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Abstract: Introducing novel biomarkers for accurately detecting and differentiating rheumatoid 
arthritis (RA) and osteoarthritis (OA) using clinical samples is essential. In the current study, we 
searched for a novel data-driven gene signature of synovial tissues to differentiate RA from OA 
patients. Fifty-three RA, 41 OA, and 25 normal microarray-based transcriptome samples were 
utilized. The area under the curve random forests (RF) variable importance measurement was 
applied to seek the most influential differential genes between RA and OA. Five algorithms 
including RF, k-nearest neighbors (kNN), support vector machines (SVM), naïve-Bayes, and a tree-
based method were employed for the classification. We found a 16-gene signature that could 
effectively differentiate RA from OA, including TMOD1, POP7, SGCA, KLRD1, ALOX5, RAB22A, 
ANK3, PTPN3, GZMK, CLU, GZMB, FBXL7, TNFRSF4, IL32, MXRA7, and CD8A. The externally 
validated accuracy of the RF model was 0.96 (sensitivity = 1.00, specificity = 0.90). Likewise, the 
accuracy of kNN, SVM, naïve-Bayes, and decision tree was 0.96, 0.96, 0.96, and 0.91, respectively. 
Functional meta-analysis exhibited the differential pathological processes of RA and OA; suggested 
promising targets for further mechanistic and therapeutic studies. In conclusion, the proposed 
genetic signature combined with sophisticated classification methods may improve the diagnosis 
and management of RA patients. 

Keywords: rheumatoid arthritis; osteoarthritis; diagnostic biomarker; machine learning; meta-
analysis; pathway analysis 

 

1. Introduction 

In accordance with the dramatically increased incidence in the older population, osteoarthritis 
(OA) and rheumatoid arthritis (RA) are currently among the most common causes of 
musculoskeletal-related chronic disability [1,2]. Depending on the case definition and joint sites 
under study, the prevalence of RA was at 0.5–1.1% while that of OA was much more common, 
ranging from 5% of the hip and 33% of the knee to 60% of the hands in adults 65 years of age or older 
[3,4]. RA is a chronic autoimmune disease that exhibits persistent synovial and systematic 
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inflammation along with the existence of autoantibodies [5]. On the other hand, OA has been 
characterized as a non-inflammatory degenerative joint disease although synovial inflammation is a 
debatably important feature [6,7]. OA and RA are pathophysiologically different but share similar 
and overlapping features in terms of underlying mechanisms [8,9]. In addition, early-stage RA 
appears to be remarkably similar to other forms of arthritis, especially OA; thus, more investigations 
are needed to introduce better approaches for differentiating RA and OA [10]. 

Although laboratory tests, prominently blood test, have been believed to provide the most 
important information for diagnosis of arthritis, 30% of RA patients had negative rheumatoid factor 
or anticyclic citrullinated peptide antibodies while 40% got a normal result for erythrocyte 
sedimentation rate or C-reactive protein [11]. The values indicate that complementary and alternative 
methods are needed to increase the diagnostic accuracy of RA. Among them, synovial tissue has been 
used for the diagnosis and study of arthritis for decades and its substantial impact was recently 
reviewed [12,13]. Several studies have suggested specific immunohistochemical features of synovial 
tissue that separate RA (or OA) from other joint diseases or the early stage from the late stage of 
disease [14–16]. However, a recent study indicated that only a minority of patients could have a 
definitive diagnosis despite the high success rate of gathering synovial tissue [17]. This reduces the 
potential of using synovial tissue not only for abnormal detection but also for proper guidance of 
treatments. Moreover, investigations exploring small subsets of genes that can be used to classify RA 
versus OA, RA versus healthy persons and OA versus healthy persons using synovial tissues are 
lacking. 

Herein, we searched for genome-wide transcriptional profiles from the synovial tissues of RA, 
OA, and normal synovial samples and looked for genetic signatures that were suitable for accurately 
differentiating RA from OA as well as RA from normal tissues and OA from normal tissues. The 
results from this investigation are expected to be helpful in some particular populations, such as elder 
patients with inflammatory presentation of OA and patients without typical biomarkers. In addition, 
we applied gene expression meta-analysis and functional analysis to explore the different biological 
processes involved in the pathophysiology of RA and OA. The bioinformatics-based suggestive 
mechanisms would be helpful for further mechanistic and therapeutic studies. In conclusion, our 
findings may assist the blood-based laboratory tests to improve the accuracy of diagnosis and success 
rate of clinical interventions. 

2. Materials and Methods 

2.1. Data Sets 

The available Affymetrix and Illumina microarrays on gene expression in RA, OA, and healthy 
control (N) synovial tissues were curated from Gene Expression Omnibus with the search terms 
“Rheumatoid arthritis”, “Osteoarthritis”, “Synovial tissue*”, and “Synovial membrane”. As a result, 
the following data sets were included: GSE1919 (3 RA, 3 OA, and 5 N), GSE39340 (10 RA and 7 OA), 
GSE36700 (7 RA and 5 OA), GSE55457 (13 RA, 10 OA, and 10 N), GSE55584 (10 RA and 6 OA), 
GSE55235 (10 RA, 10 OA, and 10 N). Synovial tissues mixed from different patients in the GSE1919 
data set were excluded before data processing and analysis. In total, the data sets on RA and OA 
included 94 patients. The comparisons between OA and normal controls and between RA and normal 
controls consisted of 48 and 51 samples, respectively. Information on the included data sets is 
presented in Table S1. We then divided the six data sets into two groups: set A (for variable selection 
purpose) consisted of GSE1919, GSE39340, and GSE36700; set B (for model fitting purpose) consisted 
of GSE55457, GSE55584, and GSE55235.  

2.2. Microarray Data Preprocessing 

Robust multiarray average normalization in affy package version 1.54.0 was conducted for 
Affymetrix-based datasets, and robust spline normalization in lumi package version 2.28.0 was 
applied for Illumina beadchip arrays [18,19]. The probes were mapped according to Entrez Gene ID 
and official gene nomenclature. Subsequently, the individual datasets were merged after removing 
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batch effects by empirical the Bayes cross-study normalization method [20]. Following cross-study 
normalization, only common genes among different platforms, e.g., Affymetrix and Illumina, and 
datasets remained (8597 genes). 

2.3. Variable Importance Measurement and Selection 

In this study, the area under the curve permutation random forest variable importance 
measurement (AUC-RF VIM) was applied. AUC-RF VIM was conducted using party package version 
1.2-3 [21]. Only the candidates that had a variable importance value higher than our arbitrary 
criterion were selected for the classification tasks. 

2.4. Exploratory Data Analysis and Visualization 

We performed the Wilcoxon rank-sum test to compare the differences of individual predictors 
between two groups. Additionally, principal component analysis (PCA), a data dimensionality 
reduction technique, was utilized to explore the underlying trends and patterns of data as well as to 
detect possible outliers of two comparative groups [22]. Using Metaboanalyst 3.0, a heatmap of the 
centered and scaled data was also applied to visualize the differences in gene expression between 
two groups [23]. Violin plots with overlay box plots of the predictors were constructed using violin 
plots with ggpubR version 0.1.5 [24]. PCA and visualization were performed using FactoMineR 
version 1.35 and factoextra version 1.0.4 [25,26]. 

2.5. Supervised Machine Learning 

RA and OA were classified using classification and regression training (caret) package version 
6.0.77 [27]. Random forests (RF), an aggregation or ensemble of numerous decision trees, each of 
which utilizes resampled data and branches out based on a randomly chosen subset of features, was 
applied as the main classifier in the current study [28]. Four other commonly used machine learning 
classification techniques that belong to different categories of algorithms were also employed: k-
nearest neighbors (kNN), naïve Bayes, support vector machines with polynomial kernel (SVM), and 
a tree-based method (we call it C5.0, named after the R function). Each classifier has one or several 
tuning parameters that need to be optimized. Grid search or random search with the tune length of 
10 were applied when applicable [29]. First, we set the number of trees consisting of random forests 
to 500, which is known to suffice and thus is commonly used in practice. Additionally, the number 
of randomly chosen variables at each split was tuned from one to 16 in RF. The naïve Bayes classifier 
was optimized with a Gaussian kernel of data-driven bandwidth. The number of closest training 
examples (k) in kNN was tuned to define the value of k that resulted in optimal performance of the 
model. It is well known that the SVM classifier can be found by solving a quadratic programming via 
the dual of the primal problem where the cost constant C > 0 penalizes the margins. In our analysis, 
the SVM classifier relied on the polynomial kernel represented by 

K(x, y) = 𝛾(𝑥்𝑦 + 1)ௗ , 𝑥, 𝑦 ∈ ℝ୮ 
where 𝛾 > 0, 𝑑 ≥ 1 are the scale parameter and degree of the polynomial, respectively. The tuning 
parameters C, 𝛾, 𝑑 were tuned using the random search method. The C5.0 function in R supports 
different tree-based methods; it is, for example, a single tree if ‘trials’ is set to one, or a boosting, 
analogous to AdaBoost with some tweaks, otherwise. The model can be further improved by 
considering whether to use a rule-based tree or a classification tree and whether to filter unimportant 
variables in advance or not. The aforementioned options were all determined using the random 
search method. Performance indicators of the model were evaluated in the test set using accuracy, 
specificity, and sensitivity. A seed number was used prior to the data splitting and model training to 
obtain reproducible results. A receiver operating characteristic (ROC) curve of the performance of 
the optimal RF model on the test set was visualized using pROC package version 1.10.0 [30]. 
Visualization of the top 10 important genes of the optimal RF model was performed using GraphPad 
Prism 6 (GraphPad Software Inc., San Diego, CA, USA). In addition, a quick assessment of the 
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classification of RA and normal tissues as well as OA and normal tissues was conducted using 
ArrayMining [31]. 

2.6. Random Forests Classification Model Explanation 

We applied local interpretable model-agnostic explanations (R package version 0.3.0) in order 
to explain the prediction decisions of the optimal RF classifier regarding the most important features 
[32]. A forward selection algorithm with six features was utilized to select the most relevant features. 
The labels of two were established to observe the explanation of RA and OA. Other parameters were 
kept as default. 

2.7. Gene Expression Meta-Analysis 

Gene expression meta-analyses between RA and OA, RA and normal tissues, and OA and 
normal tissues were performed by combined effects size. The statistical heterogeneity was first 
estimated by Cochran’s Q test. A fixed effects model was used when estimated Q values have 
approximately followed a chi-square distribution; otherwise, a random effects model was applied. 
The analysis was conducted in accordance with the published protocol of Networkanalyst [20]. 

2.8. Pathway Enrichment Analysis and Protein Association Network 

Gene Ontology and gene set enrichment analysis was conducted using the STRING database 
with default settings [33]. All differentially expressed genes that had combined effects size greater 
than 1.5 were input to the software for the enrichment analyses using GO biological processes and 
Kyoto Encyclopedia of Genes and Genomes annotation. The protein–protein interaction network 
derived from the STRING knowledgebase was also visualized. 

2.9. Statistical Significance 

Where applicable, a p-value of 0.05 or a false discovery rate FDR of 0.05 was used for null-
hypothesis testing. The R statistic version 3.4.2 was used as the environment for data processing, 
machine learning classification and visualization unless specifically indicated [34]. 

2.10. Ethics and Data Availability 

Ethical application has been waived by Seoul National University Institutional Review Board 
(SNU 17-08-047). The datasets analyzed during the current study are available in the GEO repository. 
GSE1919, GSE39340, GSE36700, GSE55457, GSE55584, GSE55235. 

3. Results 

3.1. Variable Importance Measurement and Selection 

Error rate-based (ER)-RF variable importance measurement (VIM) has been recommended for 
feature selection in high-dimensional data [35]. Nevertheless, a previous investigation demonstrated 
that area under the curve (AUC)-RF VIM outperforms ER-RF VIM, especially in unbalanced class 
problems [36]. Hence, we applied AUC-RF for variable importance measurement to estimate the 
score of every gene with the corresponding conditions. The workflow of variable selection is shown 
in Figure 1a. The measurement was conducted using cross-study normalized data set A derived from 
three different data sets: GSE1919, GSE39340, and GSE36700 (Table S1). These available data sets 
came from various populations (one Asian and two European) and several microarray platforms 
(Affymetrix U95A, Illumina V 4.0, and Affymetrix 133 Plus 2.0) with a total number of 35 samples 
were used for variable importance measurement. A larger set of data was used for modeling and 
testing (described below). The batch effects removed data sets were visualized using principal 
component analysis (PCA) (Figure S1). As a result, 381 genes exhibited an importance score to the 
classification of RA and OA greater than zero. Because the package does not provide a handy criterion 
for selecting the candidates, we finally selected 16 genes with a score of 1.5E-3 or higher as potential 
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variables for the classification of RA and OA in unseen cross-study normalized data set B (Figure 1b). 
The selection was arbitrary to some extent. However, we intended to select the smallest genetic 
signature that could effectively discriminate RA from OA. A redundant list of genetic signatures—
e.g., hundreds of genes—would make it unimaginable for finding the rationales of machine learning-
based classification as well as clinical interpretation. Detailed information about the proposed genetic 
biomarkers can be found in Table 1. 

 
Figure 1. Workflow of variable selection and machine learning classification. (a) Variable selection 
workflow. (b) Classification analysis workflow. RF: random forests; SVM: support vector machines; 
kNN: k nearest neighbors. GSE55457, GSE55584, and GSE55235 are from the same study and were 
used for modeling and validation of the data-driven proposed biomarkers. 

Table 1. The 16-gene signature derived from AUC-RF based variable selection 

Entry ID 
Approved 

Symbol Approved Name 
Chromosomal 

Location 
Combined 

Effects Size 1 
7111 TMOD1 Tropomodulin 1 9q22.33 −2.16 

10248 POP7 POP7 homolog, ribonuclease P/MRP 
subunit 

7q22.1 −0.87 

6442 SGCA Sarcoglycan alpha 17q21.33 −2.74 
3824 KLRD1 Killer cell lectin like receptor D1 12p13 1.35 
240 ALOX5 Arachidonate 5-lipoxygenase 10q11.21 1.36 

57403 RAB22A RAB22A, member RAS oncogene family 20q13.32 −1.20 
288 ANK3 Ankyrin 3 10q21.2 −1.92 

5774 PTPN3 
Protein tyrosine phosphatase, non-receptor 

type 3 9q31 −1.31 

3003 GZMK Granzyme K 5q11.2 2.92 
1191 CLU Clusterin 8p21.1 −2.17 
3002 GZMB Granzyme B 14q12 2.61 

23194 FBXL7 F-box and leucine rich repeat protein 7 5p15.1 −0.93 
7293 TNFRSF4 TNF receptor superfamily member 4 1p36.33 1.26 
9235 IL32 Interleukin 32 16p13.3 2.73 

439921 MXRA7 Matrix remodeling associated 7 17q25.1 −2.19 
925 CD8A CD8a molecule 2p11.2 2.83 
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1: Adopted from the the section of functional meta-analysis, which was independent to the biomarker selection. 

3.2. RA and OA can be Accurately Differentiated Using a 16-Gene Signature 

To validate our 16-gene signature, we gathered three data sets having a roughly double number 
of samples that came from the same study in set B (GSE55457, GSE55584, and GSE55235) [9]. It is of 
importance to note that the authors of the previous study built their own model and obtained good 
performance in these data sets, and we aimed to show that our signature, derived from a powerful 
statistical learning method, could also achieve comparative results. In set B, descriptive statistics and 
univariate data exploratory analysis using the Wilcoxon rank-sum test were performed. There were 
59 samples in total, of which OA and RA accounted for 26 samples (44.1%) and 33 samples (55.9%), 
respectively. The gene expression of all predictors was significantly different (false discovery rate 
(FDR) < 0.05). The mean, median, and other values as well as the violin plots of gene expression for 
the 16 predictors can be found in Data S1. Since univariate analysis could not assess the correlations 
among predictors, PCA was then conducted to obtain better insights into the data. Our signature was 
actually well adapted to the two merged data sets as shown in PCA analysis. The first PC explained 
more than 50% variance of the data, and five major PCs cumulatively explained up to 81.9% of the 
variance in the data. The two classes were relatively well separated in 2D score plot PCA (PC1 + PC2 
= 62.3%). Variables having a strong positive or negative effect on PC1 can be considered essential for 
classification. The three attributes with the highest absolute values were TMOD1, CLU, and MXRA7 
among the positive factors and GZMK, GZMB, and CD8A among negative factors. Moreover, as will 
be shown later in this section, CLU and MXRA7 were characterized as important covariates in 
prediction. Despite these clear findings, however, there was an overlapping region between the two 
groups, which might make the classification of those cases greatly complicated (Figure 2a). Most of 
the samples in the two groups distributed within 95% confidence regions for each group, but there 
were three potential outliers, one from RA and two from OA. Heatmap analysis was also conducted 
without re-organization to observe the contrasting appearance between two groups (Figure 2b). 

 
Figure 2. PCA and heatmap analysis of the data set with the 16-gene signature. (a) The sum of the two 
principal component is 62.3%. (b) Seven genes are upregulated, and nine genes are downregulated in 
RA compared to OA. PCA: Principal component analysis; RA: Rheumatoid arthritis; OA: 
osteoarthritis. 

There were two relatively clear expression patterns in the heatmap. The gene expression levels 
of ALOX5, TNFRSF4, GZMB, IL32, KLRD1, GZMK, and CD8A were generally higher in RA than in 
OA. In contrast, the gene expression levels of RAB22A, PTPN3, FBXL7, MXRA7, POP7, ANK3, SGCA, 
TMOD1, and CLU were generally higher in OA than in RA. For class assignment analysis, data set B 
was split into training (60%) and test (40%) sets. Data partition was conducted and the balance of 
class distribution remained between two comparative groups. The training process to estimate the 
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optimal RF model was conducted using grid search; the mtry parameter ranged from one to 16, and 
the 10-fold cross-validation 5-time repeats method was used. The area under the receiver operating 
characteristic curve (AUCROC) was used to determine the optimal model. Eventually, the model that 
had an mtry of 12 exhibited an excellent performance (AUCROC = 1.00) in the training set. Thereafter, 
we applied the optimal RF model to the external test set. The performance of the RF model was 
excellent; only one sample was misclassified (Figure 3a). RF variable importance measurement 
revealed that IL32, SGCA, MXRA7, and CLU were the four most important features of the prediction 
model (Figure 3b). 

 
Figure 3. Properties of the random forests model. (a) The ROC curve, accuracy, sensitivity, and 
specificity of the external the test set of the optimal random forest model. (b) The top 10 most 
important features of the optimal random forests model on the training set. 

Local interpretable model-agnostic explanations (LIME) was applied in three representative 
cases (one correctly predicted OA sample, one correctly predicted RA sample, and one OA sample 
that was mistakenly predicted as RA) to demonstrate the rules that were applied to classify new 
observations in the test set of the established model. The first case was confidently predicted to be 
OA (probability of 0.900) with the following rules regarding gene expression levels: 8.44 < IL32 ≤ 8.74, 
12.20 < MXRA7 ≤ 12.40, 7.08 < SGCA ≤ 7.64, 13.00 < CLU, GZMB ≤ 6.44, and 7.82 < PTPN3 ≤ 7.92 (Figure 
4a). The second case, on the other hand, was predicted with certainty to be RA (probability of 0.998) 
with the following rules: 9.34 < IL32, SGCA ≤ 6.76, MXRA7 ≤ 12.00, 12.10 < CLU ≤ 12.50, 6.77 < GZMB 
≤ 7.58, POP7 ≤ 8.62 (Figure 4b). From the two typical cases, we show that the higher expression of 
IL32 and GZMB as well as the lower expression of SGCA, MXRA, and CLU were preferred for the 
classification of RA, and vice versa. In addition, the low expression of POP7 was a minor supportive 
factor for the indication of RA. However, the contributions of minor supportive or contradictory 
factors were negligible since the roles of top four major factors were prominent in all cases. It is 
important to mention again that IL32 and GZMB expression levels were generally higher while 
MXRA, SGCA, and CLU expression levels were generally lower in RA than in OA (Figure 2b). The 
third example had high expression of IL32 (9.14) and low expression of MXRA7 (11.60). The 
misclassification of this case from OA to RA likely occurred because the expression of IL32 of the 
sample was higher than the upper limit of IL32 in OA (8.74) and the expression of MXRA7 was lower 
than the lower limit of MXRA7 in OA (12.2). This violation was too severe because IL32 and MXRA7 
were two of the top three most important features in the prediction model. Hence, the high expression 
level of SGCA and CLU as well as the low expression level of RAB22A, which supported the indication 
of OA, were not enough for the classifier to correctly differentiate the sample (Figure 4c). The 
classification of other samples in the test set could be explained using a similar approach as described. 
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Figure 4. The use of LIME to explain the model′s predictions. (a) Corrected classification of an OA 
sample. (b) Corrected classification of an RA sample. (c) Noncorrected classification of a sample from 
OA to RA. RA: Rheumatoid arthritis; OA: osteoarthritis. 
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A genetic signature may be more clinically relevant if it can be applied by different machine 
learning classification methods. Therefore, we introduced our 16-gene signature to four other 
commonly used classifiers, kNN, naïve Bayes, C5.0, and SVM, to evaluate the robustness and 
flexibility of the signature. Every model was trained using 10-fold cross-validation with 5-time 
repeats and AUCROC was used to determine the optimal model. In the kNN model, the data were 
treated by centering and scaling. The training model with a k value of nine was detected to be optimal 
(AUCROC = 0.96). The performance in the test set was also excellent (accuracy = 0.96, sensitivity = 
0.92, specificity = 1.00). The naïve Bayes model without kernel achieved the best performance 
(AUCROC = 0.98) which was similar to that of the kNN model in the test set (accuracy = 0.96, 
sensitivity = 0.92, specificity = 1.00). The training process of the SVM with polynomial kernel 
produced the optimal model (AUCROC = 0.98) with the following tuned parameters: degree = 3, γ = 
0.77, C = 0.16. Likewise, this model exhibited excellent performance in the test set (accuracy = 0.96, 
sensitivity = 1.00, specificity = 0.90). Finally, the C5.0 model was optimized and validated. In the 
training set, the model with the following parameters was optimal (AUCROC = 0.93): model = tree, 
winnow = false, trials = 13. In the test set, it had the worst performance among the tested classifiers 
although the accuracy was higher than 0.90 (accuracy = 0.91, sensitivity = 1.00, specificity = 0.80). 
Collectively, we achieved similarly outstanding performance regarding the differentiating of RA 
from OA to the rule-based method of Woetzel [9]. Confusion matrices of the abovementioned 
classifiers on the test sets are shown in Figure 5a. 

 
Figure 5. Summarization of the classification analyses. (a) Confusion matrices of the five classifiers on 
the test set of RA versus OA. (b) Prediction performances on the test sets of RA versus normalcy and 
OA versus normalcy. RA: Rheumatoid arthritis; OA: osteoarthritis. 

For a quick investigation to evaluate the possibilities of differentiating RA from normal synovial 
tissues and OA from normal synovial tissues, we applied the class assignment analysis module using 
ArrayMining [31]. The training and test sets were defined using a 60:40 ratios. We achieved 
encouraging accuracies, sensitivities, and specificities on the test sets, as shown in Figure 5b. 
However, the sample sizes of both experiments were small, and the results should be validated by 
future studies. 
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3.3. Meta-Analysis of Gene Expression and Functional Analysis 

To seek the differences in biological processes of RA, OA, and normalcy, we further conducted 
meta-analysis of all available synovial tissue gene expression data followed by pathway enrichment 
analysis. Data from synovial tissues of RA and OA, RA and normalcy, and OA and normalcy were 
introduced to the gene expression meta-analysis to find the differentially expressed (DE) genes with 
high confidence. Cochran’s Q test suggested the statistical heterogeneity among the input data sets; 
thus, a random effects model was finally selected for the analysis. 

In RA versus OA, 1026 genes were significantly upregulated, and 1421 DE genes were 
significantly downregulated in RA compared to OA. Among them, 489 DE genes showed a combined 
effects size of at least 1.5 or higher (236 genes with a combined effect size (cES) of 1.5 or higher in the 
upregulated group and 253 genes with a cES of −1.5 or lower in the downregulated group). The three 
most significantly upregulated genes (CD3D, AIM2, and IL2RG) in RA are related to the immune 
processes. For instance, CD3D is one of the genes involved in T cell activation and signaling. Other 
associated genes, such as CD3G, CD8B, and LCK, were also found to be highly upregulated [37]. 
Pathway enrichment analysis was conducted separately using the DE genes that had a cES of 1.5 or 
higher for upregulated genes and of −1.5 of lower for downregulated genes in RA compared to OA. 
Figure S2 shows the two protein–protein interaction networks of RA-OA for upregulated genes and 
downregulated genes, respectively. Particularly, the major enriched Gene Ontology (GO) biological 
processes in upregulated genes belonged to various immune responses, including the activation of 
NF-kB. Similarly, the Kyoto Encyclopedia of Genes and Genomes (KEGG) enriched pathways 
include, but not limited to, natural killer cell mediated cytotoxicity, cytokine-cytokine receptor 
interaction, chemokine signaling pathway, and T cell receptor signaling pathway, among others. On 
the other hand, the enriched GO terms of the downregulated genes reflect the downregulation of 
cellular development and differentiation. However, there were only two enriched KEGG pathways: 
glycerolipid metabolism and transcriptional misregulation in cancer. Significantly enriched 
pathways from the GO and KEGG pathway enrichment analysis are summarized in Table 2 and Table 
S2. 

Table 2. Representative Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enriched pathways of differentially expressed (DE) genes between RA and OA 

ID Annotation False Discovery Rate RA versus OA 
GO.0006955 Immune response 8.86E-50 Upregulation 
GO.0050776 Regulation of immune response 1.44E-41 Upregulation 
GO.0002376 Immune system process 2.64E-41 Upregulation 
GO.0006952 Defense response 6.94E-39 Upregulation 

GO.0002684 
Positive regulation of immune 

system process 
4.52E-36 Upregulation 

GO.0048731 System development 8.90E-12 Downregulation 

GO.0007275 
Multicellular organismal 

development 
3.68E-11 Downregulation 

GO.0044767 
Single-organism developmental 

process 
2.74E-09 Downregulation 

GO.0048856 
Anatomical structure 

development 
1.29E-08 Downregulation 

GO.0051239 
Regulation of multicellular 

organismal process 
5.14E-08 Downregulation 

KEGG.4650 
Natural killer cell mediated 

cytotoxicity 
1.27E-16 Upregulation 

KEGG.5340 Primary immunodeficiency 1.27E-16 Upregulation 

KEGG.4060 
Cytokine-cytokine receptor 

interaction 
3.14E-16 Upregulation 

KEGG.4064 NF-kappa B signaling pathway 1.26E-14 Upregulation 
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KEGG.4062 Chemokine signaling pathway 1.33E-11 Upregulation 
KEGG.561 Glycerolipid metabolism 0.0142 Downregulation 

KEGG.5202 
Transcriptional misregulation in 

cancer 
0.0276 Downregulation 

In RA versus normal tissues, 973 genes were significantly upregulated, and 690 DE genes were 
significantly downregulated in RA compared to normal synovial tissues. Among them, 539 genes 
showed a combined effects size of at least 1.5 or higher (383 genes with a cES of at least 1.5 in the 
upregulated group and 156 genes with a cES of −1.5 or lower in the downregulated group). The top 
three enriched GO terms among the upregulated genes were immune response (GO.0006955), 
immune system process (GO.0002376), and defense response (GO.0006952), while the top three 
enriched GO terms among the downregulated genes were regulation of protein metabolic process 
(GO.0051246), cellular response to organic substance (GO.0071310), and positive regulation of 
multicellular organismal process (GO.0051240). Similarly, 879 DE genes were upregulated, and 524 
DE genes were downregulated in OA compared to normal synovial tissues. Among them, 412 DE 
genes showed a combined effects size of at least 1.5 or higher (274 genes with a cES of at least 1.5 in 
the upregulated group and 138 genes with a cES of −1.5 or lower in the downregulated group). The 
top three enriched GO terms among the upregulated genes were response to stress (GO.0006950), 
death (GO.0016265), and regulation of biological quality (GO.0065008), while the top three enriched 
GO terms among the downregulated genes were positive regulation of metabolic process 
(GO0009893), positive regulation of macromolecule metabolic process (GO.0010604), and positive 
regulation of cellular metabolic process (GO.0031325). The protein–protein interaction networks of 
RA-Normalcy and OA-Normalcy were simpler than that of RA-OA. The enriched pathways from GO 
and KEGG analysis of these two networks can be found in Table S3. 

4. Discussion 

There are standard approaches for the differential diagnosis of RA and OA. Nevertheless, their 
performance may not be satisfactory in some particular cases. For instance, anti-citrullinated protein 
antibodies (ACPAs) have been applied for early diagnosis of RA. Nevertheless, the test using ACPAs 
is only positive in approximately 50% of patients [38]. Other biomarkers, therefore, should be 
developed to assist the diagnosis in ACPA-negative patients. Recently, serum connective tissue 
growth factor was reported as a potential diagnostic biomarker for RA [39]. In addition, 99mTc-
3PRGD2 scintigraphy has been recently suggested for the early detection of RA in rats and humans 
[40]. It is also of importance to note that although blood-based tests are prominently used, the 
diagnostic value of synovial biopsy has been acknowledged [41,42]. Thus, it could help assist the 
diagnosis RA, OA, as well as other arthritis conditions. However, the potential of the transcriptomic 
signature of synovial tissue in differentiating RA and OA remains to be explored. High-throughput 
gene expression has been recognized as an important feature to facilitate personalized medicine [43]. 
High-throughput gene expression has been commonly used to gain deeper insights into the cellular 
processes of a specific biological system [44]. Indeed, gene expression profiling has been contributing 
to the advancement of many fields, including the management of cancers and other immunological 
disorders [45]. Specifically, the genome-wide alterations in gene expression in RA and OA can be 
detected in advance [3,46]. Recently, a method using a transcriptome-based rule set was developed 
to differentiate RA from OA and normal controls; the overall assessment parameters of classification 
were approximately 90% or higher [9]. Similarly, a 12-gene signature derived from CD4+ T cells of 
early inflammatory arthritis patients has been shown to accurately predict subsequent development 
of RA from non-RA among undifferentiated arthritis with a sensitivity of 68% and specificity of 70% 
[47]. These results are encouraging and worth validating on a larger scale to assess their 
reproducibility. Moreover, a wide range of supervised machine learning techniques can be employed 
toward the final goal, which is to classify a particular sample. However, small sample sizes and noisy 
data of the microarray-based high-throughput gene expression have become limitations since the 
generalization of the results is not guaranteed and the cross-study validation often failed to replicate 
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the results [48]. Potential solutions, such as cross-platform normalization or cross-study 
normalization for multi-data integration, have been introduced and have achieved considerable 
success [49,50]. In addition, conducting feature selection prior to classification can help reduce highly 
noisy attributes while simultaneously improving the prediction accuracy for the class assignment 
analysis [51,52]. Finally, but importantly, the current limitations in the progress of diagnosing and 
determining the prognosis of RA may come from the substantial portion of mechanism-based 
elucidation. An unbiased, data-driven approach emphasizing the roles of a small subset of genes that 
are distinctly different between comparative conditions may additionally provide potential solutions 
for early diagnosis. In our study, 16 genes were selected as the biomarker signature for differentiating 
between RA and OA using an unbiased, data-driven method. The validity of the proposed signature 
was then challenged using independent data sets with various machine learning classification 
algorithms. The classification performances derived from five commonly used classifiers in the 
external test set suggested that RA and OA could be accurately differentiated with an accuracy higher 
than 90% using our 16-gene panel and machine learning approaches, even by ‘weak’ classifiers such 
as kNN. Accordingly, these genes are worth considering as novel biomarkers for the early differential 
diagnosis of RA and OA. Among others—CD8A, GZMB, and KLRD1, for instance—are strongly 
associated with one another in the STRING protein–protein interaction network and are associated 
with lymphocyte-mediated immunity. 

Although the 16-gene panel was derived using a data-driven approach, several individual 
biomarkers showed a clear biological connection with the arthritis conditions (Table S4). However, 
the role of TMOD1, SGCA, RAB22A, ANK3, PTPN3, FBXL7, CLU, POP7, and MXRA7 in inflammatory 
diseases, especially in arthritis, has not been studied thoroughly. Further studies are needed to clarify 
their biological function. Moreover, the recurrent inflammation of the synovial tissues suggests the 
complexity of the immune responses in the pathobiology of RA, as also being mentioned in a recent 
meta-analysis [53]. Many other biological pathways are involved in various heterogeneous processes 
at different stages of the disease [54]. Unlike other forms of arthritis, destruction is the nature of RA. 
Hence, early diagnosis and management are especially important. Pain, structural damage, 
functional loss, comorbidity, and other complications of RA lead to the permanent disability of 
patients as well as to increased socioeconomic cost [55]. On the other hand, the main pathological 
condition of OA is the degradation of cartilage, which eventually results in joint dysfunction [56]. 
Our functional analysis showed general agreement; thus, confirmed the previously reported 
differences in the mechanisms of the two diseases and suggested novel pathways that are 
prominently enriched in RA compared to OA [57–59]. From this data, further mechanistic studies are 
needed to obtain better insights into the pathophysiology of RA as well as other forms of arthritis in 
order to improve patient management. 

Our work has some limitations that should be explicitly stated. All analyses were conducted 
using tissues that might not represent the best approach for RA and OA differential diagnosis. 
However, synovial tissues are usually informatively rich with respect to the underlying pathological 
processes of the diseases; therefore, our findings may give additional information for the 
improvement of the patient management and mechanistic studies. Second, only transcriptome 
information of patients was utilized for the differential analysis so the effects of confounding factors 
remain unknown. Additionally, the lack of assessment using synovial fluids or serology prevented 
us from conducting deeper data mining. However, we demonstrated that sophisticated algorithms 
are powerful in introducing and validating potential biomarker candidates. We also illustrated an 
application of a human-friendly rule set to interpret the ‘black-box’ RF model. Further investigations 
that take into account the patients’ bio-parameters, omics data, and statistical learning methods will 
greatly improve our understanding and clinical practice to provide better care for the patients. 

5. Conclusions 

The differential diagnosis of RA from other forms of arthritis, especially OA, using synovial 
biopsy is a novel approach. Our study introduced and successfully validated a 16-gene signature 
derived from gene expression profiling data of synovial tissues that could be employed for the 
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classification of RA and OA. The signature may also help more specifically treat patients with RA 
condition. The novelty of this investigation is based on the utility of powerful statistical learning 
methods for variable selection and modeling. Moreover, we applied an explainer algorithm to 
interpret the rationale of the black-box predicting algorithms. Further clinical studies are warranted 
to validate this biomarker for the diagnosis of rheumatoid arthritis patients. 

Supplementary Materials: The following are available online at www.mdpi.com/2077-0383/8/1/50/s1, Table S1: 
Microarray data sets employed in the current study. Table S2: GO and KEGG enriched pathways in RA versus 
OA. Table S3: GO and KEGG enrichment pathways in RA versus normalcy and OA versus normalcy. Table S4: 
Biological functions of 16 differential biomarker candidates. Figure S1: Principal component analysis of two 
batch effects removed data sets. (a) Set A (GSE1919, GSE39340, and GSE36700), (b) Set B (GSE55457, GSE55584, 
and GSE55235). Figure. S2: The STRING protein–protein interaction network of differentially expressed genes. 
(a) Upregulated network. (b) Downregulated network. According to STRING, red, green, blue, purple, yellow, 
light blue, and black strings demonstrated the presence of fusion, neighborhood, co-occurrence, experimental, 
text mining, database, and co-expression evidence, respectively. Data S1: Descriptive analysis and visualization 
of 16 predictors in RA versus OA.  

Author Contributions: Conceptualization, S.W.K. and N.PL.; methodology, S.W.K., J.H.P., J.L., N.P.L., and S.P.; 
Formal analysis, N.P.L., S.P., N.H.A., J.E.M., S.J.Y., H.M.K., T.D.N., and D.K.L.; Data curation, N.P.L., N.H.A., 
T.D.N., and S.J.Y.; Writing—original draft preparation, N.P.L., S.P., N.H.A., and T.D.N.; Writing—review and 
editing, all authors; Visualization, N.P.L., S.P., N.H.A., S.J.Y., and J.E.M.; Supervision, S.W.K., J.H.P., and J.L.; 
Funding acquisition, S.W.K. 

Funding: This research was funded by Bio-Synergy Research Project of the Ministry of Science, ICT and Future 
Planning through the National Research Foundation, grant number NRF-2012M3A9C4048796, National 
Research Foundation, grant number NRF-2017R1E1A2A02022658, National Research Foundation of Korea 
(NRF) grant funded by the Korean government (MSIP), grant number NRF-2018R1A5A2024425, and the BK21 
Plus Program 2017. 

Acknowledgments: We would like to acknowledge Viet Tran Khac for his great support in machine learning 
based analysis and fruitful discussions. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Neogi, T. The epidemiology and impact of pain in osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1145–1153, 
doi:10.1016/j.joca.2013.03.018. 

2. Woolf, A.D.; Pfleger, B. Burden of major musculoskeletal conditions. Bull. World Health Organ. 2003, 81, 
646–656. 

3. Lee, H.-M.; Sugino, H.; Aoki, C.; Shimaoka, Y.; Suzuki, R.; Ochi, K.; Ochi, T.; Nishimoto, N. Abnormal 
networks of immune response-related molecules in bone marrow cells from patients with rheumatoid 
arthritis as revealed by DNA microarray analysis. Arthritis Res. Ther. 2011, 13, R89, doi:10.1186/ar3364. 

4. Martel-Pelletier, J.; Barr, A.J.; Cicuttini, F.M.; Conaghan, P.G.; Cooper, C.; Goldring, M.B.; Goldring, S.R.; 
Jones, G.; Teichtahl, A.J.; Pelletier, J.-P. Osteoarthritis. Nat. Rev. Dis. Prim. 2016, 2, 16072, 
doi:10.1038/nrdp.2016.72. 

5. Scott, D.L.; Wolfe, F.; Huizinga, T.W. Rheumatoid arthritis. Lancet 2010, 376, 1094–1108, doi:10.1016/s0140-
6736(10)60826-4. 

6. Glyn-Jones, S.; Palmer, A.J.; Agricola, R.; Price, A.J.; Vincent, T.L.; Weinans, H.; Carr, A.J. Osteoarthritis. 
Lancet 2015, 386, 376–387, doi:10.1016/s0140-6736(14)60802-3. 

7. Sokolove, J.; Lepus, C.M. Role of inflammation in the pathogenesis of osteoarthritis: Latest findings and 
interpretations. Ther. Adv. Musculoskelet. Dis. 2013, 5, 77–94, doi:10.1177/1759720x12467868. 

8. Withrow, J.; Murphy, C.; Liu, Y.; Hunter, M.; Fulzele, S.; Hamrick, M.W. Extracellular vesicles in the 
pathogenesis of rheumatoid arthritis and osteoarthritis. Arthritis Res. Ther. 2016, 18, 286, doi:10.1186/s13075-
016-1178-8. 

9. Woetzel, D.; Huber, R.; Kupfer, P.; Pohlers, D.; Pfaff, M.; Driesch, D.; Haupl, T.; Koczan, D.; Stiehl, P.; 
Guthke, R.; et al. Identification of rheumatoid arthritis and osteoarthritis patients by transcriptome-based 
rule set generation. Arthritis Res. Ther. 2014, 16, R84, doi:10.1186/ar4526. 



J. Clin. Med. 2019, 8, 50 14 of 16 

 

10. Finckh, A. Early inflammatory arthritis versus rheumatoid arthritis. Curr. Opin. Rheumatol. 2009, 21, 118–
123, doi:10.1097/BOR.0b013e3283235ac4. 

11. Pincus, T.; Sokka, T. Laboratory tests to assess patients with rheumatoid arthritis: Advantages and 
limitations. Rheum. Dis. Clin. N. Am. 2009, 35, 731–734, doi:10.1016/j.rdc.2009.10.007. 

12. Bresnihan, B. Are synovial biopsies of diagnostic value? Arthritis Res. Ther. 2003, 5, 271, doi:10.1186/ar1003. 
13. Orr, C.; Vieira-Sousa, E.; Boyle, D.L.; Buch, M.H.; Buckley, C.D.; Canete, J.D.; Catrina, A.I.; Choy, E.H.S.; 

Emery, P.; Fearon, U.; et al. Synovial tissue research: A state-of-the-art review. Nat. Rev. Rheumatol. 2017, 
13, 463–475, doi:10.1038/nrrheum.2017.115. 

14. Benito, M.J.; Veale, D.J.; FitzGerald, O.; van den Berg, W.B.; Bresnihan, B. Synovial tissue inflammation in 
early and late osteoarthritis. Ann. Rheum. Dis. 2005, 64, 1263–1267, doi:10.1136/ard.2004.025270. 

15. van de Sande, M.G.; Baeten, D.L. Immunopathology of synovitis: From histology to molecular pathways. 
Rheumatology 2016, 55, 599–606, doi:10.1093/rheumatology/kev330. 

16. Baeten, D.; Kruithof, E.; De Rycke, L.; Vandooren, B.; Wyns, B.; Boullart, L.; Hoffman, I.E.A.; Boots, A.M.; 
Veys, E.M.; De Keyser, F. Diagnostic classification of spondylarthropathy and rheumatoid arthritis by 
synovial histopathology: A prospective study in 154 consecutive patients. Arthritis Rheum. 2004, 50, 2931–
2941, doi:10.1002/art.20476. 

17. Najm, A.; Orr, C.; Heymann, M.-F.; Bart, G.; Veale, D.J.; Le Goff, B. Success Rate and Utility of Ultrasound-
guided Synovial Biopsies in Clinical Practice. J. Rheumatol. 2016, 43, 2113, doi:10.3899/jrheum.151441. 

18. Du, P.; Kibbe, W.A.; Lin, S.M. lumi: A pipeline for processing Illumina microarray. Bioinformatics 2008, 24, 
1547–1548, doi:10.1093/bioinformatics/btn224. 

19. Gautier, L.; Cope, L.; Bolstad, B.M.; Irizarry, R.A. Affy—Analysis of Affymetrix GeneChip data at the probe 
level. Bioinformatics 2004, 20, 307–315, doi:10.1093/bioinformatics/btg405. 

20. Xia, J.; Gill, E.E.; Hancock, R.E.W. NetworkAnalyst for statistical, visual and network-based meta-analysis 
of gene expression data. Nat. Protoc. 2015, 10, 823–844, doi:10.1038/nprot.2015.052. 

21. Strobl, C.; Boulesteix, A.L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random 
forests. BMC Bioinform. 2008, 9, 307, doi:10.1186/1471-2105-9-307. 

22. Lever, J.; Krzywinski, M.; Altman, N. Points of Significance: Principal component analysis. Nat. Meth. 2017, 
14, 641–642, doi:10.1038/nmeth.4346. 

23. Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0—Making metabolomics more meaningful. 
Nucleic Acids Res. 2015, 43, W251–W257, doi:10.1093/nar/gkv380. 

24. Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R Package Version 0.1.5. Available online: 
https://CRAN.R-project.org/package=ggpubr (accessed on 6 January 2019). 

25. Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 18, 
doi:10.18637/jss.v025.i01. 

26. Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses; R 
package version 1.0.5; 2017. Available online: https://rdrr.io/cran/factoextra/ (accessed on 6 January 2019) 

27. Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 26, 
doi:10.18637/jss.v028.i05. 

28. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32, doi:10.1023/a:1010933404324. 
29. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–

305. 
30. Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: An open-source 

package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77, doi:10.1186/1471-
2105-12-77. 

31. Glaab, E.; Garibaldi, J.M.; Krasnogor, N. ArrayMining: A modular web-application for microarray analysis 
combining ensemble and consensus methods with cross-study normalization. BMC Bioinform. 2009, 10, 358, 
doi:10.1186/1471-2105-10-358. 

32. Pedersen, T.L.; Benesty, M. LIME: Local Interpretable Model-Agnostic Explanations; Cornell University: Ithaca, 
New York, NY, 2017. 

33. Szklarczyk, D.; Morris, J.H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; 
Roth, A.; Bork, P.; et al. The STRING database in 2017: Quality-controlled protein-protein association 
networks, made broadly accessible. Nucleic Acids Res. 2017, 45, D362–D368, doi:10.1093/nar/gkw937. 

34. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical 
Computing: Vienna, Austria, 2017. 



J. Clin. Med. 2019, 8, 50 15 of 16 

 

35. Diaz-Uriarte, R.; Alvarez de Andres, S. Gene selection and classification of microarray data using random 
forest. BMC Bioinform. 2006, 7, 3, doi:10.1186/1471-2105-7-3. 

36. Janitza, S.; Strobl, C.; Boulesteix, A.-L. An AUC-based permutation variable importance measure for 
random forests. BMC Bioinform. 2013, 14, 119, doi:10.1186/1471-2105-14-119. 

37. Walsh, A.M.; Wechalekar, M.D.; Guo, Y.; Yin, X.; Weedon, H.; Proudman, S.M.; Smith, M.D.; Nagpal, S. 
Triple DMARD treatment in early rheumatoid arthritis modulates synovial T cell activation and 
plasmablast/plasma cell differentiation pathways. PLoS ONE 2017, 12, e0183928, 
doi:10.1371/journal.pone.0183928. 

38. Toes, R.E.; van der Woude, D. ACPA (anti-citrullinated protein antibodies) and rheumatoid arthritis. Acta 
Reumatol. Port. 2011, 36, 205–207. 

39. Yang, X.; Lin, K.; Ni, S.; Wang, J.; Tian, Q.; Chen, H.; Brown, M.A.; Zheng, K.; Zhai, W.; Sun, L.; et al. Serum 
connective tissue growth factor is a highly discriminatory biomarker for the diagnosis of rheumatoid 
arthritis. Arthritis Res. Ther. 2017, 19, 257, doi:10.1186/s13075-017-1463-1. 

40. Wu, Y.; Zhang, G.; Wang, X.; Zhao, Z.; Wang, T.; Wang, X.; Li, X.F. Early detection of rheumatoid arthritis 
in rats and humans with 99mTc-3PRGD2 scintigraphy: Imaging synovial neoangiogenesis. Oncotarget 2017, 
8, 5753–5760, doi:10.18632/oncotarget.13953. 

41. Kroot, E.; Weel, A.; Hazes, J.; Zondervan, P.; Heijboer, M.; Van Daele, P.; Dolhain, R. Diagnostic value of 
blind synovial biopsy in clinical practice. Rheumatology 2005, 45, 192–195, doi:10.1093/rheumatology/kei117. 

42. Coiffier, G.; Ferreyra, M.; Albert, J.-D.; Stock, N.; Jolivet-Gougeon, A.; Perdriger, A.; Guggenbuhl, P. 
Ultrasound-guided synovial biopsy improves diagnosis of septic arthritis in acute arthritis without enough 
analyzable synovial fluid: A retrospective analysis of 176 arthritis from a French rheumatology department. 
Clin. Rheumatol. 2018, 37, 2241–2249. 

43. Burska, A.N.; Roget, K.; Blits, M.; Soto Gomez, L.; van de Loo, F.; Hazelwood, L.D.; Verweij, C.L.; Rowe, 
A.; Goulielmos, G.N.; van Baarsen, L.G.; et al. Gene expression analysis in RA: Towards personalized 
medicine. Pharmacogenomics J. 2014, 14, 93–106, doi:10.1038/tpj.2013.48. 

44. Tseng, G.C.; Ghosh, D.; Feingold, E. Comprehensive literature review and statistical considerations for 
microarray meta-analysis. Nucleic Acids Res. 2012, 40, 3785–3799, doi:10.1093/nar/gkr1265. 

45. Yu, X.; Schneiderhan-Marra, N.; Joos, T.O. Protein Microarrays for Personalized Medicine. Clin. Chem. 2010, 
56, 376, doi:10.1373/clinchem.2009.137158. 

46. You, S.; Yoo, S.A.; Choi, S.; Kim, J.Y.; Park, S.J.; Ji, J.D.; Kim, T.H.; Kim, K.J.; Cho, C.S.; Hwang, D.; et al. 
Identification of key regulators for the migration and invasion of rheumatoid synoviocytes through a 
systems approach. Proc. Natl. Acad. Sci. USA 2014, 111, 550–555, doi:10.1073/pnas.1311239111. 

47. Pratt, A.G.; Swan, D.C.; Richardson, S.; Wilson, G.; Hilkens, C.M.; Young, D.A.; Isaacs, J.D. A CD4 T cell 
gene signature for early rheumatoid arthritis implicates interleukin 6-mediated STAT3 signalling, 
particularly in anti-citrullinated peptide antibody-negative disease. Ann. Rheum. Dis. 2012, 71, 1374–1381, 
doi:10.1136/annrheumdis-2011-200968. 

48. Warnat, P.; Eils, R.; Brors, B. Cross-platform analysis of cancer microarray data improves gene expression 
based classification of phenotypes. BMC Bioinform. 2005, 6, 265, doi:10.1186/1471-2105-6-265. 

49. Shabalin, A.A.; Tjelmeland, H.; Fan, C.; Perou, C.M.; Nobel, A.B. Merging two gene-expression studies via 
cross-platform normalization. Bioinformatics 2008, 24, 1154–1160, doi:10.1093/bioinformatics/btn083. 

50. Lazar, C.; Meganck, S.; Taminau, J.; Steenhoff, D.; Coletta, A.; Molter, C.; Weiss-Solis, D.Y.; Duque, R.; 
Bersini, H.; Nowe, A. Batch effect removal methods for microarray gene expression data integration: A 
survey. Brief. Bioinform. 2013, 14, 469–490, doi:10.1093/bib/bbs037. 

51. Singh, R.K.; Sivabalakrishnan, M. Feature Selection of Gene Expression Data for Cancer Classification: A 
Review. Procedia Comput. Sci. 2015, 50, 52–57, doi:10.1016/j.procs.2015.04.060. 

52. Long, N.P.; Yoon, S.J.; Anh, N.H.; Nghi, T.D.; Lim, D.K.; Hong, Y.J.; Hong, S.-S.; Kwon, S.W. A systematic 
review on metabolomics-based diagnostic biomarker discovery and validation in pancreatic cancer. 
Metabolomics 2018, 14, 109, doi:10.1007/s11306-018-1404-2. 

53. Afroz, S.; Giddaluru, J.; Vishwakarma, S.; Naz, S.; Khan, A.A.; Khan, N. A comprehensive gene expression 
Meta-analysis identifies novel immune signatures in rheumatoid arthritis Patients. Front. Immunol. 2017, 8, 
74, doi:10.3389/fimmu.2017.00074. 

54. Firestein, G.S. Pathogenesis of rheumatoid arthritis: How early is early? Arthritis Res. Ther. 2005, 7, 157, 
doi:10.1186/ar1780. 



J. Clin. Med. 2019, 8, 50 16 of 16 

 

55. Ahmed, U.; Anwar, A.; Savage, R.S.; Costa, M.L.; Mackay, N.; Filer, A.; Raza, K.; Watts, R.A.; Winyard, 
P.G.; Tarr, J.; et al. Biomarkers of early stage osteoarthritis, rheumatoid arthritis and musculoskeletal health. 
Sci. Rep. 2015, 5, 9259, doi:10.1038/srep09259. 

56. Li, Z.C.; Xiao, J.; Peng, J.L.; Chen, J.W.; Ma, T.; Cheng, G.Q.; Dong, Y.Q.; Wang, W.L.; Liu, Z.D. Functional 
annotation of rheumatoid arthritis and osteoarthritis associated genes by integrative genome-wide gene 
expression profiling analysis. PLoS ONE 2014, 9, e85784, doi:10.1371/journal.pone.0085784. 

57. Wu, G.; Zhu, L.; Dent, J.E.; Nardini, C. A Comprehensive Molecular Interaction Map for Rheumatoid 
Arthritis. PLoS ONE 2010, 5, e10137, doi:10.1371/journal.pone.0010137. 

58. Zhang, M.; Mu, H.; Lv, H.; Duan, L.; Shang, Z.; Li, J.; Jiang, Y.; Zhang, R. Integrative analysis of genome-
wide association studies and gene expression analysis identifies pathways associated with rheumatoid 
arthritis. Oncotarget 2016, 7, 8580–8589, doi:10.18632/oncotarget.7390. 

59. Cui, S.; Zhang, X.; Hai, S.; Lu, H.; Chen, Y.; Li, C.; Tong, P.; Lu, F.; Yuan, Z. Molecular mechanisms of 
osteoarthritis using gene microarrays. Acta Histochem. 2015, 117, 62–68, doi:10.1016/j.acthis.2014.11.003. 

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 


