selection procedure based on [1] was used as above, 
but the p-value was adjusted using the Bonferroni method [2]. 

1.3 Stepwise logistic regression based on AIC (stepAIC) 

Similar to the stepwise selection using p-values, a logistic regression with all predictors included was 
fitted, followed by a bidirectional stepwise selection procedure that either removes one variable from 
the model or adds one variable again to the model. This is done by comparing all models with the 
AIC and choosing the one with the smallest AIC [3]. 

1.4 Best subset regression (BestSubset) 

Best-subset selection aims to find a small subset of predictors such whilst retaining high prediction 
accuracy [4]. Using a 10-fold cross-validation (CV), an optimal number of predictors of the model is 
determined. Given this fixed model size, the model with the highest likelihood is found via a 
sequencing and splicing algorithm [4]. The resulting model is equal to penalizing the log-likelihood 
with a penalty that counts the number of non-zero coefficients. 

1.5 Lasso 

The LASSO regression constitutes a penalized linear model that aims to create the best-performing 
parsimonious model [5, 6]. It does so by adding a penalty equal to the absolute value of the 
magnitude of coefficients. Larger penalties result in coefficient values closer to zero, and some 
coefficients can become zero and be removed from the model. The LASSO produces coefficients that 
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are biased towards zero [7]. Hence, the predictors selected by LASSO were refitted with a simple 
logistic regression model to retrieve the unbiased coefficients.   

1.6 Minimax concave penalty (MCP) 

Similar to the Lasso and best subset selection, MCP is a penalized linear model that penalizes non-
zero coefficients. For small coefficient magnitudes of regression coefficients, MCP’s penalty is 
almost equivalent to the one from Lasso. For larger non-zero coefficient values, it relaxes the strength 
of regularization. In contrast to the Lasso, this allows for obtaining almost unbiased regression 
coefficients [7, 8]. 

1.7 Model-based boosting (mboost) 

Model-based boosting uses a component-wise gradient boosting algorithm for model fitting [9]. The 
algorithm adds a predictor iteratively to the model to “correct” the error made by the prior model. 
The errors are defined by the first functional derivative of the current model and are regressed on 
every possible predictor using least squares. Subsequently, the best-fitting predictor is added to the 
model or its effect is updated if the predictor is already in the model. Given its iterative nature, some 
predictors are never selected, meaning that this method automatically performs predictor selection. 
To estimate the optimal number of iterations, a 10-fold CV was performed. The optimal iteration 
number is subsequently used to build and validate the final boosting model. The mboost produces 
coefficients that are biased towards zero [9]. Hence, the predictors selected by mboost were refitted 
with a simple logistic regression model to retrieve the unbiased coefficients.   

1.8 MuARS 

Multivariate adaptive regression splines are semi-parametric extensions of linear models to capture 
non-linear or interaction effects of predictors [10]. To allow for a fair comparison with other linear 
methods, no interactions were considered in this algorithm, although possible. The model is then 
built in an iterative manner considering all predictors that have already been added to the model in 
combination with all existing features. Similar to model-based boosting, the covariate is then greedily 
added to the model using least squares in a forward-pass and then the model is reduced in a backward 
step to avoid overfitting. 



   

  

 Prediction performance 

Table S1. Prediction performance results of all models 

Outcome Model Accuracy AUC Precision Sensitivity Specificity 

Neck pain Stepwise regression unadjusted P-
values 0.763 0.618 0.557 0.322 0.913 

Neck pain Stepwise regression adjusted P-values 0.763 0.620 0.556 0.329 0.911 
Neck pain Stepwise regression AIC 0.760 0.613 0.545 0.316 0.911 
Neck pain Best subset regression 0.753 0.602 0.523 0.296 0.908 
Neck pain Lasso regression 0.753 0.607 0.522 0.309 0.904 
Neck pain Minimax concave penalty regression 0.753 0.602 0.523 0.296 0.908 
Neck pain Model based boosting 0.756 0.611 0.533 0.316 0.906 

Neck pain Multivariate adaptive regression 
splines 0.756 0.613 0.533 0.322 0.904 

Arm pain Stepwise regression unadjusted P-
values 0.735 0.676 0.756 0.438 0.914 

Arm pain Stepwise regression adjusted P-values 0.733 0.676 0.746 0.442 0.909 
Arm pain Stepwise regression AIC 0.736 0.687 0.724 0.487 0.887 
Arm pain Best subset regression 0.738 0.688 0.728 0.487 0.890 
Arm pain Lasso regression 0.746 0.695 0.753 0.487 0.903 
Arm pain Minimax concave penalty regression 0.743 0.694 0.737 0.496 0.893 
Arm pain Model based boosting 0.746 0.694 0.757 0.482 0.906 

Arm pain Multivariate adaptive regression 
splines 0.738 0.688 0.728 0.487 0.890 

Disability Stepwise regression unadjusted P-
values 0.618 0.619 0.676 0.464 0.774 

Disability Stepwise regression adjusted P-values 0.554 0.556 0.609 0.325 0.788 
Disability Stepwise regression AIC 0.634 0.635 0.667 0.550 0.721 
Disability Best subset regression 0.641 0.642 0.676 0.553 0.731 
Disability Lasso regression 0.634 0.635 0.669 0.543 0.727 
Disability Minimax concave penalty regression 0.636 0.637 0.669 0.550 0.724 
Disability Model based boosting 0.629 0.630 0.668 0.526 0.734 

Disability Multivariate adaptive regression 
splines 0.631 0.632 0.678 0.510 0.754 



   

 Coefficient strength heatmap 

 

Figure S1. Results of variable selection for the outcomes of (a) neck pain, (b) arm pain, and (c) disability. Tiles shaded grey represent 
variables not selected. Abbreviations. stepP: Stepwise logistic regression based on P values with no adjustment; stepPAdj: Stepwise logistic 
regression based on P values with adjustment; stepAIC: Stepwise logistic re-gression based on AIC; BestSubset: Best subset regression; 
Lasso: least absolute shrinkage and selection operator; MuARS: multivariate adaptive regression spline; MCP: Minimax concave penalty; 
mboost: Model-based boosting; area under the receiver operating characteristic curve (AUC). 

 



   

 Receiver operating characteristic curves 

 

 

Figure S2. Receiver operating characteristic curves for all machine learning algorithms for the 
outcomes of (a) neck pain, (b) arm pain, and (c) disability. Abbreviations. stepP: Stepwise logistic 
regression based on P values with no adjustment; stepPAdj: Stepwise logistic regression based on P 
values with adjustment; stepAIC: Stepwise logistic re-gression based on AIC; BestSubset: Best 
subset regression; Lasso: least absolute shrinkage and selection operator; MuARS: multivariate 
adaptive regression spline; MCP: Minimax concave penalty; mboost: Model-based boosting; area 
under the receiver operating characteristic curve (AUC). 



   

 References 

1. Zambom AZ, Kim J. Consistent significance controlled variable selection in high-
dimensional regression. Stat. 2018;7(1):e210. 
2. Yoav B, Daniel Y. The control of the false discovery rate in multiple testing under 
dependency. Ann Stat. 2001;29(4):1165-88. 
3. Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic 
Control. 1974;19(6):716-23. 
4. Zhu J, Hu L, Huang J, Jiang K, Zhang Y, Lin S, et al. abess: A Fast Best Subset Selection 
Library in Python and R. arXiv preprint arXiv:211009697. 2021. 
5. Tibshirani R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal 
Statistical Society Series B (Methodological). 1996;58(1):267-88. 
6. Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg EW, et al. 
Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis 
(TRIPOD): Explanation and Elaboration. Ann Intern Med. 2015;162(1):W1-W73. 
7. Cun-Hui Z. Nearly unbiased variable selection under minimax concave penalty. Ann Stat. 
2010;38(2):894-942. 
8. Breheny P, Huang J. Coordinate descent algorithms for nonconvex penalized regression, with 
applications to biological feature selection Ann Appl Stat. 2011;5(1):232-53. 
9. Buhlmann P, Hothorn T. Boosting Algorithms: Regularization, Prediction and Model Fitting. 
Statist Sci. 2007;22(4):477-505. 
10. Friedman JH. Multivariate Adaptive Regression Splines. Ann Statist. 1991;19(1):1-67. 

 


