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Abstract: The artificial intelligence (AI) systems used for diagnosing ophthalmic diseases have
significantly progressed in recent years. The diagnosis of difficult eye conditions, such as cataracts,
diabetic retinopathy, age-related macular degeneration, glaucoma, and retinopathy of prematurity,
has become significantly less complicated as a result of the development of AI algorithms, which are
currently on par with ophthalmologists in terms of their level of effectiveness. However, in the context
of building AI systems for medical applications such as identifying eye diseases, addressing the
challenges of safety and trustworthiness is paramount, including the emerging threat of adversarial
attacks. Research has increasingly focused on understanding and mitigating these attacks, with
numerous articles discussing this topic in recent years. As a starting point for our discussion, we used
the paper by Ma et al. “Understanding Adversarial Attacks on Deep Learning Based Medical Image
Analysis Systems”. A literature review was performed for this study, which included a thorough
search of open-access research papers using online sources (PubMed and Google). The research
provides examples of unique attack strategies for medical images. Unfortunately, unique algorithms
for attacks on the various ophthalmic image types have yet to be developed. It is a task that needs
to be performed. As a result, it is necessary to build algorithms that validate the computation and
explain the findings of artificial intelligence models. In this article, we focus on adversarial attacks,
one of the most well-known attack methods, which provide evidence (i.e., adversarial examples) of
the lack of resilience of decision models that do not include provable guarantees. Adversarial attacks
have the potential to provide inaccurate findings in deep learning systems and can have catastrophic
effects in the healthcare industry, such as healthcare financing fraud and wrong diagnosis.

Keywords: adversarial attacks; ophthalmology; artificial intelligence

1. Introduction

In many areas of artificial intelligence, machine learning algorithms based on big
data (Wang et al. [1] and Ching-Yu et al. [2]) and deep learning have facilitated extraordinary
progress, with many applications in ophthalmology (Keenan et al. [3], Papadopoulos et al. [4],
Rampasek et al. [5], Ishii et al. [6], Kermany et al. [7], Liu Y. et al. [8], Liu T. et al. [9], Burlina
et al. [10], Cen et al. [11], Zheng et al. [12], Shekar et al. [13], and by Zhao et al. [14]).

Advances in artificial intelligence (AI) algorithms and easy access to large public
datasets have made AI models ubiquitous, from funny filters on Instagram to automatic
translators that help us perform our work to specialised models that solve complicated
problems such as analysing and classifying medical photos.

With the help of artificial intelligence algorithms, we can solve complex image clas-
sification problems in different areas of life. The development of big data has given us
access to millions of correctly classified images. This allows the algorithms to learn better.
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The latest models can achieve up to 98% accuracy, which can be misleading. Suppose we
consider even minor perturbations to the image, such as the change in colour of just one
pixel. Then, such models are uncertain for small perturbations. A disturbance of the image,
which does not change in termsof human perception, makes it a completely different image
for the AI model (Figure 1).

Figure 1. A classical example of an adversarial attack (Goodfellow et al. [15]).

The figure above demonstrates that the model first correctly categorised the panda
image. After the perturbation was applied to this image, the model’s prediction shifted to
a gibbon, and the likelihood that it was a gibbon was extremely high. Humans interpret
both photographs similarly. Nonetheless, the model views them as entirely distinct. This
highlights the significance of adversarial attacks and that even modifications in the image
that are imperceptible to humans can dramatically misrepresent the model’s output, as
described by Liu et al. [16].

Most of the attacks presented in this paper concern convolutional neural networks
(CNNs). However, the relatively new approach in computer vision, adapted from natural
language processing, vision transformers (ViTs), can achieve state-of-the-art or near-state-
of-the-art performance on various image classification tasks, as demonstrated by recent
advances in attention-based networks. It distinguishes transformers as a promising alterna-
tive to conventional convolutional neural networks. Mahmood et al. [17] demonstrated
that white-box attacks are highly effective at producing vision transformer examples. They
concluded that vision transformers are as susceptible to white-box adversaries as their CNN
counterparts. Nonetheless, transferability can be utilised to achieve robustness against a
black-box adversary. They developed a SAGA attack.

Hu et al. [18] also employed attacks against CNNs and ViTs. They described the
IAM-UAP attack algorithm.

However, some groundbreaking studies by Naseer et al. [19] demonstrated that ViTs
are more robust than CNNs against adversarial patch attacks, arguing that the dynamic,
receptive field of multihead self-attention (MSA) is the reason for its superior robustness.

Wang and Ruan provided significant results [20]. The authors demonstrated that ViTs
are Lipschitz continuous for vision tasks and then formally connect the local robustness
of transformers to the Cauchy problem. They theoretically showed that the maximum
singular value determines the local robustness of each block’s Jacobian. They discovered
that the initial and final layers inhibit the robustness of ViTs. In addition, contrary to
existing research that suggests MSA can increase robustness, they found that the defensive
power of MSA in ViT is only effective against weak adversarial attacks for large models.
MSA compromises adversary robustness even against solid attacks.

Unfortunately, research using ViT to classify medical images is relatively new, and
there are no presented attacks on such models for classifying medical images. It could be
an interesting step in the development of specialised adversarial attacks.
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In recent years, more research has been undertaken on applying artificial intelligence
algorithms to solve medical problems, i.e., studies on various eye diseases. The resulting
models are highly efficient. Nevertheless, we typically do not receive any information on
model checking. One such difficulty may arise from the adversarial attacks presented by
Goodfellow et al. [15]. They are relatively easy attacks to develop and are expected when
working with images.

This study covered adversarial and specific adversarial attacks for images used in
ophthalmology. In this paper, we highlight the different attacks and describe their influence
on models that receive ophthalmic images as input. We also address the necessity of
designing novel attack algorithms for specific sorts of pictures, such as fundus or anterior
segment images.

2. Adversarial Attacks

The tendency of classifiers to overfit has led many to assume that adversarial attacks
only occur in deep neural networks. All decision models have an adversarial attack as a
fundamental property. Here we will explore the fundamentals of adversarial attacks to
better understand attacks on ophthalmic image classification models.

Suppose d represents the number of dimensions of the input object. Consider a data
point representing an image x0 ∈ Rd of class Ci, where 0 < i ≤ j, and j is the number of
classes. An adversarial attack is a malicious attempt to insert x0 into a new data point x ∈ Rd

such that the classifier misclassifies x, i.e., x belongs to a particularly hostile target class.
There are two categories of attacks: targeted and untargeted attacks. Let us consider a

binary classification. In a targeted attack, a certain class C1 is given, and with this attack,
we want a given modelM to classify an image of a given image I into class C1, although
its correct class is C2. An untargeted attack aims to deceive the modelM by giving it a
distorted image I so that it is assigned to a class other than C1. Untargeted attacks are not
as good as targeted attacks and take much less time. Targeted attacks are more effective at
changing the model’s predictions, but they come at a price: time.

Problem Formulation

An adversarial attack is a malicious attempt to perturb a data point x0 ∈ Rd to another
point x ∈ Rd so that x belongs to a particular adversarial target class.

Suppose a binary classifier classifies photographs of the anterior segment of the eye
for cataracts.

For example, if x0 is a feature vector of an anterior eye segment photograph with a
correct classification of cataract. With an adversarial attack, we want to create another
feature vector x classified as healthy (or another class specified by the attacker). In some
scenarios, the goal may not be to assign x0 to a particular target class C t, but to push it
away from its original class C i.

Let us define a data set as D = {xi, yi}N
i=1, where xi is a data sample labelled yi, and N

is the size of the data set. A trained model is denoted asM with input x and prediction
M(x). A loss function is denoted by `. In a soft machine learning system, training attempts
to minimise the loss between the target label and the predicted label:

Definition 1. Given data X = {x1, x2, . . . , xn} and target labels Y = {y1, y2, . . . , yn} find a
hypothesisH such that

arg min
H

∑
xi ,yi∈D

`(H(xi), yi).

The trained model is tested to see how well it can predict the predicted label. One of
the methods is to calculate the error by summing the losses between the target label and
the predicted label.

Let us define a test dataset as D′ = {xi, yi}M
i=1, where xi is a data sample with label yi,

and M is the size of the dataset.
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Definition 2. Given test data X ′ = {x1, x2, . . . , xm} and test labels Y ′ = {y1, y2, . . . , ym}, the
error is

∑
xi ,yi∈D′

`(H(xi), yi).

The adversarial attack algorithm is divided into two main parts:

1. The query input is changed from the benign input x to x′.
2. An attack target is set so that the prediction result H(x) is no longer y. The loss is

changed from `(H(xi), yi) to `(H(xi), y′i), where y′i 6= yi.

Definition 3 (Adversarial Attack (AA)). Let x0 ∈ Rd be a data point belonging to class C i.
Define a target class C t. An adversarial attack is a mappingA : Rd → Rd such that the perturbed data

x = A(x0)

3. Methodology

As a starting point for our discussion, we used the study by Ma et al. [21].
We began our search of open-access research papers available in Google Scholar’s

primary search. We searched for papers that consisted of entering various terms in three
types of search engines, including “ophthalmology”, “ophthalmic image”, “retina”, and
“retinal image”, “fundus”, and “fundus image”, along with the words “adversarial attacks”
and “attacks”. The exact search was performed in the Google search and PubMed engines.
We considered papers published after 2018.

4. Challenges in Adversarial Attacks in Medicine

Before the paper by Ma et al. [21], adversarial machine learning analysis focused on
natural images, and medical image AAs were still unclear. Unlike natural images, medi-
cal images may contain domain-specific features. AAs can affect medical deep-learning
systems. AAs can arbitrarily change diagnoses and outcomes. Ma et al. emphasised the
importance of the fact that the healthcare system is heavily resourced. It inevitably creates
risks where potential attackers can attempt to profit from manipulating the healthcare
system. They gave an example of an attacker who can manipulate the health system’s
investigative reports to commit insurance fraud or submit a fraudulent claim for medical
reimbursement, as first presented by Paschali et al. [22].

In addition, an attacker may attempt to make a misdiagnosis by manipulating an
image without detection. It may significantly affect patient decisions. DNNs operate
on the black box principle, so such misclassification would be nearly impossible to de-
tect. Other techniques can explain the DNNs’ decision, but consulting an expert/doctor
is necessary for the diagnosis to be certain. This was shown by Avramidis et al. [23],
Kind et al. [24], Chetoui et al. [25], and Ribeiro et al. [26].

Decision models and medical imaging techniques are increasingly used in medical
diagnostics. Safe and robust medical deep-learning systems have become essential, as
shown by by Finlayson et al. [27] and Paschali et al. [22]. The work by Ma et al. [21]
was an essential step toward developing a comprehensive understanding of AAs in this
field. It provides a broad knowledge of AAs in medical images, from the perspectives of
both generating and detecting these attacks. However, Finlayson et al. [27] and Paschali
et al. [22] have studied AAs on medical images, primarily focusing on testing the robustness
of the deep models developed for medical image analysis.

The authors emphasised that AAs can succeed faster on medical images than natural
ones. It means that fewer perturbations are required to execute a successful attack. They
then pointed to two main reasons why deep neural networks that classify medical images
are more exposed to AAs:



J. Clin. Med. 2023, 12, 3266 5 of 14

1. Typically, medical images have complex biological textures, leading to areas with
stronger gradients that are sensitive to small perturbations from attackers.

2. State-of-the-art deep neural networks designed for large-scale natural image process-
ing can be reparameterised for medical imaging tasks, resulting in a severe loss of
landscape and high susceptibility to AAs.

According to the analysis by Ma et al. [21], medical imaging AAs generated using
attack methods developed from natural images are not really “detrimental” in the medical
sense. The authors noted that caution should be used when using these AAs to evaluate
the performance of DNN models for medical images. Their study also shed light on the
future development of more effective attacks on medical images. Future research should
focus on developing specific AAs for different types of ophthalmic images.

The Danger of Adversarial Attacks in the Healthcare System

According to Finlayson et al. [28], the U.S. healthcare system favours AAs. They sum-
marised parts of the healthcare system that can give an attacker a reason and opportunity
to perform an AA.

The paper also discusses the technical reasons why medical machine-learning systems
are accessible to AAs. The authors noted that the truth must often be clarified and id more
contentious. End users change images that are difficult to diagnose. In this case, they can
make it very hard for medical experts to figure out how much influence they have. Deep
learning is most useful in edge cases.

They also noted that medical imaging is highly standardised. They found that medical
AA attacks do not require invariance. Medical AA attacks are not immune to lighting or
position changes.

They also considered the fact that standard network architectures are frequently used.
Most of the best-published methods in medical computer vision have the same basic
structure. This lack of architectural variety makes it easier for attackers to attack multiple
medical systems. Models should be made public to provide transparency and enable more
targeted attacks.

Finlayson et al. [28] provided a hypothetical but intriguing example of adversarial
examples in ophthalmology. According to the authors, government agencies often issue
diagnostic guidelines requiring coverage for specific procedures, if requirements are met.
One of the criteria could be that a patient with diabetic retinopathy should undergo a
specific surgery from an insurance company. Even if the insurer cannot control the policy,
it can control surgery frequency using noise instead of slightly positive photos. On the
other hand, an ophthalmologist may place a universal enemy image on the lens of its image
capture system. A third-party image processing system would mistakenly label all images
as positive cases without changing the image in the information system.

5. Adversarial Attacks in Ophthalmology

Artificial intelligence has a significant role to play in the field of ophthalmic imaging. Colour
fundus imaging and optical coherence tomography play a substantial role in ophthalmology in
terms of their diagnostic accuracy and usefulness in segmenting disorders.

This section provides a summary of AAs on ophthalmology-related models. However,
the original issue is partitioned into two separate ones. The first is the usage of classical
adversarial algorithms, and the second, given in the following section, is the application
of ophthalmology-specific adversarial algorithms. In chronological order, we began our
examination in 2018.

Shah et al. [29] studied the effect of AAs on retinal imaging. To detect diabetic retinopa-
thy, they evaluated image-based CNN-0, closely influenced by Alexnet by Krizhevsky
et al. [30]; CNN-1, inspired by Enet by Paszke et al. [31]; and hybrid-lesion-based medical
image analysis models by Abràmoff et al. [32]. The CNN-1 and hybrid-lesion-based models
were evaluated using CNN-0 and the iterative fast gradient sign method (I-FGSM) by
Kurakin et al. [33] to produce adversarial images. According to the experimental results,
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CNN models performed rather poorly, but hybrid-lesion-based models were more robust
and achieved 45% and 0.6% reductions in accuracy, respectively (Figure 2). They collected
the image from the Eyepacs dataset by Cuadros and Bresnick [34]. The authors noted that
the explainability of the decision process underlying medical-image-based diagnostic tasks
is of utmost importance.

Figure 2. The AAs of three different patients (A–C) images that had previously been classified as a
disease (referable diabetic retinopathy). The original images containing the disease are in the left
column, while the right column displays the AA variants. Pixel differences are difficult to distinguish,
even at high magnification (Shah et al. [29]).

Medical AAs were demonstrated to be feasible by Finlayson et al. [28]. The authors
created a set of medical classifiers based on state-of-the-art clinical deep-learning algorithms.
White- and black-box attacks against each other were the two types of AAs they carried out.

They created classification models for referable diabetic retinopathy based on fun-
doscopy images of the retina (similar to Gulshan et al. [35]). Data from the Kaggle Diabetic
Retinopathy Dataset were used to train the models. Instead of the retinopathy grade, the
Kaggle dataset sought to predict referable (grade 2 or worse) diabetic retinopathy using the
model by Gulshan et al. [35].

Two different sorts of attacks, human undetected and patch attacks, were used to show
how vulnerable their models were to AAs under various threat models. The white- and
black-box projected gradient descent (PGD) attack methods were used in the undetectable
by human attacks. The FGSM attack, first presented by Madry et al. [36], has evolved into
the PGD attack, an iterative evolution of the FGSM attack. They adapted the approach
outlined by Buckman et al. [37] for adversarial patch attacks.

The experimental results (Figure 3) showed that even very accurate medical classifiers
can produce AAs, regardless of whether potential attackers have direct access to the model
or must attack humans invisibly. PGD attacks require digital access to specific photographs
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provided to the model, while adversarial patch attacks can be used on any image, according
to the research. They described realistic AAs against their systems.

Figure 3. A demonstration that AAs can be feasible even for extremely accurate medical classifiers
(Finlayson et al. [28]).

Ma et al. [21] examined four attacks on DNNs trained on five medical image datasets.
They presented attack parameters, results, and analyses. FGSM, BIM, PGD, and the strongest
optimisation-based Carlini and Wagner attack (L∞ version) were performed. These attacks
were limited by a maximum perturbation ε in the L∞ norm on each input pixel.

They benchmarked the difficulty of classifying diabetic retinopathy fundus images.
They initially categorised the image dataset into ‘no DR’ and ‘referable’. They focused on
medical photos’ AA difficulty, which matched ImageNet’s nature images. Medical photos
were easier to attack than ImageNet photos, the findings showed. This unexpected finding
was clarified by a saliency map for two ImageNet and medical images from different
classes. Based on classification loss gradients, the saliency map of an input picture shows
the regions that change model output most from classification loss gradients. However,
comparing the model procedures with the explanations of ImageNet and medical image
output from different classes would be interesting, valuable, and intriguing.

As a result, we concluded that we require explainable models in addition to unique
AAs for characteristic medical images.

Yoo and Choi [38] investigated whether AAs can confound deep-learning systems
based on imaging techniques such as fundus photography (FP), ultra-widefield photogra-
phy (FP), and optical coherence tomography (OCT). Based on the basic FGSM algorithm,
they developed a binary classifier to identify cases of diabetic retinopathy and diabetic
macular oedema. Again, the unique qualities of medical imagery were ignored in this study.

The results exhibited the same characteristics as those reported by Ma et al. [21]. Using
FGSM attacks helps deep learning models perform better.
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Nonetheless, the authors adopted the same stance on attacks as Ma et al. [21]. Attackers
may disrupt hospitals’ and insurance firms’ medical billing and reimbursement systems.
Defensive approaches, including adversarial training, denoising filters, and generative
adversarial networks, can successfully decrease the impact of AAs.

Lal et al. [39] worked on establishing a framework for diabetic retinopathy detection-
specific attack detection and defence. Keeping algorithms safe and reliable is a major
concern in the fast-paced growth of artificial intelligence (AI) and deep learning (DL) tech-
niques. The main conclusion of the study was a framework that provides a protective model
against the adversarial speckle-noise attack and adversarial training. The authors then
proposed a feature fusion technique that maintains categorisation with correct labelling.
They assessed and studied the AAs and defences created by their framework on retinal
fundus images for the problem of diabetic retinopathy identification. However, the authors
concentrated on only two types of attacks: FGSM and speckle-noise attack (SN). The most
significant disadvantage is that these attacks are detectable at first glance. The authors
correctly noted that medical images are significantly degraded because, for example, noise
is unavoidable in data acquisition, contrast is low due to illumination variations, and
various other factors can produce random pixel values for individual pixels in an image by
multiplying speckle noise (Figure 4).

Figure 4. An example of the SN attacked images from [39] by Lal et al.

Hirano et al. [40] emphasised the need for more concentrated research on the vulner-
ability of DNNs to AAs. They focused on a single, modest, image-agnostic perturbation
known as a universal adversarial perturbation (UAP), which can cause DNN failure in
the majority of image classification tasks. Because such minute changes have little effect
on data distributions, UAPs are challenging to find. Nonetheless, the authors found that
UAP-based AAs are more accurate for adversaries to implement in real-world contexts. In
medical imaging diagnostics, UAPs are prone to security risks.

Nonetheless, defence tactics against UAPs in DNN-based medical image classification
still need to be studied, despite the sensitivity of DNNs to AAs, demonstrating the need for
solutions to address security concerns.

Researchers focused on a representative medical image classification: the classification
of diabetic retinopathy based on OCT images. Based on previous research, they built DNN
models with different topologies for medical image recognition and investigated their
susceptibility to untargeted and targeted attacks based on UAPs. They also studied the
defence against attackers. They used adversarial training to test the increased resistance of
DNNs to untargeted and targeted UAPs.
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6. Specified Adversarial Attacks in Ophthalmology

The studies presented in the previous section have indicated a need to build algorithms
for deception attacks explicitly targeted at medical images. In this section, we concentrate
on attacks specifically designed for ophthalmic images in this area.

6.1. Adaptive Segmentation Mask Attack

Ozbulak et al. [41] demonstrated that deep-learning-based medical image segmen-
tation models are susceptible to AAs. They concentrated on optic disc segmentation
in glaucoma and targeted attacks. They employed the U-Net model, one of the best-
recognised models for medical image segmentation. They introduced the adaptive mask
segmentation attack (AMSA), a unique approach to creating AAs with realistic predic-
tion masks. When misclassified, the algorithm modifies the masks in largely imper-
ceptible ways to human sight. The authors posted the AA’s source code on GitHub
at https://github.com/utkuozbulak/adaptive-segmentation-mask-attack/ (accessed on
25 April 2023).

6.2. HFC

Yao et al. [42] presented a novel hierarchical feature constraint (HFC) to supplement
current white-box attacks, allowing the adversarial representation to be concealed within
the normal feature distribution. They examined the proposed approach using a fundoscopy
image dataset. Their investigations revealed that the increased susceptibility of medical
representations gives an adversary more opportunities for malevolent manipulation. Their
premise was that medical AAs are easily detectable. They specified the HFC that can be
used in attacks to evade detection. They performed comprehensive tests to determine
the efficacy of the HFC. The experimental results demonstrated that HFC significantly
outperformed other adaptive attacks, highlighting the inadequacies of existing approaches
for identifying medical attacks in feature space.

6.3. MSA

Shao et al. [43] reported a targeted attack against a biomedical image segmentation
model built on multiscale gradients. Their approach integrates the attack on the adaptive
segmentation mask with a perturbation of the feature space. They suggested a targeted
attack approach employing multiscale gradients and applied the binary cross-entropy loss
function for semantic image segmentation. The MSA approach introduces the gradient
information of the loss functions to repeatedly calculate the adversarial perturbation. The
original image is fitted with the adversarial perturbation and is subsequently transformed
to an AA when the predicted mask of AA is close to the target mask. They conducted
glaucoma-related studies utilising U-Net and an optic disc segmentation dataset. They
demonstrated that their MSA method outperformed the standard method (ASMA).

6.4. SMIA

In order to diagnose pre-existing medical systems, Qi et al. [44] presented a method
for medical image AA. By maximising the deviation loss term and minimising the loss
stabilisation term, the approach iteratively builds AAs. The current iteration increases the
difference between the CNN prediction and the matching ground truth label for AA. In
comparison, the CNN predictions for the smoothed input are similar. Similar predictions
ensure that the perturbations are created in a relatively flat region in the CNN feature space.
The perturbations are updated from one flat region to another throughout subsequent
iterations. Hence, the suggested approach cab explore perturbation space to smooth a
single point and obtain a local optimum. Compared with the perturbation movement
between single locations induced just by the loss deviation term, the loss stabilisation term
enhances attack performance by stabilising the perturbation movement.

They used two datasets for diabetic retinopathy evaluation: APTOS-2019 and Kaggle-
DR, and they used the ResNet-50 model combined with a graph convolutional network

https://github.com/utkuozbulak/adaptive-segmentation-mask-attack/
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to classify fundus images. Under the same medical analytic settings, they compared
the proposed SMIA technique with existing AA methods. In addition to the commonly
utilised FGSM and PGD algorithms, they included DAG, which was proposed for natural
image identification and segmentation, and DeepFool, which was designed for disease
classification. The visualisation and experimental results proved the attack approach’s
success in determining the limitations of medical diagnostic systems and further enhancing
them (Figure 5).

Figure 5. An example of SMIA effectiveness (Qi et al. [44]).

6.5. Remarks

The aforementioned studies have illustrated specific attack tactics for medical images.
However, no novel algorithms for attacks on various ophthalmic image types have yet
to be developed, which is a task that must be accomplished. As a result, algorithms that
explain the results of artificial intelligence models and that validate the computation of
artificial intelligence models must be developed.

7. Regulations
7.1. The European Union

In April 2021, the European Commission has proposed REGULATION OF THE EU-
ROPEAN PARLIAMENT AND OF THE COUNCIL LAYING DOWN HARMONISED
RULES ON ARTIFICIAL INTELLIGENCE (ARTIFICIAL INTELLIGENCE ACT) AND
AMENDING CERTAIN UNION LEGISLATIVE ACTS [45].

Note 51 says:

“Cybersecurity plays a crucial role in ensuring that AI systems are resilient against
attempts to alter their use, behaviour, performance or compromise their security prop-
erties by malicious third parties exploiting the system’s vulnerabilities. Cyberattacks
against AI systems can leverage AI specific assets, such as training data sets (e.g., data
poisoning) or trained models (e.g., adversarial attacks), or exploit vulnerabilities in the
AI system’s digital assets or the underlying ICT infrastructure. To ensure a level of
cybersecurity appropriate to the risks, suitable measures should therefore be taken by the
providers of high-risk AI systems, also taking into account as appropriate the underlying
ICT infrastructure.”

Chapter 2, Article 15, point 4 says:

“High-risk AI systems shall be resilient as regards attempts by unauthorised third parties
to alter their use or performance by exploiting the system vulnerabilities.

The technical solutions aimed at ensuring the cybersecurity of high-risk AI systems shall
be appropriate to the relevant circumstances and the risks.

The technical solutions to address AI specific vulnerabilities shall include, where appropri-
ate, measures to prevent and control for attacks trying to manipulate the training dataset
(‘data poisoning’), inputs designed to cause the model to make a mistake (‘adversarial
examples’), or model flaws.”

7.2. The United States of America

In January 2021, the U.S. Food and Drug Administration (FDA) presented “Artificial
Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD)
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Action Plan” [46]. Point 4 “4. Regulatory Science Methods Related to Algorithm Bias &
Robustness” says:

“Support regulatory science efforts to develop methodology for the evaluation and improve-
ment of machine learning algorithms, including for the identification and elimination of
bias, and for the evaluation and promotion of algorithm robustness.”

7.3. Discussion

We could not find real-life adversarial attacks in the medicine descriptions in the
literature. This shows how complicated and delicate the problem is. In the previous
sections, we showed that two famous institutions are aware of the possibility of attacks
and the lack of robustness of the models.

During our previous research, we used several commercial models. We proposed
the algorithms’ owners’ joint research and the possibility of testing models using attacks
several times. We also explained to companies that successful attacks will not discredit their
product but show how their model can be improved. None of the companies expressed
willingness to cooperate. .

Testing the models by sending perturbed images via the interface provided by the
companies is possible. However, such attacking could be noticed by the fact that we would
send a dozen or so, at first glance, photos for classification that did not differ in any way.
This alsod involve high costs. The results obtained in this way could not be made available
and published.

We are currently working on attacks against a model provided to us by another
research group. However, again, this is not a commercially used model.

Soon, legal regulations requiring the verification of models and their explainability
will come into force in the European Union. However, we should be aware that such a
process may take a long time, and many misdiagnoses will occur before the law comes into
force. Similar problems occurred with the rapid development of information systems in
the 2000s. Many errors in the operation of the systems were detected after implementation,
costing human lives and financial losses. Legal regulations regarding formal verification
were introduced over time and in a few countries worldwide mainly because the cost of
formal verification often exceeded the cost of software development.

8. Conclusions

Artificial intelligence algorithms may advance ophthalmic image processing and
become a vital tool for clinicians and hospitals. However, AAs present a significant risk to
patients as well as a barrier to the correct operation of AI models. The purpose of this study
was to provide a summary of the studies focused on the use of AAs in ophthalmic image
analysis. The analyses have demonstrated that these attacks can also mislead ophthalmic
imaging models. Several researchers have presented novel attacks that have been created
specifically for the field of ophthalmic image processing and have a very high level of
accuracy. We provide a brief summary of the described attacks in Tables 1 and 2.

We think that computer scientists and the ophthalmology communities should closely co-
operate and concentrate on tackling AAs to integrate AI algorithms into real-world problems.

Table 1. The standard AAs.

Type of the Attack Characteristics

I-FGSM [29,33]
FGSM iteratively adds the noise (not random noise) whose
direction is the same as the gradient of the cost function
concerning the data.

PGD [28,36] Initialises the attack to a random point in the ball of interest and
performs random restarts.
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Table 1. Cont.

Type of the Attack Characteristics

FGSM [21,36,38] Adds the noise (not random noise) whose direction is the same as
the gradient of the cost function concerning the data.

BIM [21,33]
A simple extension of the FGSM where, rather than taking one
significant step, it performs an iterative procedure by using FGSM
numerous times on an image.

C&W [21,47] A regularisation-based attack with some necessary modifications
that can resolve the unboundedness issue.

SN [39] The gritty salt-and-pepper pattern seen in radar imaging or a
granular ‘noise’ that appears fundamentally in ultrasound.

UAP [40,48] Leads to DNN failure in most image classification tasks.

Table 2. Specialised AAs.

Type of the Attack Characteristics

AMSA [41] Can produce AAs with realistic prediction masks.

HFC [42] Enables hiding the adversarial representation in normal feature
distribution.

SMIA [44] The method iteratively generates AAs by maximising the
deviation loss term and minimising the loss stabilisation term.

MSA [43] Based on AMSA and multi-scale gradients.

In future work, we would like to compare all these attacks on a common database to
conclude which attack is the strongest and evaluate the detection/defence methods, i.e.,
adversarial training, or explain the model susceptible to attacks using explainable methods.
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