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Abstract: Background: Low circulating magnesium (Mg) is associated with an increased risk of
developing type 2 diabetes mellitus (T2DM). We aimed to study the performance of a nuclear magnetic
resonance (NMR)-based assay that quantifies ionized Mg in EDTA plasma samples and prospectively
investigate the association of Mg with the risk of T2DM. Methods: The analytic performance of an
NMR-based assay for measuring plasma Mg was evaluated. We studied 5747 subjects free of T2DM
at baseline in the Prevention of Renal and Vascular End-stage Disease (PREVEND) study. Results:
Passing–Bablok regression analysis, comparing NMR-measured ionized Mg with total Mg measured
by the Roche colorimetric assay, produced a correlation of r = 0.90, with a slope of 1.08 (95% CI:
1.00–1.13) and an intercept of 0.02 (95% CI: −0.02–0.08). During a median follow-up period of 11.2
(IQR: 7.7–12.0) years, 289 (5.0%) participants developed T2DM. The association of NMR-measured
ionized Mg with T2DM risk was modified by sex (Pinteraction = 0.007). In women, we found an inverse
association between Mg and the risk of developing T2DM, independent of adjustment for potential
confounders (HR: 1.80; 95% CI: 1.20–2.70). In men, we found no association between Mg and the risk
of developing T2DM (HR: 0.90; 95%: 0.67–1.21). Conclusion: Lower NMR-measured plasma ionized
Mg was independently associated with a higher risk of developing T2DM in women, but not in men.
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1. Introduction

The global prevalence of type 2 diabetes mellitus (T2DM) has increased over the past few
decades [1], and certain modifiable risk factors, including obesity and insulin resistance, as well
as inadequate intake of vitamins and minerals, have received considerable interest [2,3]. Magnesium
(Mg) is an essential cofactor for multiple enzymatic pathways involved in energy metabolism and the
modulation of insulin-mediated glucose uptake [4] and has been associated with inflammation and
endothelial dysfunction [5,6]. Not surprisingly, Mg levels have been linked to several cardiovascular
diseases, including ischemic heart disease, stroke, and hypertension, but also to T2DM [7–13].

Nearly 99% of the magnesium in the body is found in the bone, muscle, and soft tissue [14,15].
Only about 0.3–1% is present in serum, with a mean Mg concentration of nearly 0.85 mmol/L. Of this,
70–80% is available in a free ionized form and the rest is bound to proteins, phosphate, citrate, and other
compounds. In current clinical laboratories, Mg is measured largely as total Mg with the predominant
techniques being (1) photometry, which uses a number of chromogenic substances such as xylidyl blue,
and (2) atomic absorption spectroscopy [15]. The determination of ionized Mg has been problematic
and ion-selective electrodes for measuring ionized Mg potentiometrically have historically suffered
from a lack of selectivity, as well as relatively long response times. In recent years, efforts have been
underway to optimize measurement of ionized Mg in plasma and serum due to numerous publications
promoting the relevance of ionized Mg in different clinical situations and the potential superiority of
ionized Mg over total Mg concentrations [15].

Recently, a clinical nuclear magnetic resonance spectroscopy (NMR) instrument (Vantera® Clinical
Analyzer, Morrisville, NC, USA) was developed that addresses the limiting factors of research NMR
instruments and allows for the simultaneous quantification of lipoprotein particles, metabolites, and
an inflammatory marker in the clinical laboratory [16–19]. The aim of the current study was to develop
and validate an assay for quantifying ionized Mg in plasma using NMR spectra collected for routine
lipoprotein quantification on a clinical laboratory instrument. In this way, Mg can be measured in
addition to routine lipoprotein quantification without incurring extra costs. With this newly developed
NMR-based assay, we further aimed to determine the prospective association of NMR-measured Mg
and the risk of developing T2DM in a large Dutch cohort study.

2. Materials and Methods

2.1. Study Design

For the analyses of the present study, the Prevention of Renal and Vascular Endstage
Disease (PREVEND) study was used, which is a prospective Dutch cohort. Details are described
elsewhere [20]. In brief, from 1997 to 1998, all inhabitants of Groningen, the Netherlands, aged 28
to 75 years (n = 85,421), were sent a short questionnaire on demographic characteristics and renal
and cardiovascular morbidity and a vial to collect a first morning void urine sample. Those who
were unable or unwilling to participate, pregnant women, and individuals using insulin were not
included. Altogether, 40,856 people (48%) responded. Subjects with a urinary albumin concentration
of ≥10 mg/L (n = 7768) were invited to participate, of whom 6000 subjects were enrolled. In addition,
a randomly selected group with a urinary albumin concentration of <10 mg/L (n = 3394) was invited
to participate in the cohort and 2592 subjects of the initially 3394 invited subjects were enrolled.
8592 subjects participated in the PREVEND cohort and completed an extensive examination in 1997
and 1998 (baseline). Participants were invited to the outpatient clinic of the University Medical Center
Groningen for measurements approximately every 3 years.

The second screening took place from 2001 through 2003 (n = 6894), which was the starting point
for the present evaluation. For the present study, we excluded subjects with diabetes at baseline or
unknown diabetes status or with no follow-up data available for diabetes (n = 545) and subjects with
missing Mg data (n = 602), leaving 5747 participants for the analyses (Figure 1). The PREVEND study
was approved by the Medical Ethics Committee of the University Medical Center Groningen. Written
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informed consent was obtained from all participants and was performed according to the principles
outlined in the Declaration of Helsinki. All participants provided written informed consent.
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Figure 1. Flowchart of the Prevention of Renal and Vascular Endstage Disease (PREVEND) study
participants included or excluded for the purposes of this study.

2.2. Laboratory Analysis

Venous blood was obtained at each screening round after an overnight fast. EDTA plasma and
lithium heparin plasma samples were prepared by centrifugation at 4 ◦C and stored at −80 ◦C until
thawed for testing. EDTA plasma samples from the second screening were sent frozen to LipoScience,
(now LabCorp, Morrisville, NC, USA) for testing on the Vantera Clinical Analyzer (Morrisville, NC,
USA) and lithium heparin plasma was tested on the Roche Modular system.

2.3. NMR-Based Ionized Mg Assay

As is customary for collecting NMR spectra for the NMR LipoProfile test, EDTA plasma samples
were diluted 1:1 with phosphate buffer (pH 7.4) containing 5 mmol/L EDTA. The extra EDTA in the
buffer ensured complete chelation of free ionized Mg present in the plasma specimens, as well as
any circulating Mg that may not be tightly bound to proteins, citrates, or phosphates. Proton NMR
spectra were collected on 400 MHz Vantera Clinical Analyzers at 47 ◦C as described previously [16,21].
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The NMR acquisition time was 48 s, with a total sample to sample turnaround time of 90 s. The proton
NMR spectra were deconvoluted using proprietary software as follows: The singlet peak emanating
from four equivalent protons of the ethylene moiety in the Mg-EDTA complex (-N-CH2-CH2-N-)
appearing at 2.66 ppm in the NMR spectrum was used for quantitation. As the Mg-EDTA NMR signal
overlaps with a signal from circulating proteins, the deconvolution method included the protein signal
encompassing approximately 50 Hz, and a 16 Hz wide region of the Mg-EDTA peak was integrated.
The relation between Mg-EDTA signal area and Mg concentrations were established by standard
addition experiments on dialyzed serum, and the conversion factor thus obtained was applied to
transform Mg-EDTA signal areas to concentrations expressed in mmol/L. The Mg concentrations
were standardized against a 25.0 mM solution of ACS Reagent Grade MgCl2.6H2O (MilliporeSigma,
Burlington, MA, USA). Defined amounts of the standard MgCl2 solution were spiked into dialyzed
serum devoid of ionized Mg. The accuracy was ascertained through recovery experiments done from
0 to 4.0 mM Mg concentrations. Similar to other NMR assays on Vantera, the commercial assay would
also involve running 2 levels of serum controls, performing daily checks on the accuracy, and guarding
against drift with time. We tested for imprecision in the NMR-measured ionized Mg assay as per CLSI
guidelines. Pooled samples with two varying concentrations of Mg (low and high) were tested to
determine within-lab (inter-assay) precision.

2.4. Roche Modular Total Mg Assay and Assay Comparison

The Roche Modular assay is a colorimetric end point assay that measures total Mg in a serum,
heparin plasma or urine sample. The method is based on the reaction of Mg with xylidyl blue in
an alkaline solution containing ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid
(EGTA), which has a lower affinity for Mg, in order to mask the calcium in the sample. In the alkaline
solution, Mg forms a purple complex with the xylidyl blue diazonium salt and the concentration of Mg
is determined photometrically via the decrease in the xylidyl blue absorbance (505/600 nm). In order to
understand the differences between the two assays, we compared values from the NMR-based ionized
Mg assay with total Mg measured on a Roche Modular Analyzer (Roche Diagnostics, Mannheim,
Germany) in 799 samples of appropriate specimen types from the second screening of the PREVEND
cohort. The Roche Mg assay has an inter-assay coefficient variation of 1.3%.

2.5. Assessment of Covariates

Body mass index (BMI) was calculated as weight (kg) divided by height squared (m2). Smoking
status was defined as self-reported never smoker, former smoker, or current smoker [22]. Blood
pressure was measured with an automatic Dinamap XL Model 9300 series device (Johnson-Johnson
Medical, Tampa, FL, USA). Hypertension was defined as a systolic blood pressure (SBP) > 140 mmHg
or a diastolic blood pressure (DPB) > 90 mmHg, and/or the use of anti-hypertensive drugs. Information
on medication use was combined with information on drug use from the IADB.nl database, containing
pharmacy-dispensing data from community pharmacies in the Netherlands [23]. Estimated glomerular
filtration rate (eGFR) based on serum creatinine and serum cystatin C was calculated from the Chronic
Kidney Disease Epidemiology Collaboration equation [24]. Urinary albumin, sodium, urea, and
creatinine excretion and circulating albumin, sodium, potassium, calcium, and creatinine, total
cholesterol, high-density lipoprotein cholesterol, triglycerides, high sensitivity C-reactive protein
(hsCRP) and glucose were determined as previously described [25–28].

2.6. Assessment of T2DM Risk

Incident T2DM was ascertained if one or more of the following criteria were met: (1) Fasting
plasma glucose > 7.0 mmol/L; (2) random sample plasma glucose > 11.1 mmol/L; (3) self-reporting
of a physician diagnosis; (4) initiation of glucose-lowering medication use retrieved from a central
pharmacy registry [29]. Incident T2DM was defined as T2DM that occurred after the second screening.
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2.7. Statistical Analysis

Analytic validation data was calculated using Analyze-it (Analyze-it Software, Ltd. Leeds, UK).
Passing–Bablok regression analysis was used to test agreement between NMR-measured Mg in EDTA
plasma and heparin plasma Mg measured on the Roche Modular Analyzer. Bland-Altman plots were
used to visualize bias. Baseline characteristics are reported in terms of means (SD) when normally
distributed or medians (interquartile range) in the case of non-normally distributed data. Categorical
data are presented as frequencies (percentages). We prospectively examined the association between
chelated Mg and the risk of developing T2DM using Cox proportional hazards regression models.
We used chelated Mg as a continuous variable in these models and additionally, we examined the
association in tertiles of chelated Mg. Person-time of follow-up was calculated for each participant
from the first visit (baseline) until the last visit, the incidence of T2DM, death, or relocation to an
unknown destination, whichever came first. Multivariable Cox models were adjusted for age, sex, BMI,
smoking (2 categories), alcohol intake (2 categories), triglyceride to high-density lipoprotein cholesterol
ratio, hypertensive treatment, parental history of T2DM, plasma levels of albumin, potassium and
calcium and urinary albumin excretion, and fasting glucose levels, CRP, and eGFR. In addition, we
performed sensitivity analyses in which we replaced adjustment for antihypertensive treatment in
Cox regression analyses with an adjustment for the presence of cardiovascular disease and in which
we replaced the adjustment for eGFR in Cox regression analyses with an adjustment for the presence
of chronic kidney disease. Hazard ratios (HRs) are reported with 95% confidence intervals (CIs).
Restricted cubic splines with three knots were performed to show the association between ionized Mg
and risk of T2DM using Cox regression analyses. We evaluated the potential effect modification in the
analyses of plasma ionized Mg and risk of T2DM by fitting models containing both main effects and
their cross-product terms. The interaction terms were considered statistically significant at p < 0.10.
Missing data (present in 0.0–13.4%) in covariables were handled by multiple imputations [30]. Results
are reported for imputed data, except for the baseline characteristics and the analytic validation data.
We considered a two-sided p value < 0.05 as statistically significant. Data were analyzed using SPSS
Statistics version 23.0 (SPSS Inc, Chicago, IL, USA).

3. Results

3.1. Analytical Performance of the NMR-Measured Ionized Mg Assay

The coefficient of variation for the NMR ionized Mg assay ranged from 4.6% to 7.1% for within-lab
imprecision (Table 1). We compared NMR-measured Mg in EDTA plasma specimens with lithium
heparin plasma total Mg measured by a Roche Modular colorimetric assay in 799 samples from the
PREVEND study. We found a strong linear relationship between NMR-measured ionized Mg and
colorimetrically measured total Mg (r = 0.90). Bland–Altman analysis showed a systematic bias of
0.07 mmol/L with chemically measured total Mg concentrations being slightly higher than the ionized
Mg quantified by NMR (Figure 2). Passing–Bablok regression analysis revealed an intercept of 0.02
(95% CI: −0.02–0.08) and a slope of 1.08 (95% CI: 1.00–1.13) (Figure 3).

Table 1. Within-lab imprecision of ionized Mg measured on the Vantera Clinical Analyzer.

Within-Lab
NMR-Measured Mg (mmol/L)

Low High

Mean 0.489 0.892
SD 0.035 0.041
CV 7.1% 4.6%
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Two pools of EDTA plasma with low and high Mg concentrations were tested twice a day in
duplicate for 20 days on one instrument.

3.2. Association of Ionized Mg with the Risk of Developing T2DM

The baseline characteristics of the 5747 participants are shown in Table 2. Mean age was 53.0 ± 11.9
years, mean NMR-measured ionized Mg was 0.75 ± 0.05 mmol/L, and 50.4% of the participants were
female. Higher ionized Mg was associated with a slightly lower BMI, lower fasting glucose levels and
higher HDL-cholesterol levels. In addition, subjects in the highest tertile of ionized Mg were more likely
to be non-smokers.
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Table 2. Baseline characteristics of the PREVEND study population.

Tertiles of NMR-Measured Mg, mmol/L
P Trend

1
(<0.73)

2
(0.73–0.77)

3
(>0.77)

Participants, n 1919 1900 1928 -

Age, years 52.3 ± 11.8 52.2 ± 11.7 54.4 ± 12.0 <0.001

Female, % 48.7 52.1 50.5 0.27

Race, whites, % 96.2 95.9 96.0 0.65

Body mass index, kg/m2 26.9 ± 4.3 26.5 ± 4.3 26.1 ± 3.9 <0.001

Smoking status, % <0.001

Never 25.9 29.3 30.9
Former 42.2 43.1 43.2
Current 31.9 27.6 25.9

Alcohol consumption, % 0.82

None 24.1 23.8 23.5
1–4 drinks per month 16.1 17.7 17.4
2–7 drinks per week 31.9 32.6 31.4
1–3 drinks per day 21.7 21.9 22.3
4 or more drinks per day 5.3 3.3 4.2

Education, % 0.17

Low 43.3 41.6 42.4
Middle 26.4 27.2 24.3
High 30.4 31.2 33.3

Glucose, mmol/L 4.89 ± 0.66 4.82 ± 0.65 4.81 ± 0.63 <0.001

Parental history of T2DM, % 14.0 14.6 14.6 0.61

Blood pressure, mm Hg

Systolic 125.7 ± 18.2 124.0 ± 17.2 126.2 ± 19.2 0.43
Diastolic 73.4 ± 9.1 72.7 ± 8.9 73.3 ± 9.1 0.87

Hypertension, yes, % 33.1 28.1 32.9 0.90
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Table 2. Cont.

Tertiles of NMR-Measured Mg, mmol/L
P Trend

1
(<0.73)

2
(0.73–0.77)

3
(>0.77)

Use of antihypertensive drugs

ACEi, % 6.2 5.5 5.2 0.41
ARB, % 2.1 1.5 2.0 0.36
Diuretics, % 6.0 5.3 5.4 0.59
Beta blockers, % 11.1 8.8 8.5 0.01

Total cholesterol, mmol/L 5.40 ± 1.04 5.40 ± 1.03 5.50 ± 1.03 0.004

HDL-cholesterol, mmol/L 1.23 ± 0.29 1.26 ± 0.30 1.30 ± 0.25 <0.001

Triglycerides, mmol/L 1.13 (0.83–1.66) 1.09 (0.78–1.54) 1.08 (0.79–1.55) 0.001

Triglyeride:HDL-cholesterol ratio 2.19 (1.40–3.46) 2.00 (1.33–3.18) 1.93 (1.24–3.17) <0.001

Use of lipid lowering drugs, yes, % 6.5 7.3 7.6 0.03

CRP, mg/L 1.41 (0.64–3.14) 1.26 (0.58–2.77) 1.26 (0.60–2.86) 0.02

Creatinine, µmol/L 70.0 (61.0–79.0) 71.0 (62.0–80.0) 72.0 (64.0–81.0) <0.001

Cystatine C, mg/L 0.87 (0.78–0.98) 0.86 (0.78–0.96) 0.89 (0.80–0.99) <0.001

Estimated GFR, mL/min/1.732 93.6 ± 17.0 94.1 ± 16.2 90.3 ± 17.0 <0.001

Plasma levels of

Albumin, g/L 43.3 ± 2.8 43.8 ± 2.6 44.2 ± 2.9 <0.001
Sodium, mmol/L 140.5 ± 2.0 140.7 ± 2.0 140.9 ± 2.1 <0.001
Potassium, mmol/L 4.20 ± 0.28 4.22 ± 0.26 4.25 ± 0.29 <0.001
Calcium, mmol/L 2.30 ± 0.12 2.30 ± 0.10 2.30 ± 0.11 0.06

Urinary excretions of

Albumin, mg/24-h 9.0 (6.1–17.3) 8.2 (5.9–14.0) 8.3 (6.0–13.5) <0.001
Sodium, mmol/24-h 148.5 ± 56.3 144.3 ± 55.3 139.9 ± 53.5 <0.001
Urea, mmol/24-h 365.6 ± 112.8 367.8 ± 115.0 359.2 ± 110.8 0.07
Creatinine, mmol/24-h 12.7 ± 3.4 12.4 ± 3.3 12.2 ± 3.4 <0.001

Values are presented as means with SDs, medians with interquartile ranges, or percentages. Values are shown for non-imputed data. T2DM, type 2 diabetes mellitus; GFR indicates
glomerular filtration rate; HDL, high-density lipoprotein; ACEi, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blockers; CRP, high sensitive C-reactive protein.
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During a median follow-up period of 11.2 (IQR: 7.7–12.0) years, 289 (5.0%) participants developed
T2DM. We found an association between the levels of NMR-measured ionized Mg and the risk of
developing T2DM in the total population (HR: 1.50; 95% CI: 1.19–1.89). However, after multivariable
adjustment, the association lost significance (HR: 1.16; 95% CI: 0.91–1.47). The association of
NMR-measured Mg with the risk of T2DM was modified by sex (Pinteraction = 0.007). In men, the
association between NMR-measured Mg and the risk of developing T2DM was non-significant in
the crude model (HR: 1.25; 95% CI: 0.94–1.67) and in a fully adjusted multivariable model (HR:
0.90; 95%: 0.67–1.21) (Table 3). In women, on the other hand, we found an association between
NMR-measured Mg and the risk of developing T2DM in the crude model (HR: 2.02, 95% CI: 1.37–2.99).
After adjustment for lifestyle factors, including BMI, alcohol consumption, smoking status, triglyceride
to HDL cholesterol ratio, use of antihypertensive drugs, and parental history of T2DM (Model 1),
the hazard ratio was slightly attenuated, but not substantially different (HR: 1.66; 95% CI: 1.11–2.47)
(Table 3). When we further adjusted for the variables in Model 3, including fasting glucose, CRP, and
eGFR, the association remained similar (HR: 1.80; 95% CI: 1.20–2.70). Furthermore, the hazard ratio for
women in the lowest tertile of NMR-measured Mg was 1.65 (95% CI: 1.02–2.66) in the crude analysis
and 1.72 (95% CI: 1.03–2.86) after multivariable adjustment. A restricted spline curve confirmed the
log-linear inverse association of NMR-measured Mg and the risk of developing T2DM in women
(Figure 4). Sensitivity analyses yielded similar results as in our main analyses (Table 4).

Table 3. The association of NMR-measured ionized Mg with the risk of developing type 2 diabetes
mellitus (T2DM) in the PREVEND study.

Continuous, per 0.1
mmol/L Decrease

Tertiles of NMR-Measured Mg, mmol/L

1 2 3

Total (n = 5747)

Events, n (%) 289 (5.0) 108 (5.6) 99 (5.2) 82 (4.3)
Crude analysis 1.50 (1.19–1.89) 1.36 (1.02–1.82) 1.23 (1.02–1.82) 1.00 (reference)
Age and sex
adjusted

1.54 (1.23–1.92) 1.46 (1.09–1.94) 1.36 (1.01–1.82) 1.00 (reference)

Model 1 1.27 (1.00–1.61) 1.17 (0.87–1.56) 1.19 (0.89–1.60) 1.00 (reference)
Model 2 1.32 (1.04–1.67) 1.20 (0.89–1.61) 1.20 (0.89–1.62) 1.00 (reference)
Model 3 1.16 (0.91–1.47) 1.09 (0.81–1.47) 1.23 (0.91–1.65) 1.00 (reference)

Men (n = 2848)
Events, n (%) 186 (6.5) 66 (6.7) 66 (7.3) 54 (5.7)
Crude analysis 1.25 (0.94–1.67) 1.21 (0.84–1.73) 1.31 (0.91–1.87) 1.00 (reference)
Age adjusted 1.27 (0.96–1.69) 1.26 (0.88–1.80) 1.41 (0.98–2.02) 1.00 (reference)

Model 1 1.04 (0.78–1.40) 1.01 (0.70–1.45) 1.31 (0.92–1.89) 1.00 (reference)
Model 2 1.04 (0.78–1.40) 1.01 (0.70–1.45) 1.31 (0.91–1.89) 1.00 (reference)
Model 3 0.90 (0.67–1.21) 0.85 (0.58–1.24) 1.26 (0.88–1.81) 1.00 (reference)

Women (n = 2899)
Events, n (%) 103 (3.6) 42 (4.5) 33 (3.3) 28 (2.9)
Crude analysis 2.02 (1.37–2.99) 1.65 (1.02–2.66) 1.15 (0.70–1.91) 1.00 (reference)
Age adjusted 2.33 (1.58–3.42) 1.99 (1.23–3.22) 1.28 (0.78–2.13) 1.00 (reference)

Model 1 1.66 (1.11–2.47) 1.45 (0.88–2.39) 1.13 (0.68–1.89) 1.00 (reference)
Model 2 1.88 (1.26–2.79) 1.67 (1.01–2.77) 1.23 (0.73–2.08) 1.00 (reference)
Model 3 1.80 (1.20–2.70) 1.72 (1.03–2.86) 1.30 (0.76–2.20) 1.00 (reference)

Hazard ratios and 95% confidence intervals were derived from Cox proportional hazards regression models.
T2DM, type 2 diabetes mellitus; GFR indicates glomerular filtration rate; HDL, high-density lipoprotein. Model 1:
Adjusted for age, sex, body mass index, alcohol consumption, smoking status, triglyceride:HDL cholesterol ratio,
antihypertensive treatment, and parental history of T2DM. Model 2: Model 1 and additionally adjusted for plasma
levels of albumin, potassium, and calcium and urinary albumin excretion. Model 3: Model 2 and additionally
adjusted for CRP, fasting glucose, and eGFR.
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Table 4. The association of NMR-measured ionized Mg with the risk of developing T2DM in the
PREVEND study (sensitivity analyses).

Continuous, per 0.1
mmol/L decrease

Tertiles of NMR-Measured Mg, mmol/L

1 2 3

Total (n = 5747)

Events, n (%) 289 (5.0) 108 (5.6) 99 (5.2) 82 (4.3)
Crude analysis 1.50 (1.19–1.89) 1.36 (1.02–1.82) 1.23 (1.02–1.82) 1.00 (reference)
Age and sex
adjusted

1.54 (1.23–1.92) 1.46 (1.09–1.94) 1.36 (1.01–1.82) 1.00 (reference)

Model 1 1.32 (1.04–1.67) 1.21 (0.90–1.62) 1.18 (0.90–1.62) 1.00 (reference)
Model 2 1.37 (1.08–1.74) 1.26 (0.93–1.69) 1.20 (0.89–1.62) 1.00 (reference)
Model 3 1.19 (0.94–1.51) 1.12 (0.83–1.51) 1.21 (0.90–1.63) 1.00 (reference)

Men (n = 2848)
Events, n (%) 186 (6.5) 66 (6.7) 66 (7.3) 54 (5.7)
Crude analysis 1.25 (0.94–1.67) 1.21 (0.84–1.73) 1.31 (0.91–1.87) 1.00 (reference)
Age adjusted 1.27 (0.96–1.69) 1.26 (0.88–1.80) 1.41 (0.98–2.02) 1.00 (reference)

Model 1 1.05 (0.78–1.40) 1.01 (0.70–1.45) 1.32 (0.92–1.90) 1.00 (reference)
Model 2 1.04 (0.78–1.41) 1.01 (0.70–1.45) 1.32 (0.92–1.89) 1.00 (reference)
Model 3 0.89 (0.67–1.20) 0.84 (0.58–1.22) 1.26 (0.87–1.81) 1.00 (reference)

Women (n = 2899)
Events, n (%) 103 (3.6) 42 (4.5) 33 (3.3) 28 (2.9)
Crude analysis 2.02 (1.37–2.99) 1.65 (1.02–2.66) 1.15 (0.70–1.91) 1.00 (reference)
Age adjusted 2.33 (1.58–3.42) 1.99 (1.23–3.22) 1.28 (0.78–2.13) 1.00 (reference)

Model 1 1.70 (1.14–2.52) 1.52 (0.92–2.49) 1.12 (0.67–1.87) 1.00 (reference)
Model 2 1.89 (1.27–2.81) 1.71 (1.04–2.83) 1.18 (0.70–1.99) 1.00 (reference)
Model 3 1.81 (1.22–2.69) 1.75 (1.06–2.89) 1.29 (1.06–2.17) 1.00 (reference)

Hazard ratios and 95% confidence intervals were derived from Cox proportional hazards regression models. T2DM,
type 2 diabetes mellitus; GFR indicates glomerular filtration rate; HDL, high-density lipoprotein. Model 1: Adjusted
for age, sex, body mass index, alcohol consumption, smoking status, triglyceride:HDL cholesterol ratio, presence of
cardiovascular disease, and parental history of T2DM. Model 2: Model 1 and additionally adjusted for plasma levels
of albumin, potassium, and calcium and urinary albumin excretion. Model 3: Model 2 and additionally adjusted for
CRP, fasting glucose, and presence of chronic kidney disease.

4. Discussion

This is the first study showing that accurate concentrations of NMR-measured ionized Mg
can be obtained from NMR spectra collected on EDTA plasma samples tested for routine lipoprotein
quantification on a clinical NMR analyzer. The ability to simultaneously interrogate disease associations
for lipoprotein particles, small molecule metabolites, and the GlycA inflammatory markers in large
epidemiological studies using analytically and clinically validated assays is one of the strengths of
the Vantera NMR Clinical Analyzer platform. As a standalone test, the cost for NMR-assay for Mg
would be comparable to a lipid panel derived from the NMR assay. If ordered together with NMR
LipoProfile test or NMR Extended Lipid Panel test, it would only add a small incremental cost since
no additional NMR time would be needed. Unlike the chemical assays for Mg, the non-invasive NMR
assay does not require reagents, and one can get results for all of the NMR based tests from one NMR
spectra obtained from a single draw of a specimen, adding to the overall cost saving. It is therefore
of particular interest for research when samples are precious and available sample volume relatively
low, as for instance often is the case in cohort studies and intervention studies using the material of
underlying biobanks. The assay is currently available through the NMR Global Research Services
group at LabCorp for research use only. Investigators who have used the NMR LipoProfile test over
the years for various cardiovascular, diabetes, nutrition and diet, and inflammation-related research
studies and clinical trials have the opportunity of retrospectively analyzing the stored NMR data for
plasma Mg levels. Though the data presented in this paper pertains to EDTA plasma specimens, the
NMR-assay for Mg can easily be adapted to work on serum specimens by sufficiently modifying the
EDTA concentration in the NMR diluent.

The systematic bias of 0.07 mmol/L, as shown in Bland–Altman plots, is likely due to the
differences in the amount of Mg that is quantified in each of the assays; the NMR assay quantifying
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largely free ionized Mg and the Roche Modular colorimetric assay measuring total Mg levels. Similar
results were reported in a paper by Koch et al., who compared total Mg with free ionized Mg,
suggesting that ionized Mg measured by NMR and ionized Mg quantified by ion specific electrode
measurement may be similar in the fraction of circulating Mg that they are able to quantify [31].
Moreover, the Roche method can only use serum or heparinized plasma as the preferred specimens
but not EDTA plasma. In contrast, the NMR method requires the use of EDTA plasma specimens
only. The difference in the types of specimen used for the two assays in this study (EDTA vs. lithium
heparin) may also contribute to the small difference in the amount of Mg that was observed.

Our prospective findings showed that NMR-measured ionized Mg was associated with an
increased risk of T2DM in women even after adjusting for traditional T2DM risk factors and CRP.
However, we found no association between NMR-measured Mg and the risk of developing T2DM
in men. No other studies have reported such an interaction with sex in the association of circulating
Mg and the risk of T2DM. This is, therefore, the first study demonstrating an inverse association of
Mg on T2DM risk that is only present in women. The interaction between circulating Mg levels and
sex may warrant confirmation in further studies. It might be that female sex hormones play a role in
this observed interaction [32]. It has indeed been established that estrogen significantly affects renal
magnesium handling [33,34], likely explaining higher circulating Mg levels in pre-menopausal women
than in post-menopausal women and the cycling of Mg levels in pre-menopausal women [35,36]. Low
circulating Mg levels and T2DM are known to be related, mainly through insulin resistance rather
than through insulin secretion, but the cause and effect relationships remain to be established [10].
Consistent with this, it has been observed that low circulating Mg levels are associated with diabetes,
insulin resistance, and obesity in women, but not in men [37]. It has also been shown that there is
a sex difference in the relationship of urinary magnesium excretion to glycaemic control in patients
with T1DM [38]. Albeit not in the field of diabetes, it has repeatedly been suggested that there is a sex
difference in the prospective association of Mg intake and low circulating Mg levels with cardiovascular
mortality, with associations predominantly present in or limited to women [39–41].

So far, only three studies prospectively reported associations between serum or plasma Mg and
the risk of developing T2DM [42–44]. Everett et al. investigated the relationship between circulating
Mg and the risk of developing T2DM in a cohort of 9784 US participants [43]. They showed that
low serum Mg was associated with an increased risk of T2DM in the total population. Recently,
Kieboom et al. confirmed this finding and showed that the association was partly mediated through
insulin resistance [44]. In the present study, the association between NMR-measured Mg and T2DM
remained significant after adjusting for fasting glucose levels, which is also in line with the findings of
Kao et al. [42]. Indeed, the effect of Mg on insulin actions could be one possible mechanism by which
Mg affects T2DM risk. Mg is essential for autophosphorylation of the β-subunits of the insulin receptor;
in vitro studies have shown that Mg enhances tyrosine kinase activity by increasing the receptor’s
affinity for ATP. Thus, intracellular Mg deficiency may result in decreased tyrosine kinase activity and
consequently in insulin resistance. Furthermore, clinical trials have shown that Mg supplementation is
effective in reducing fasting plasma glucose in diabetic patients and HOMA-IR in individuals at risk
of T2DM [45].

Another possible explanation by which low Mg levels affect the risk of T2DM might be through
chronic inflammation. Markers for systemic inflammation, including CRP and GlycA, have been found
to be independent predictors for the risk of developing T2DM [28,46]. Song and others found that
dietary Mg intake was inversely associated with CRP and E-selectin levels in women and recently, it has
been shown that low circulating Mg levels were associated with higher CRP levels [47]. Furthermore,
a meta-analysis of clinical trials showed that Mg supplementation reduces CRP levels, but this finding
was only significant in subjects with higher baseline CRP levels [48]. In our study, adjustment for CRP
did not influence the association between plasma Mg and T2DM risk.

Measurements of circulating Mg are currently used by physicians to identify patients with
hypomagnesemia and hypermagnesemia. Hypermagnesemia or high magnesium may be an indication
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of renal impairment or failure or in patients with Addison disease. Marked increases in circulating Mg
may also be found in patients taking Mg salts, such as those found in antacids, or in pregnant women
with preeclampsia who are taking Mg sulfate as an anticonvulsant. Hypomagnesemia can occur in
subjects who are on long-term hyperalimentation, intravenous therapy, or suffering from alcoholism
and other types of malnutrition or malabsorption. Mg deficiency has been shown to be associated with
cardiac arrhythmias. This study suggests that low plasma Mg may also be useful for assessing the risk
of T2DM in women.

The present study has strengths as well as limitations. The main strengths include the prospective
study design and the large sample size. Second, our findings suggest that NMR-measured ionized Mg
showed good agreement with Mg measured on the Roche Modular Analyzer, thereby, introducing a
novel method to measure circulating Mg that might have useful clinical applications. Some limitations
warrant consideration. First, as with any observational study, no cause-effect relationships can be
drawn and residual confounding still may exist. Second, because Mg is predominantly present in
green leafy vegetables, nuts, whole grains, and legumes, the effects of other dietary components could
have been responsible for the association between Mg and T2DM. Unfortunately, we were not able to
adjust for such potential confounders, because no data on dietary intake were available. Third, we had
to report separate HRs for men and women, because we found a significant difference in interaction
by sex in the analysis. Therefore, the number of cases could have become insufficient to detect an
association in men. Fourth, NMR-measured Mg was only assessed at the second screening and,
therefore, we could not take into account possible changes in Mg concentrations over time. However,
one study reported a strong correlation between two Mg concentrations that were measured 1 year
apart [49]. Finally, because >95% of the subjects within the PREVEND study are white and of Dutch
origin, the results may not be generalizable to different ethnic populations.

5. Conclusions

In summary, ionized Mg quantified in the Vantera Clinical Analyzer showed good agreement
with total Mg measured on the Roche Modular Analyzer. In prospective analyses, we found that lower
NMR-measured ionized Mg is associated with a higher risk of developing T2DM in women, but not
in men. This association was independent of several traditional T2DM risk factors. These findings
warrant future long-term clinical trials to study thoroughly the potential effects of Mg supplementation
on prevention of T2DM and T2DM control. In addition, future studies should focus on the interaction
between Mg and sex in the association with T2DM.
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