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Abstract: Spinal disorders and associated interventions are costly in the United States, putting them
in the limelight of economic analyses. The Patient-Reported Outcomes Measurement Information
System Global Health Survey (PROMIS-GHS) requires mapping to other surveys for economic
investigation. Previous studies have proposed transformations of PROMIS-GHS to EuroQol
5-Dimension (EQ-5D) health index scores. These models require validation in adult spine patients.
In our study, PROMIS-GHS and EQ-5D were randomly administered to 121 adult spine patients.
The actual health index scores were calculated from the EQ-5D instrument and estimated scores were
calculated from the PROMIS-GHS responses with six models. Goodness-of-fit for each model was
determined using the coefficient of determination (R2), mean squared error (MSE), and mean absolute
error (MAE). Among the models, the model treating the eight PROMIS-GHS items as categorical
variables (CATReg) was the optimal model with the highest R2 (0.59) and lowest MSE (0.02) and MAE
(0.11) in our spine sample population. Subgroup analysis showed good predictions of the mean
EQ-5D by gender, age groups, education levels, etc. The transformation from PROMIS-GHS to EQ-5D
had a high accuracy of mean estimate on a group level, but not at the individual level.
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1. Introduction

High costs associated with surgical treatment of spine disorders demand a larger role for cost-utility
analyses of treatment options. Amidst socioeconomic limitations and finite resources, spinal disorders
occur at a high frequency, incur high costs for the healthcare system, and are treated with a heterogeneity
of interventions. According to the 2010 Global Burden of Disease Study, low back pain had the greatest
number of years lost to disability out of 291 conditions studied [1,2] and the annual direct costs of care
provided for patients with spine disorders has been estimated at $90 billion [3]. Low back pain in
particular presents a unique challenge, as there are numerous treatment modalities available whose
comparative efficacy and value have not been fully substantiated [2].

Measuring the value of an intervention necessitates the use of a health utility score that encapsulates
the health status, or patient-perceived overall health, at any given moment. Health status measures
(HSMs) generally fall into two categories: (1) profile-based measures, such as the Patient-Reported
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Outcomes Measurement Information System (PROMIS) [4]; and (2) preference-based measures, such
as EuroQol 5-Dimension (EQ-5D) [5]. Profile-based measures characterize health status by assigning a
score to each of multiple domains of health. Preference-based measures characterize health status by
providing a single utility score from multiple domains of health. The utility score, based on valuations
of different health states, is central to estimation of quality-adjusted life years (QALY), cost-utility
analysis, cost-effectiveness of interventions, and quantitation of health outcomes [2,6].

Many health status measures have been designed for generic or disease-specific use [7,8].
In 1990, EuroQol developed the EQ-5D three-level survey (EQ-5D-3L, abbreviated as EQ-5D below),
a preference-based HSM with two parts: (1) a descriptive survey with five questions assessing five
dimensions of health; and (2) a visual analog scale that permits a numeric self-assessment of general
health [5]. Responses to the descriptive survey yields a health utility index score.

In 2007, the National Institute of Health (NIH) developed PROMIS Global Health Survey
(PROMIS-GHS), a standardized, self-reported profile-based HSM with 10 self-reported global health
items that summarize general perceptions of health [4]. This survey is freely available for public use
and is increasingly adopted in clinical settings. However, economic analyses have been classically
performed using other preference-based measures, including EQ-5D.

With an increased desire to determine the value of health care and increase in HSMs, there is
a growing interest to correlate different HSMs. In 2009, Revicki et al. facilitated a conversion from
PROMIS-GHS to EQ-5D index scores using generic United States (US) population data [9]. Since then,
many clinical studies have used this model (REVReg) when evaluating health outcomes of surgical
and medical interventions [10–12]. While effective, such a conversion faces challenges and requires
validation for specific patient populations or diseases. Furthermore, design of the model itself and its
parameters can be optimized.

For instance, in 2017, Thompson et al. proposed new models to optimize REVReg using linear
and equipercentile equating [13]. Linear and equipercentile equating are linking techniques that,
after predicting scores, assign profile-based responses to preference-based scores by aligning score
distributions of the two scales. Using Revicki et al.’s original data set, they recreated Revicki et al.’s
regression model (REVReg), applied linear equating to REVReg (REVLE), and applied equipercentile
equating to REVReg (REVequip). In a similar fashion, they created three models by treating the score as
categorical variables (CATReg, CATLE, CATequip) for a total of six models. They performed external
validation of these models on a neurologic disease cohort from Cleveland Clinic.

In this study, we compared these six models in a cohort of adult spine patients to assess their
ability to map PROMIS-GHS to EQ-5D in the spinal population.

2. Experimental Section

2.1. Surveys

A short demographics form was used to obtain gender, age, race/ethnicity, education, medical
history, and spine diagnosis of participants.

The PROMIS Global Health survey includes ten global health items to assess overall health:
(1) general health, (2) quality of life, (3) physical health, (4) mental health, (5) social satisfaction,
(6) physical activities, (7) pain, (8) fatigue, (9) social activities, and (10) emotional distress. Every item
except the pain item is rated on a numeric five-level scale (1 representing poor and 5 representing
excellent); the pain item is scored from 0 to 10, where 0 indicates no pain and 10 indicates the worst
imaginable pain. The pain item is then recoded to a five-level scale, and the fatigue and emotional
problem item is recoded such that a high score represents better health status. Individual global item
scores from completed PROMIS surveys were used to calculate estimates of EQ-5D index scores.

The EQ-5D is a preference-based instrument designed to measure generic health status across
five dimensions of health: (1) mobility, (2) self-care, (3) usual activities, (4) pain/discomfort, and (5)
anxiety/depression, with three response levels (no problems, some problems, extreme problems) [14].
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A unique EQ-5D health state is defined by combining one level from each of the five dimensions,
and each health state corresponds to a health index ranging from −0.109 to 1.0, with greater scores
correlating to better overall health [15]. This index was calculated for every completed EQ-5D survey
according to the valuations developed by Shaw et al. and derived from a large scale survey of the
US general population [15]. The single visual analogue scale component of EQ-5D (EQ-5D VAS) was
obtained but not evaluated in this study. Permission to use EQ-5D was granted by the EuroQol Group.

2.2. Study Design and Participants

This study was primarily conducted in the adult spine clinics of the three neurosurgeons (K.A.,
J.S.C, and L.K) at Yale University School of Medicine in New Haven, CT, with Institutional Review
Board approval. Figure 1 illustrates the design of the study. In these clinics, 146 adult (>18 years of age)
spine patients were recruited in 2017 as they entered the clinic with voluntary consent regardless of
their clinical status (pre-operative, post-operative, or non-operative). Three forms were administered
in paper to these patients: a demographics short form, PROMIS-GHS, and EQ-5D. PROMIS-GHS and
EQ-5D were administered in random order. Completion of these two survey components was essential
for obtaining an EQ-5D index and corresponding index estimates from PROMIS Global Health items.
Out of 146 patients, complete survey responses were obtained from 121 patients.
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2.3. Models Tested in the Study

REVReg: This model was developed in 2009 by applying ordinary least squares (OLS) regression
on the PROMIS Wave 1 Sample (i.e., the sample used by Revicki et al.) [13,16] to predict EQ-5D
index scores from PROMIS-GHS items. This model uses eight out of 10 PROMIS-GHS items in its
algorithm (excluding responses to general health and social satisfaction) and treats these items as
continuous variables.

REVLE: This model is the result of applying linear equating, a method of linking, to REVReg.
While regression models aim to predict preference-based scores from profile-based responses, linking
models align score distributions of observed and predicted scores to establish a scale that provides an
equivalent preference-based score for each set of profile-based responses. Linear equating is applied to
REVReg with the following equation:

YLE = µY +
σY
σYR

(
YR − µYR

)
(1)



J. Clin. Med. 2019, 8, 1506 4 of 11

where YLE is the estimated value from linear equating, µY and σY are the mean and standard deviation
of the observed EQ-5D scores from the PROMIS Wave 1 Sample, respectively, and µYR and σYR are the
mean and standard deviation of the predicted EQ-5D scores from REVReg, respectively.

REVequip: This model was developed by applying equipercentile equating to REVReg.
Equipercentile equating is a linking method that matches the cumulative distribution
functions of observed scores and predicted scores from REVReg using smoothing functions or
nonparametric techniques.

CATReg: This model was implemented in 2017 by Thompsons et al. Like REVReg, this model
utilizes OLS regression on the PROMIS Wave 1 sample to predict EQ-5D index scores from eight
PROMIS-GHS items. Unlike REVReg, CATReg treats these items as categorical variables.

CATLE: This model is the result of applying linear equating to CATReg.
CATequip: This model was developed by applying equipercentile equating to CATReg.

2.4. Statistical Analysis

Statistical analyses were conducted in R Studio [17]. Responses to each of the 121 completed
EQ-5D surveys were utilized to calculate an EQ-5D index score according to the valuations developed
by Shaw et al. [15]. Estimates of the EQ-5D index scores from PROMIS Global Health Item responses
were obtained by applying the six models developed by Revicki et al. and Thompson et al. (REVReg,
REVLE, REVequip, CATReg, CATLE, CATequip) [9,13].

The goodness of fit for each model in our sample of patients was measured with the Pearson
correlation coefficient (r), coefficient of Determination (R2), mean squared error (MSE), and mean
absolute error (MAE). Correlation r measures the strength of the linear relationship. Higher absolute
values indicate stronger linear correlations. R2 demonstrates how much variance could be explained by
the regression model. The mean squared error (MSE) and mean absolute error (MAE) were measured
to examine the scale of difference between each estimate and observed value. Models with lower MSE
or MAE have better predictions.

In addition, comparisons of actual EQ-5D scores and optimal estimates were performed by
subgroups, such as gender, age groups, ethnicity, education, and spine diagnosis. According to Luo
et al., 0.04 was recommended as the minimal clinically important difference of a EQ-5D utility score
with a scale from −0.109 to 1 [18]. If the mean difference is less than 0.04, we consider it is an accurate
estimate of the mean.

However, good linear correlation does not always imply good agreement. In order to evaluate the
transformation on an individual level, the Bland–Altman assessment of agreement was conducted.
It could visually show the difference between actual and estimated scores of each patient. Histograms
of the observed EQ-5D scores and estimates from each model were also plotted to show distributions
of scores.

3. Results

3.1. Demographic Characteristics

Table 1 contains the demographics of the experimental cohort of adult spine patients. Our cohort
of 121 patients had an average age of 59 years, was 59% female, and had a majority with Caucasian
race/ethnicity. Highest level of education in these patients ranged from less than high school (4%)
to advanced college degree (17%), with 33% completing high school, 31% having some college or
associate’s degree, and 14% having a bachelor’s degree. Patients had a variety of conditions in their
medical histories, including cancer, lung disease, psychiatric illness, heart disease, rheumatologic
disease, central nervous system (CNS) disorders, and liver/kidney disease.
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Table 1. Demographic and clinical characteristics of survey participants.

Characteristic Spine Patients (N = 121)

Age, mean ± SD 59 ± 13
Gender, n (%)

Female 71 (59)
Male 49 (40)

Race/Ethnicity, n (%)
Caucasian American 94 (77)

African American 13 (11)
Hispanic American 9 (7)

Caucasian American and Hispanic American 1 (1)
Asian American 1 (1)

Caucasian American and Native American 1 (1)
Highest Level of Education, n (%)

Advanced Degree 21 (17)
Bachelor’s Degree 17 (14)

Some College or Associate’s Degree 38 (31)
High School Completion 40 (33)

Less than High School 5 (4)
Medical History, n (%)

Psychiatric Illness 33 (27)
Lung Disease 30 (25)
Heart Disease 27 (22)
Cancer/Tumor 25 (21)
CNS disorders 18 (15)

Rheumatologic Disease 17 (14)
Liver/Kidney Disease 11 (9)
Spine Diagnosis, n (%)

Stenosis 35 (29)
Radiculopathy 14 (12)

Myelopathy 13 (11)
Deformity 12 (10)

Disc Herniation 5 (4)
Spondylolisthesis 5 (4)

Fracture 3 (2)
Tumor 3 (2)

Pseudoarthrosis 1 (1)

The cohort of this study had demographics comparable to the sample of the generic US population
studied by Revicki et al. [9] and the neurologic disease cohort studied by Thompson et al. [13]. Unlike
Revicki et al. and Thompson et al., however, all sample subjects had spine diagnoses, including
cervical and lumbar stenosis (most common), deformity, myelopathy, radiculopathy, spondylolisthesis,
fracture, tumor, and pseudoarthrosis. The specificity of spine diagnosis distinguishes the cohort of this
study from the general cohort of Revicki’s study.

3.2. Statistical Analysis

Table 2 presents the metrics used to assess the models applied to our sample. The estimated score
in the CATReg model (0.60) was closest to the observed EQ-5D index scores (0.62). The mean difference
was 0.012 (95% CI, –0.012–0.036, p = 0.3144), which indicated no significant difference between actual
EQ-5D score and CATReg estimates. All other estimates were significantly different using the paired
t-test. The R2 values for all six models ranged between 0.54 and 0.59. Pearson correlation coefficients
were all above 0.7, showing strong linear correlation. Of the six models, CATReg had the highest R2

(0.59) and lowest MSE (0.02) and MAE (0.11). Thus, CATReg is the optimal model among them.
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Table 2. Mean (standard deviation (SD)) of actual and estimated EQ-5D Index Scores, R2 values,
correlation coefficients, mean squared errors (MSE), and mean absolute errors (MAE) for models in the
spine patient sample (N = 121).

Mean (SD) R2 r MSE MAE

Actual 0.62 (0.21)
REVReg 0.57 (0.10) 0.57 0.76 0.02 0.13
REVLE 0.56 (0.17) 0.57 0.76 0.02 0.12

REVequip 0.54 (0.22) 0.57 0.76 0.03 0.12
CATReg 0.60 (0.18) 0.59 0.77 0.02 0.11
CATLE 0.56 (0.22) 0.59 0.77 0.02 0.12

CATequip 0.56 (0.23) 0.54 0.73 0.03 0.13

In order to investigate the accuracy of CATreg model predictions, subgroup analysis was also
performed, shown in Table 3. Within most subgroups, the mean difference was less than 0.04
(the minimal clinically important difference of EQ-5D score), which means the EQ-5D score could be
accurately predicted using PROMIS-GHS. For example, the female spine patients’ observed EQ-5D
score was 0.62 and the estimate of CATreg was 0.60 (95% CI, 0.56–0.64), while the males’ was 0.60
vs. 0.60 (95% CI, 0.55–0.66). Caucasian Americans had a higher average EQ-5D score (actual 0.64 vs.
estimates 0.64) than other ethnicities (actual 0.52 vs. estimates 0.50). The actual score for different
education level ranged from 0.53 to 0.70. Generally, the larger the group size, the better prediction was
achieved. All the subgroups with more than 17 patients had a mean difference less than 0.04, which
indicates this score transformation should be more appropriately used on a group level, instead of
individual level.

Table 3. Comparison of actual EQ-5D scores and estimates of the CATreg model by subgroups.

N Actual EQ-5D
Mean (SD)

CATreg Estimates
Mean (SD) Mean Difference

Gender
Female 71 0.62 (0.20) 0.60 (0.16) 0.02
Male 49 0.60 (0.22) 0.60 (0.20) 0.00

Age groups, years
18–45 17 0.59 (0.22) 0.54 (0.21) 0.05
46–65 63 0.60 (0.23) 0.59 (0.18) 0.01
65+ 40 0.65 (0.16) 0.65 (0.15) 0.00

Ethnicity
Caucasian American 94 0.64 (0.20) 0.64 (0.16) 0.00

Others 27 0.52 (0.23) 0.50 (0.18) 0.02
Highest education level

Advanced degree 21 0.65 (0.16) 0.69 (0.18) −0.04
Bachelor’s degree 17 0.70 (0.16) 0.62 (0.16) 0.08

Some college or associate’s degree 38 0.61 (0.22) 0.61 (0.15) 0.00
High school completion 40 0.58 (0.23) 0.56 (0.19) 0.02

Less than high school 5 0.53 (0.27) 0.48 (0.19) 0.05
Spine Diagnosis

Stenosis 35 0.65 (0.20) 0.61 (0.17) 0.04
Other 22 0.59 (0.22) 0.58 (0.20) 0.01

Radiculopathy 14 0.65 (0.20) 0.63 (0.20) 0.03
Myelopathy 13 0.60 (0.24) 0.60 (0.21) 0.00
Deformity 12 0.62 (0.19) 0.61 (0.16) 0.01

Disc herniation 5 0.58 (0.27) 0.64 (0.25) −0.06
Spondylolisthesis 5 0.50 (0.29) 0.48 (0.20) 0.02

Unknown 4 0.60 (0.18) 0.63 (0.14) −0.03
Fracture 3 0.63 (0.06) 0.71 (0.02) −0.08
Tumor 3 0.63 (0.06) 0.56 (0.07) 0.07

Herniated disc 2 0.31 (0.00) 0.50 (0.05) −0.19
Pseudoarthrosis 1 0.44 0.72 −0.29
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In order to investigate the prediction performance at an individual level, Bland-Altman analysis
was conducted. Figure 2 demonstrated the mean residual was 0.01, with 95% limits of agreement
between actual and CATreg estimated EQ-5D scores ranged from −0.25 to 0.27. It revealed that for a
single patient, the variation from their actual score is huge and largely exceeded the minimal clinically
important difference 0.04.
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Our study assessed and compared six models that were developed in a generic sample to map
PROMIS-GHS to EQ-5D in a specific sample of patients with spinal disorders. In our sample of patients
with spinal disease, all six models achieved an R2 greater than 0.5. According to Brazier et al., models
that map to preference-based scores commonly achieve an R2 of greater than 0.5 within the sample
of model development [19]. R2 as a measure of goodness-of-fit can determine how well the model
explains the dataset it was estimated on. However, it did not show the scale of difference. In that
regard, MSE and MAE can better assess mapping functions by indicating size of prediction errors [19].
So, we compared the models with consideration of all the goodness-of-fit indicators.

First, we agreed that treating PROMIS-GHS item scores 1 to 5 as categorical variables (CATReg)
performed better than treating them as continues variables (REVReg), with closer mean estimate
(0.60 vs. 0.57, actual score = 0.62), higher R2 (0.59 vs. 0.57), and lower MAE (0.11 vs. 0.13). However,
unlike the recommendation of using equating technics used in the Thompson et al. article, in our spine
sample population, the linear and equipercentile equating models (REVLE, and REVequip, CATLE, and
CATequip) did not work well compared to the CATReg. Thus, although all six models demonstrated
adequate prediction ability, the CATReg model is the optimal one for patients with spine disease.

Second, we recommend using this transformation from PROMIS-GHS to EQ-5D utility score on
group-level mean estimates, not for individual prediction. From the subgroup analysis, it showed the
accurate prediction (mean difference less than 0.04) was achieved in groups with more than 17 patients.
To be more conservative, sample sizes of at least 30 patients are suggested for the good mean estimate
of a EQ-5D score from PROMIS-GHS using the CATReg model.

4.2. Utility of Health Care Measurement

HSMs have often been validated in patients with spinal disease before clinical application.
For instance, Guilfoyle et al. validated the Medical Outcomes Study Short Form (SF-6, -12, -36),
a general health outcome measure, in patients with lumbar disc prolapse, lumbar canal stenosis,
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and degenerative cervical myeloradiculopathy. This study found strong correlation between SF
surveys and disease-specific measures such as the Roland Morris Disability Score (RMDS), Myelopathy
Disability Index (MDI), and Hospital Anxiety and Depression Scales (HADS) [20,21]. Similarly, EQ-5D
was assessed for its validity for use in spine surgery by comparison with the Oswestry Disability Index
(ODI) in a study of patients who underwent lumbar spine surgery for degenerative disorders [21,22].
According to the study, EQ-5D and ODI were equal in assessment of health state, thus validating the
use of EQ-5D in patients with spinal disorders.

The validation of EQ-5D and other HSM questionnaires in patients with spinal disorders paved
the way for assessing the value of spinal interventions using health utility index scores. For instance,
Witiw. et al. assessed the lifetime incremental cost-utility of surgical treatment for degenerative
cervical myelopathy in a prospective observational cohort study by calculating health utility and
QALYs from SF-6D [23]. Tosteson et al. used data from the Spine Patient Outcomes Research Trial
(SPORT) to determine that lumbar discectomy was a clinically beneficial and cost-effective treatment of
intervertebral disc herniation [24]. They also determined that spinal stenosis surgery was cost-effective
but degenerative spondylolisthesis surgery was not cost-effective over a period of two years [25].
Conclusions from Tosteson et al. were based on the use of the EQ-5D index to obtain measures of
QALY and incremental cost-effectiveness ratio.

Cost-utility studies of spinal interventions have also used estimation models to obtain health
utility scores from other surveys. Qureshi et al. investigated the cost-effectiveness of anterior cervical
discectomy and fusion (ACDF) and cervical disc replacement (CDR) as therapies for single-level
cervical degenerative disc disease (DDD) [26]. To do this, the group used results of the 36-Item Short
Form Health Survey (SF-36) from the ProDisc-C investigational device exemption study along with a
model generated to estimate preference-based index scores from the Short Form-6 dimensions (SF-6D)
(derived from a subsection of SF-36 items) [27].

Mapping PROMIS to EQ-5D can prove to be a powerful method of calculating health utility in
economic cost-benefit studies. Along with its increased use by the NIH, PROMIS and its domain item
banks allow flexibility in administration using either targeted short forms or computerized adaptive
tests [4,9]. The importance of validating models such as those developed by Revicki et al. [9] and
Thompson et al. [13] lies in assessing the clinical and economic utility of applying generic models to
disease-specific populations, including those with spinal pathologies.

4.3. Clinical Implications

The findings in the paper indicate that PROMIS can act as a reasonable surrogate for EQ-5D.
For hospitals or medical centers that have already collected PROMIS-GHS and do not have EQ-5D,
they could use this transformation to estimate EQ-5D scores and then calculate the quality adjusted
life-year for cost-effectiveness analysis. Based on previous reports and our data, it appears that CATReg

is the choice with the lowest error for patients with spinal disorders.
Measurement of health status not only assesses general cost-effectiveness of interventions but

also provides the opportunity to assess individual patients longitudinally. Consequently, one can
assess changes in conservative management, and treatment modalities can be altered in accordance to
health status. Regular clinical usage of HSMs develops a general repository of health outcomes data
that would otherwise come solely from research studies, potentially alleviating substantial costs for
prospective research studies.

4.4. Limitations

One of the limitations of this study was the sample size of the cohort. Though the cohort in this
study had a variety of spine pathologies, our sample size was limited to clinics in a single institution.
The results may not represent the whole spine population. Second, we tried to create our own prediction
model. However, only three out of 10 PROMIS-GHS items (general health, social satisfaction, pain)
were significant predictors due to the limited sample size.
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5. Conclusions

This study assesses and compares six models that map PROMIS-GHS to EQ-5D index values in a
population of patients with spinal disorders. All six models demonstrate adequate and comparable
predictive performance in our sample, thus validating their economic utility. Among the six models,
the CATreg model is recommended for spine patients. That is, EQ-5D utility scores could be
most accurately estimated by the linear combination of eight significantly correlated items from
PROMIS-GHS, while scores 1 to 5 for each item is treated as a categorical variable. In addition, we
suggest using this transformation model for group-based estimates, instead of for individual patient’s
EQ-5D score estimates. Validation studies of HSMs can lead to their application in cost-utility analyses.
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