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Abstract: Interest in machine learning models and convolutional neural networks (CNNs) for diagnos-
tic purposes is steadily increasing in dentistry. Here, CNNs can potentially help in the classification of
periodontal bone loss (PBL). In this study, the diagnostic performance of five CNNs in detecting PBL
on periapical radiographs was analyzed. A set of anonymized periapical radiographs (N = 21,819)
was evaluated by a group of trained and calibrated dentists and classified into radiographs without
PBL or with mild, moderate, or severe PBL. Five CNNs were trained over five epochs. Statistically,
diagnostic performance was analyzed using accuracy (ACC), sensitivity (SE), specificity (SP), and
area under the receiver operating curve (AUC). Here, overall ACC ranged from 82.0% to 84.8%,
SE 88.8–90.7%, SP 66.2–71.2%, and AUC 0.884–0.913, indicating similar diagnostic performance of
the five CNNs. Furthermore, performance differences were evident in the individual sextant groups.
Here, the highest values were found for the mandibular anterior teeth (ACC 94.9–96.0%) and the
lowest values for the maxillary posterior teeth (78.0–80.7%). It can be concluded that automatic
assessment of PBL seems to be possible, but that diagnostic accuracy varies depending on the location
in the dentition. Future research is needed to improve performance for all tooth groups.

Keywords: artificial intelligence; bone loss; convolutional neural networks; deep learning; dental
radiography; machine learning; periodontitis

1. Introduction

Periodontitis is a prevalent dental health problem and can be classified as a major
global challenge that affects developed and developing countries [1–3]. Triggered by bacte-
rial colonization of the root surface, the host’s immune system reacts with inflammatory
processes to the microbial transition from a symbiotic bacterial environment to that of dysbi-
otic pathogens, leading to loss of supporting tooth tissue, pocket formation, and ulceration
of the pocket epithelium [4,5]. If the condition advances, periodontal bone loss (PBL) can
occur as the principal pathological characteristic of periodontitis [6]. Moreover, severe peri-
odontitis is a major cause of missing teeth in adults, leading to reduced oral functioning and
ultimately having an adverse effect on general health [7,8]. In this context, the link between
periodontal disease and various systemic diseases such as cardiovascular diseases [9],
diabetes [10], and respiratory diseases [11] should be emphasized. Considering the mostly
irreversible consequences of periodontal disease, frequent periodontal screening is essential
for the treatment of all patients and should be part of routine oral inspection [12]. According
to the new guidelines introduced by the workshop on the classification of periodontal
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and peri-implant diseases and conditions [13,14], the evaluation of clinical attachment loss
as well as the radiographic assessment of PBL has become critical in categorizing peri-
odontitis into specific stages and subsequently in indicating optimal disease management.
Nevertheless, both the clinical measurements and the radiographic assessment of PBL
remain controversial in terms of their reliability. The measurement of clinical attachment
loss by periodontal probing varies due to individual probing force, probe angulation, and
varying probe tip diameter [15,16]. In addition, radiographic PBL evaluation represents a
challenging task for a clinician due to possible variations in contrast and exposure angle
as well as structural overlap, so that the interpretation of dental radiographs may lead to
inconsistencies among dentists [17–19]. Here, the use of artificial intelligence (AI)-based di-
agnostics could reduce these diagnostic discrepancies. Consequently, several work groups
have investigated the use of AI-based methods for automatized PBL detection on periapical
radiographs [19–29] and panoramic X-rays [18,30–40]. In these studies, on the one hand,
convolutional neural networks (CNNs) have shown potential in accurately detecting PBL
on radiographs. However, due to differing CNNs and varying data sets, the existing studies
show significant heterogeneity and, therefore, are difficult to compare [41–43]. In addition,
little is known about whether different CNNs or anatomical regions influence diagnostic
performance. Therefore, the aim of this study was to evaluate the diagnostic performance
of five commonly used CNNs for automated PBL detection on periapical radiographs
representing all sextants (upper and lower posterior teeth and upper and lower anterior
teeth) and to statistically report their diagnostic performance with standardized variables,
avoiding non-comparable results. In detail, it was first hypothesized that the diagnostic per-
formance of the tested CNNs would have an accuracy of at least 90%. Secondly, diagnostic
accuracy was hypothesized to be the same between all CNNs and anatomical regions.

2. Materials and Methods
2.1. Study Design

The Ethics Committee of the Medical Faculty of the Ludwig-Maximilians University
of Munich approved this study protocol with project number 020-798. The recommen-
dations of the Standard for Reporting of Diagnostic Accuracy Studies (STARD) steering
committee [44] and the recommendations for the reporting of AI studies in dentistry [45]
were followed in the study report.

2.2. Periapical Radiographs

For this study, anonymized periapical radiographs taken at the Department of Conser-
vative Dentistry and Periodontology (Dental School of the LMU) and other dental practices
were used. A high-quality image sample was secured by excluding inadequate X-rays, e.g.,
distorted images, images with incomplete teeth, or radiographs with implants. Following
these exclusion criteria, a data set with 21,819 periapical radiographs stored in jpg format
was assembled.

2.3. Categorization of Periodontal Bone Loss (Reference Standard)

Prior to the start of the study, a two-day workshop was held by the principal investiga-
tor (J.K.), during which the group of participating dentists (N = 7) was trained. In addition,
the efficiency of the training was determined during a calibration course. Reproducibility
of PBL within and between investigators was assessed using 150 periapical radiographs,
and the corresponding inter- and intra-examiner reliability showed substantial kappa
values [17]. The detailed kappa values are specified in Table 1. A group of graduated
dentists (P.H., T.M., A.W., L.M.) then pre-categorized all X-rays by differentiating between
healthy periodontium and mild, moderate, or severe PBL [13,14]. Following this, more
clinically experienced examiners (H.D., U.W., J.K.) independently counterchecked each
diagnostic decision. More specifically, these diagnostic criteria and ratings were applied:
0—healthy periodontium, PBL not detectable, 1—mild radiographic PBL up to 15% in the
coronal third of the tooth, 2—moderate radiographic PBL between 15% and 33% of the root
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length, and 3—severe radiographic PBL beyond the coronal third of the tooth (Figure 1). In
case of differing diagnostic opinions, each image was subject to continued discussion until
consensus was achieved. The use of anonymized periapical radiographs meant that no
further clinical information could have been acquired to make a diagnostic decision. One
dichotomized diagnosis decision (0 vs. 1–3) was made for each X-ray, which consequently
became the reference standard for the cyclic training and the repeated evaluation of the
AI-based CNN.

Table 1. Cohen’s kappa values for inter- and intra-examiner reliability for the detection of PBL,
calculated among participating dentists (N = 7) in relation to the reference standard.

Examiner Inter-Examiner Intra-Examiner

P.H. 0.601–0.650 0.889
T.M. 0.620–0.658 0.554
A.W. 0.762–0.796 0.779
L.M. 0.516–0.565 0.797
U.W. 0.658–0.699 0.455
J.K. 0.706–0.748 0.579

H.D. 0.529–0.534 0.767
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Figure 1. Examples of periapical radiographs for all categories: healthy periodontium, periodontal
bone loss (PBL) not detectable (Score 0), mild radiographic PBL up to 15% in the coronal third of the
tooth (Score 1), moderate radiographic PBL between 15% and 33% of the root length (Score 2), and
severe radiographic PBL beyond the coronal third of the tooth (Score 3).

2.4. Training of the Deep-Learning-Based CNNs (Test Method)

Hereafter, the utilized pipeline of well-established methods for developing the AI-
based algorithm is explained. Initially, the whole image set of 21,819 periapical radiographs
was subdivided into a training set (N = 18,819) and a test set (N = 3000). The latter
was randomly selected from the entire data set, ensuring that all sextants were equally
represented. This served as an independent test set for evaluation purposes only and was
not included in the model training.

By using Python (version 3.8.5, https://www.python.org accessed on 17 November
2023) in conjunction with the PyTorch library (version 1.12.0, https://pytorch.org accessed
on 17 November 2023), the training set was augmented so that the variability of the included

https://www.python.org
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radiographs could be improved. Therefore, images were modified using different transfor-
mations: random rotation up to 180 degrees, random changes in brightness, contrast, and
saturation up to 20% with color jitter, and random affine transformation (translation up to
30% of the image size and zooming out up to 70%). As a result, a new, unique, and virtual
grayscale image (RGB format) was created.

The augmented images were used to train the following pretrained CNNs: ResNet-18 [46],
MobileNet V2 [47], ConvNeXT/small, ConvNeXT/base, and ConvNeXT/large [48]. The
batch size amounted to 16 randomly selected images. The random selection of the respective
images into batches was done using PyTorch’s built-in DataLoader class. The learning
performance was repeatedly verified with the test set after 30 training steps. All CNNs
were trained using backpropagation to determine the gradient for learning. Furthermore,
the training was accelerated using Floating Point 16 and a university-based computer (i9
10850K 10 × 3.60 GHz, Intel Corp., Santa Clara, CA, USA) equipped with 48 GB RAM and
a professional graphic card (GeForce RTX 3060, Nvidia, Santa Clara, CA, USA). Each CNN
was trained over 5 epochs, with cross entropy loss as an error function and an application
of the Adam optimizer (Betas 0.9 and 0.999, Epsilon × 10−8).

2.5. Statistical Analysis

The data were analyzed using Python (version 3.8.5). By computing the number of
true positives (TPs), false positives (FPs), true negatives (TNs) and false negatives (FNs), the
diagnostic accuracy (ACC = (TN + TP)/(TN + TP + FN + FP)) was identified. The sensitivity
(SE), specificity (SP), positive predictive values (PPVs), negative predictive values (NPVs),
and the area under the receiver operating characteristic (ROC) curve (AUC) were calculated
with respect to the utilized CNN [49].

3. Results

For the purpose of this study, a total of 21,819 periapical radiographs were selected
and divided into sextants (upper and lower posterior teeth as well as upper and lower
anterior teeth). The image distribution in relation to the anatomical region and the PBL can
be taken from Table 2. While the number of radiographs from the upper jaw was found to
be comparable to that from the lower jaw, the overwhelming majority of images originated
from posterior teeth compared to anterior teeth. Moreover, most included periapical
radiographs showing teeth affected by mild PBL (42.6%). In contrast, radiographs with
severe PBL had a notably lower proportion (6.9%) in the total data set.

Table 2. Overview of the included periapical radiographs (N = 21,819) in relation to the corresponding
sextants and periodontal diagnosis.

Expert
Classification

Healthy
Periodontium (Score 0)

Mild PBL
(Score 1)

Moderate PBL
(Score 2)

Severe PBL
(Score 3) Total

N % N % N % N % N %

Upper jaw
Anteriors 653 3.0 661 3.0 433 2.0 197 0.9 1944 8.9

1st Quadrant 1701 7.8 1826 8.4 851 3.9 367 1.7 4745 21.8
2nd Quadrant 1231 5.6 2080 9.5 1093 5.0 312 1.5 4716 21.6

Lower jaw
Anteriors 202 0.9 676 3.1 786 3.6 325 1.5 1989 9.1

3rd Quadrant 1477 6.8 2033 9.3 593 2.7 157 0.7 4260 19.5
4th Quadrant 1282 5.9 2027 9.3 713 3.3 143 0.6 4165 19.1

Total 6546 30.0 9303 42.6 4469 20.5 1501 6.9 21,819 100

The overall diagnostic performance for automatized detection of PBL on periapical
radiographs in relation to the CNNs used are specified in Tables 3 and 4. The CNNs
achieved an overall ACC between 82.0% and 84.8%. The associated AUC values ranged
from 0.884 to 0.913. Moreover, all tested CNNs showed consistently higher SE values varying
between 88.8% and 90.7% compared to the SP values, which ranged from 66.2% to 71.2%.
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Table 3. Overview of the true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) distribution for the independent test set (N = 3000 radiographs), which was evaluated by the
AI-based algorithm for the assessment of periodontal bone loss.

CNN
True Positive (TP) True Negative (TN) False Positive (FP) False Negative (FN)

N % N % N % N %

ResNet-18 1876 62.5 609 20.3 294 9.8 221 7.4
MobileNetV2 1863 62.1 598 19.9 305 10.2 234 7.8

ConvNeXT/s 1 1877 62.6 639 21.3 264 8.8 220 7.3
ConvNeXT/b 2 1901 63.4 643 21.4 260 8.7 196 6.5
ConvNeXT/l 3 1890 63.0 637 21.2 266 8.9 207 6.9

1 small, 2 base, 3 large.

Table 4. Overview of the overall diagnostic performance of the developed convolutional neural
network (CNN), where the independent test set (N = 3000 radiographs) was evaluated by the AI-
based algorithm for the assessment of periodontal bone loss. The overall diagnostic accuracy (ACC),
sensitivity (SE), specificity (SP), negative predictive value (NPV), positive predictive value (PPV),
and area under the receiver operating characteristic curve (AUC) were predicted.

CNN
Diagnostic Performance

ACC SE SP NPV PPV AUC

ResNet-18 82.8 89.5 67.4 73.4 86.5 0.884
MobileNetV2 82.0 88.8 66.2 71.9 85.9 0.884

ConvNeXT/s 1 83.9 89.5 70.8 74.4 87.7 0.903
ConvNeXT/b 2 84.8 90.7 71.2 76.6 88.0 0.911
ConvNeXT/l 3 84.2 90.1 70.5 75.5 87.7 0.913

1 small, 2 base, 3 large.

When investigating the diagnostic performance of the CNNs depending on the anatom-
ical region (Tables 5 and 6), better results were mainly documented for mandibular teeth
compared to maxillary teeth. In the anterior region, ACC values from 94.9% to 96.0%
were observed for mandibular teeth and from 86.0% to 88.6% for maxillary teeth. When
considering posterior teeth only, the ACC ranged from 82.2% to 86.1% for mandibular teeth
and varied between 78.0% and 80.7% for maxillary teeth. In principle, the same tendency
was also observed for the AUC values (Table 6).

Table 5. Overview of the true positive (TP), true negative (TN), false positive (FP), and false negative
(FN) distribution for the independent test set (N = 3000 radiographs) in different sextants, which was
evaluated by the AI-based algorithm for the assessment of periodontal bone loss.

CNN
True Positive (TP) True Negative (TN) False Positive (FP) False Negative (FN)

N % N % N % N %

Radiographs with maxillary anterior teeth
ResNet-18 155 58.7 72 27.3 27 10.2 10 3.8
MobileNetV2 154 58.3 79 29.9 20 7.6 11 4.2
ConvNeXT/s 1 155 58.7 79 29.9 20 7.6 10 3.8
ConvNeXT/b 2 157 59.5 77 29.2 22 8.3 8 3.0
ConvNeXT/l 3 158 59.8 74 28.0 25 9.5 7 2.7

Radiographs with maxillary posterior teeth
ResNet-18 786 59.1 263 19.8 151 11.4 129 9.7
MobileNetV2 798 60.0 239 18.0 175 13.2 117 8.8
ConvNeXT/s 1 783 58.9 275 20.7 139 10.5 132 9.9
ConvNeXT/b 2 794 59.7 278 20.9 136 10.2 121 9.1
ConvNeXT/l 3 794 59.8 266 20.0 148 11.1 121 9.1
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Table 5. Cont.

CNN
True Positive (TP) True Negative (TN) False Positive (FP) False Negative (FN)

N % N % N % N %

Radiographs with mandibular anterior teeth
ResNet-18 244 89.7 14 5.2 11 4.0 3 1.1
MobileNetV2 239 87.9 19 7.0 6 2.2 8 2.9
ConvNeXT/s 1 242 89.0 19 7.0 6 2.2 5 1.8
ConvNeXT/b 2 244 89.7 17 6.3 8 2.9 3 1.1
ConvNeXT/l 3 243 89.3 18 6.6 7 2.6 4 1.5

Radiographs with mandibular posterior teeth
ResNet-18 691 60.9 260 22.9 105 9.3 79 6.9
MobileNetV2 672 59.2 261 23.0 104 9.2 98 8.6
ConvNeXT/s 1 697 61.4 266 23.4 99 8.7 73 6.4
ConvNeXT/b 2 706 62.2 271 23.9 94 8.3 64 5.6
ConvNeXT/l 3 695 61.2 279 24.6 86 7.6 75 6.6

1 small, 2 base, 3 large.

Table 6. Overview of the diagnostic performance of the developed convolutional neural networks
(CNNs) for different sextants, where the independent test set (N = 3000 radiographs) was evaluated by
the AI-based algorithm for the assessment of periodontal bone loss. The overall diagnostic accuracy
(ACC), sensitivity (SE), specificity (SP), negative predictive value (NPV), positive predictive value
(PPV), and area under the receiver operating characteristic curve (AUC) were predicted.

Diagnostic Performance

ACC SE SP NPV PPV AUC

Radiographs with maxillary anterior teeth
ResNet-18 86.0 93.9 72.7 87.8 85.2 0.925
MobileNetV2 88.3 93.3 79.8 87.8 88.5 0.935
ConvNeXT/s 1 88.6 93.9 79.8 88.8 88.6 0.951
ConvNeXT/b 2 88.6 95.2 77.8 90.6 87.7 0.959
ConvNeXT/l 3 87.9 95.8 74.7 91.4 86.3 0.950

Radiographs with maxillary posterior teeth
ResNet-18 78.9 85.9 63.5 67.1 83.9 0.844
MobileNetV2 78.0 87.2 57.7 67.1 82.0 0.839
ConvNeXT/s 1 79.6 85.6 66.4 67.6 84.9 0.858
ConvNeXT/b 2 80.7 86.8 67.1 69.7 85.4 0.868
ConvNeXT/l 3 79.8 86.8 64.3 68.7 84.3 0.866

Radiographs with mandibular anterior teeth
ResNet-18 94.9 98.8 56.0 82.4 95.7 0.942
MobileNetV2 94.9 96.8 76.0 70.4 97.6 0.960
ConvNeXT/s 1 96.0 98.0 76.0 79.2 97.6 0.969
ConvNeXT/b 2 96.0 98.8 68.0 85.0 96.8 0.978
ConvNeXT/l 3 96.0 98.4 72.0 81.8 97.2 0.980

Radiographs with mandibular posterior teeth
ResNet-18 83.8 89.7 71.2 76.7 86.8 0.895
MobileNetV2 82.2 87.3 71.5 72.7 86.6 0.893
ConvNeXT/s 1 84.8 90.5 72.9 78.5 87.6 0.916
ConvNeXT/b 2 86.1 91.7 74.2 80.9 88.3 0.921
ConvNeXT/l 3 85.8 90.3 76.4 78.8 89.0 0.930

1 small, 2 base, 3 large.

All five CNNs, ResNet-18 (ACC 82.8%; AUC 0.884), MobileNetV2 (82.0%; 0.884),
ConvNeXT/s (83.9%; 0.903), ConvNeXT/b (84.8%; 0.911) and ConvNeXT/l (84.2%; 0.913),
tended to show similar performance data (Table 4). Furthermore, the hierarchy of results
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is evident in the receiver operating characteristic (ROC) curves of the five CNNs used to
graphically compare diagnostic performance in detecting PBL (Figure 2).
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Figure 2. The receiver operating characteristic (ROC) curves graphically visualize the diagnostic
performance of the developed convolutional neural networks (CNNs) in detecting PBL.

4. Discussion

The present study was able to demonstrate that different CNN architectures are able
to detect PBL on periapical radiographs. However, with an overall accuracy between 82.0%
and 84.8%, none of the CNNs tested were able to achieve the primary expected accuracy
of 90%. Although the CNNs achieved similar diagnostic performance compared to one
another, there were differences for the various sextants. This led to the rejection of the
originally formulated hypothesis. Nevertheless, the results obtained provide important
information for the discussion.

When considering the ability of the tested CNNs to detect PBL in relation to sextants
on periapical radiographs, differences between teeth in the lower and upper jaw were
observed (Table 6). Here, the projection technique and overlaying anatomical structures
such as the maxillary sinuses or the nasal cavities may have negatively affected the di-
agnostic performance in the upper jaw. In contrast to the maxilla, mandibular sextants
can be captured more accurately by use of the right-angle technique, which results in less
distorted images and better diagnostic performance data (Table 6). The previously men-
tioned factors most likely explain the documented differences in the model performance
among sextants, which were found to be similar throughout all included CNNs (Table 6).
Such differences are of methodological importance. For example, Tsoromokos et al. [24]
included only periapical radiographs with mandibular teeth in their pilot study to avoid
data inconsistencies. Additionally, other author groups excluded radiographs from some
sextants [20] or vertically rotated maxillary to mandibular teeth [26]. Such procedures may
have resulted in biased and/or noncomparable results. Consequently, aiming at increasing
the comparability of future studies, it is suggested to provide data for each sextant based
on a well-powered image sample.

The diagnostic performance between the included CNNs was found to be similar. In
general, our study results are basically in line with recently published studies of similar
methodologies for evaluating PBL on periapical radiographs [19–24,26,29]. For example,
Lee et al. [26] presented a model that could detect periodontally compromised premo-
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lars and molars with a diagnostic accuracy of 82.8% and 73.5%, respectively. As part
of the PBL assessment, Chen et al. [25] compared so-called fast and faster R-CNNs and
then determined the severity of PBL. Unfortunately, no detailed accuracy values were
provided [25]. Lee et al. [23] trained a machine learning model with precisely annotated
periapical radiographs, which also classified PBL according to the latest classification [13].
In this context, high AUC values of 0.89, 0.90, and 0.90 were obtained for stages I, II, and III,
respectively [23]. Another study with an accurate annotation process was introduced by
Chen et al. [29]. Here, the model based on deep CNN algorithms provided an accuracy of
97% for the detection of PBL on periapical radiographs and showed superior performance
compared to dentists. To the best of our knowledge, no study has compared multiple CNNs
for PBL detection on periapical radiographs. In the literature, there is only one similarly
designed study available that tested different CNNs to identify implant characteristics
on periapical radiographs [50]. When also considering studies that analyzed panoramic
X-rays for the presence of PBL, it can be concluded that the model metrics were found to be
similar [18,30–34,36–40]. For instance, Krois et al. [38] presented a deep feed-forward CNN
to detect PBL on image segments from panoramic radiographs. They chose binary decision
making to distinguish between the presence or absence of PBL by introducing a cut-off
value (20%, 25%, and 30%). A mean accuracy of 81% for PBL detection was achieved by the
utilized CNN. In addition, the panoramic radiographs were manually cropped, focusing on
a single tooth, and the images were flipped vertically by 180 degrees during pre-processing.
Subsequently, it can be seen from the results that the diagnostic performance was validated
in certain subgroups of teeth, with the highest accuracy value being reported for molars
(86%). The deep learning model proposed in the study of Jiang et al. [30] was also applied
to detect PBL on panoramic radiographs. The diagnostic performance of the model varied
between 71% and 81% for different tooth groups. Interestingly, lower accuracy values were
obtained not only for maxillary molars but also for mandibular anterior teeth, suggesting
that overlapping anatomical structures may negatively impact the diagnostic performance
for the anterior region in panoramic radiographs. Furthermore, the diagnostic performance
for each periodontal stage was compared between the model and dentists. At all stages, the
model achieved higher accuracy and sensitivity values compared to the dentists. Consider-
ing the reported results, it is worth noting that the author groups that accurately annotated
PBL or features of PBL on panoramic radiographs generally published more favorable
results [29,32,34,37].

This study has strengths and limitations. In view of the significant heterogeneity that
previous studies have shown not only in their data sets (e.g., excluding certain tooth groups,
the number of radiographs) but also in the evaluation method of diagnostic performance,
then the training of commonly used CNNs with a data set representative of all sextants
and the representation of their diagnostic performance with standardized variables can be
considered a strength of this study [24,41–43]. Establishing a representative image data set
for a particular finding with a relevant number of images can be considered a crucial factor.
When comparing studies in terms of the total number of periapical radiographs, our study
revealed a large data set (N = 21,819). Only Kearney et al. [51] utilized a larger data set, with
over 100,000 radiographs; however, this study differed from our study methodologically
by determining the clinical attachment level instead of PBL. Additionally, studies with
panoramic radiographs should be mentioned in this context. With the exception of Kim
et al. with more than 12,000 radiographs [37], almost all identified studies reported data
sets with less than 2000 panoramic radiographs [18,30–36,38–40]. Moreover, our study
allows the comparison of different CNNs for detecting PBL for each sextant. In addition,
the data set included periapical radiographs with a broad spectrum of dental pathologies
or restorations.

As a limiting factor of our study, the unbalanced image distribution across all sextants
should be discussed. Although the number of radiographs from the maxilla was found to
be similar to that of the mandible, less than half of the images were available from anterior
teeth compared to posterior teeth (Table 2), which possibly indicates an imbalance in the
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data set. The main reason leading to this unequal image distribution might be that under
clinical conditions, the justification of an indication for radiography varies between the
different sextants. In addition, moderate and severe PBL were also underrepresented. Such
imbalances may negatively influence the diagnostic performance of CNNs. Therefore,
it is crucial to safeguard a representative and well-balanced number of images for each
sextant and severity score in order to improve the metrics of the models. Furthermore,
this study utilized periapical radiographs only. However, both panoramic and periapical
radiographs are considered relevant for PBL assessment. As for the aspect of comparing
the diagnostic performance within different sextants, panoramic radiographs might be
considered less applicable, since overlapping anatomical structures could potentially limit
the diagnostic performance for the anterior region. Moreover, our data set was compiled
from anonymized periapical X-rays; thus, no conclusions can be drawn about further,
patient-specific diagnostic information. Additional diagnostic information, such as clinical
attachment loss and pocket depths, would be particularly helpful for the initial diagnosis
of periodontal disease, considering that the radiographic assessment of periodontal bone
defects of low depth and buccolingual width might be restricted [52]. Here, the radiographic
assessment of PBL becomes more relevant with further disease progression when the
extent of osseous lesions can be visualized more accurately [53]. Another limitation to be
mentioned is that we made a diagnosis for each image by distinguishing between a healthy
periodontium and teeth affected with PBL (score 0 vs. 1–3). Considering that none of the
five CNNs showed the hypothesized accuracy of 90%, this binary decision-making has to
be understood as a limitation, which also negatively influenced the metrics of the models.
It can be assumed that the precise annotation of PBL-related structures may increase the
performance of the CNNs [23,29]. However, exact image labelling is time-consuming and
requires extensive resources, especially with such large data sets. Nevertheless, it can be
expected that precisely annotated radiographs representing a large and balanced data set
would probably increase the precision of machine-based PBL detection.

5. Conclusions

In summary, the CNNs used showed nearly identical diagnostic performance in
detecting PBL on periapical radiographs. However, different outcomes were documented
among sextants, which can be primarily explained by the radiographic anatomy. With
regard to comparable projects in the future, it is expected that the diagnostic performance
can be further increased by precise annotations.
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