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Abstract: Background: Metabolic syndrome is associated with low-grade systemic inflammation,
which is a key driver of premature atherosclerosis. We characterized immune cell behavior in
metabolic syndrome, its consequences, and the potential involvement of the CX3CL1/CX3CR1
and CCL2/CCR2 chemokine axes. Methods: Whole blood from 18 patients with metabolic
syndrome and 21 age-matched controls was analyzed by flow cytometry to determine the leukocyte
immunophenotypes, activation, platelet-leukocyte aggregates, and CX3CR1 expression. ELISA
determined the plasma marker levels. Platelet-leukocyte aggregates adhesion to tumor necrosis
factor-α (TNFα)-stimulated arterial endothelium and the role of CX3CL1/CX3CR1 and CCL2/CCR2
axes was investigated with the parallel-plate flow chamber. Results: When compared with the
controls, the metabolic syndrome patients presented greater percentages of eosinophils, CD3+ T
lymphocytes, Mon2/Mon3 monocytes, platelet-eosinophil and -lymphocyte aggregates, activated
platelets, neutrophils, eosinophils, monocytes, and CD8+ T cells, but lower percentages of Mon1
monocytes. Patients had increased circulating interleukin-8 (IL-8) and TNFα levels and decreased
IL-4. CX3CR1 up-regulation in platelet-Mon1 monocyte aggregates in metabolic syndrome patients
led to increased CX3CR1/CCR2-dependent platelet-Mon1 monocyte adhesion to dysfunctional arterial
endothelium. Conclusion: We provide evidence of generalized immune activation in metabolic
syndrome. Additionally, CX3CL1/CX3CR1 or CCL2/CCR2 axes are potential candidates for therapeutic
intervention in cardiovascular disorders in metabolic syndrome patients, as their blockade impairs
the augmented arterial platelet-Mon1 monocyte aggregate adhesiveness, which is a key event
in atherogenesis.
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1. Introduction

Cardiovascular disease (CVD), especially coronary heart disease and stroke, are the main causes
of mortality in most European countries [1], and atherosclerosis is the principal contributor to the
pathogenesis of myocardial and cerebral ischemic disorders. It has become increasingly evident
that systemic inflammation is the main driver of premature atherosclerosis and its complications.
Against this background, there is evidence supporting that low-grade systemic inflammation is often
associated with the metabolic syndrome [2], which is a cluster of cardiovascular risk factors with a high
prevalence in Western countries [3]. The diagnosis of metabolic syndrome is made when at least three
of the five following criteria are met: (1) abdominal obesity; (2) arterial hypertension; (3) dysglycemia;
(4) hypertriglyceridemia; and, (5) low high-density lipoprotein (HDL) cholesterol levels [4]. These
pathophysiological changes can lead to oxidative stress and inflammation, which increases the risk for
atherosclerosis and CVD [5–10]. Indeed, clinical evidence suggests that metabolic syndrome promotes
endothelial dysfunction [5], a prothrombotic and proinflammatory state that precedes atherogenic
events [11].

Several studies have shown that soluble inflammatory markers, including tumor necrosis
factor-α (TNFα), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1/CCL2), CXCL16,
and high-sensitivity C-reactive protein are found at higher levels in patients with metabolic
syndrome than in the age-matched controls [12–15]. Moreover, metabolic syndrome has been
related to an increased number of several circulating leukocyte subsets and enhanced monocyte
and platelet activation [12,16–18]. Nonetheless, some results on the inflammatory status of this
complex metabolic disorder are contentious, particularly with regard to the soluble mediators and
leukocyte subsets [13,17–20]. Therefore, deeper knowledge regarding the different cellular and soluble
components of systemic inflammatory responses that are associated with metabolic syndrome and
their clinical consequences is needed.

The CX3CL1/CX3CR1 and CCL2/CCR2 chemokine axes have been implicated in the development
of CVD [21–24]. Fractalkine/CX3CL1 is a transmembrane protein that is widely expressed in immune
and non-immune human cells that occurs in two distinct for metabolic syndrome: a membrane-bound
form that promotes the firm adhesion of cells expressing its cognate receptor CX3CR1, and a soluble form
that is generated by the proteolytic cleavage of the transmembrane form [25]. The expression of CX3CL1
is markedly upregulated in human arterial and venous endothelial cells during the inflammatory
process [25,26]. It is also known that the CX3CL1/CX3CR1 axis is involved in mononuclear cell
attachment to endothelium and the subsequent transmigration of monocytes and lymphocytes, a
critical step in the atherogenic process [25,26].

MCP-1/CCL2 is a chemokine that is produced by several cell types, including endothelial cells,
fibroblasts, epithelial cells, smooth muscle cells, and monocytes/macrophages [27], and it regulates
the migration and infiltration of monocytes, T lymphocytes, and NK cells through interaction with
its receptor (CCR2). Accordingly, MCP-1/CCL2 is considered as a potential intervention target in
atherosclerosis and diabetes with insulin resistance [27–29].

We performed a comprehensive analysis of different cellular and soluble immune players in
patients with metabolic syndrome and examined their potential consequences for arterial leukocyte
adhesion, given that a better understanding of immune system behavior might open new horizons for
CVD prognosis and treatment. As increased circulating levels of TNFα have been detected in metabolic
syndrome patients [12,15], which can up-regulate CX3CL1 expression and promote the generation and
release of CCL2 [30,31], we also investigated the role of CX3CL1/CX3CR1 and CCL2/CCR2 axes in
platelet-leukocyte and leukocyte adhesion to the dysfunctional arterial endothelium in a metabolic
syndrome model.
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2. Materials and Methods

2.1. Cell Culture

The human umbilical arterial endothelial cells (HUAEC) were isolated by collagenase treatment.
Details are described in the Supplemental data.

2.2. Human Study Populations

A total of 39 subjects (18 patients with metabolic syndrome and 21 age-matched control subjects)
were included in the present study. The Endocrinology Unit at the University Clinic Hospital of
Valencia recruited the patients and controls (Valencia, Spain). All of the procedures involving human
samples complied with the principles outlined in the Declaration of Helsinki and the institutional
ethics committee of the University Clinic Hospital, Valencia approved them. All of the subjects signed
an informed consent.

The general inclusion criteria for entering in the study were: male and female, age 18–65 years.
Inclusion criteria for subjects with metabolic syndrome: medical history, clinical exam, and

biochemical parameters, according to the definition established by the International Diabetes Federation
confirmed metabolic syndrome. The diagnostic criteria for metabolic syndrome were defined by at least
three of the following conditions: (1) Male waist circumference ≥ 94 cm, female waist circumference
≥ 80 cm; (2) triglycerides (TG) ≥ 150 mg/dL or pharmacological treatment for hypertriglyceridemia;
(3) Blood pressure ≥ 130 (systolic) and/or 85 (diastolic) mmHg or pharmacological treatment for
hypertension; (4) Fasting glucose level ≥ 100 mg/dL; and, (5) Male HDL-cholesterol < 40 mg/dL, female
HDL-cholesterol < 50 mg/dL.

Inclusion criteria for controls: Healthy volunteers were recruited among personal and plasma
donors of our center. All of them were normolipidemic (fasting total cholesterol and triglycerides
below the 90th percentile of our population), normoglycemic (fasting glucose < 100 mg/dL), and
non-obese (BMI < 30 kg/m2).

Exclusion criteria: BMI > 35 kg/m2, type 2 diabetes, personal history of major vascular events
(coronary artery disease, peripheral arterial disease, or stroke), abnormal intima/media thickness,
hypothyroidism, asthma, autoimmune diseases, chronic hepatic disease, chronic renal failure, chronic
heart failure (NYHA > II), cancer, pregnancy or breast-feeding, infection or inflammatory disease
(including personal history of allergy) in the six weeks prior to the study, the use of drugs that
are capable of modifying the lipid profile or inflammation that cannot be withdrawn six weeks
before starting the study (lipid-lowering drugs, glucose-lowering drugs, anti-hypertensive drugs,
anti-inflammatory drugs and antioxidant supplements), and alcohol consumption > 30 g per day.

Table 1 shows the clinical and biological parameters of patients and age-matched controls.

Table 1. Demographic and clinical features of metabolic syndrome patients and age-matched controls.

Control Volunteers
(n = 21)

Metabolic Syndrome Patients
(n = 18) p Value

Age (years) 48.8 ± 2.7 52.2 ± 3.2 0.42
Gender M/F (%) 5/16 (23.8/76.2) 3/15 (16.7/83.3) 0.59

BMI (kg/m2) 25.5 ± 0.7 31.0 ± 0.9 ** <0.01
Weight (kg) 69.4 ± 2.6 83.3 ± 2.9 ** <0.01
Height (cm) 164.9 ± 2.4 163.8 ± 1.7 0.71

Waist circumference (cm) total 85.4 ± 2.0 100.0 ± 1.7 ** <0.01
Waist circumference (cm) male 92.4 ± 2.1 105.0 ± 1.2 ** <0.01

Waist circumference (cm) female 83.0 ± 2.3 99.0 ± 1.9 ** <0.01
Systolic blood pressure (mmHg) 116.6 ± 2.0 130.3 ± 2.1 ** <0.01
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Table 1. Cont.

Control Volunteers
(n = 21)

Metabolic Syndrome Patients
(n = 18) p Value

Diastolic blood pressure (mmHg) 71.7 ± 1.9 79.9 ± 1.2 ** <0.01
Glucose (mg/dL) 86.7 ± 1.5 103.8 ± 3.0 ** <0.01
Insulin (mIU/L) 7.6 ± 0.9 18.4 ± 2.0 ** <0.01
HOMA Index 1.7 ±0.2 4.7 ± 0.5 ** <0.01

Total Cholesterol levels (mg/dL) 206.1 ± 6.8 239.5 ± 12.8 * <0.05
LDL levels (mg/dL) 130.6 ± 5.4 156.2 ± 11.2 * <0.05
HDL levels (mg/dL) 66.0 ± 2.5 50.5 ± 2.1 ** <0.01

Triglycerides (mg/dL) 81.0 ± 7.3 181.6 ± 30.0 ** <0.01
IgG (mg/dL) 966.7 ± 41.1 985.8 ± 48.9 0.76
IgM (mg/dL) 100.4 ± 7.6 104.5 ± 13.0 0.78
IgE (mg/dL) 42.6 ± 12.0 57.2 ± 17.3 0.48
CRP (mg/L) 1.4 ± 0.2 2.1 ± 0.4 0.23

BMI, body mass index; HOMA, homeostatic model assessment; LDL, low-density lipoprotein; HDL,
high-density lipoprotein; Ig, immunoglobulin; CRP, C-reactive protein. Data are presented as mean ± SEM.
* p < 0.05 or ** p < 0.01 relative to values in the control group.

2.3. Flow Cytometry

Full details are described in the Supplemental data. Figures S1–S5 and Table S1 describe the
gating strategies.

2.4. Measurement of Soluble Metabolic and Inflammatory Markers

Heparinized whole blood was collected from patients and age-matched controls, and soluble
metabolic and inflammatory markers were measured by ELISA in plasma. Further details are described
in the Supplemental data.

2.5. Leukocyte-Endothelial Cell Interactions under Flow Conditions

Whole blood treated or not with ethylenediaminetetraacetic acid (EDTA), was perfused across
endothelial monolayers that were unstimulated or stimulated with TNFα (20 ng/mL), for 24 h. In some
experiments, the cells were pre-incubated with a neutralizing antibody against CX3CL1 or CCL2 or
with an isotype-matched control antibody. Details are described in the Supplemental data.

2.6. Statistical Analysis

All of the results were analyzed using GraphPad Prism software (GraphPad Software, Inc., La Jolla,
CA, USA). The values are expressed as individual data points, percentages, or mean ± standard error
of the mean (SEM) when appropriate. For two-group comparisons, paired or unpaired Student’s t test
was used in data that passed both normality (Kolmogorov-Smirnov) and equal variance (Levene) tests,
as appropriate; otherwise, the non-parametric Mann–Whitney U test was performed. For comparisons
among multiple groups, one-way analysis of variance, followed by post hoc Bonferroni analysis, was
used in data that passed both normality and equal variance tests; otherwise, the non-parametric
Kruskal–Wallis test followed by Dunn’s post hoc analysis was used. Data was considered to be
statistically significant at p < 0.05.

3. Results

A total of 39 subjects (18 patients with metabolic syndrome and 21 age-matched controls) were
included in the present study. Table 1 shows the demographic, clinical, and laboratory characteristics
of patients and controls. No statistically significant differences were found regarding the age, gender,
or height between the two groups. By contrast, body mass index (BMI), weight, waist circumference,
systolic and diastolic blood pressure, glucose, insulin levels, homeostatic model assessment (HOMA)
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index, levels of total cholesterol, low-density lipoprotein (LDL)-cholesterol, and triglycerides were
all significantly higher in metabolic syndrome patients than in the controls, whereas high-density
lipoprotein (HDL)-cholesterol levels were significantly lower, as expected. Indeed, patients with
metabolic syndrome had insulin resistance and abdominal obesity. Additionally, a table indicating the
number of patients that met each of the five metabolic syndrome criteria is shown in the Supplemental
Data (Table S2). In addition, none of the sub-groups markedly differ from the healthy group in age or
other non-metabolic syndrome parameters (Table S2, Supplemental Data).

3.1. Platelet Activation is Enhanced in Patients with Metabolic Syndrome

As a first step, we determined the platelet activation state and the levels of platelet activation-related
soluble mediators in the blood samples from the two groups using flow cytometry and enzyme-linked
immunosorbant assay (ELISA). While no significant differences in the number of circulating platelets
were found between the two groups (Figure 1A), the percentage of platelets expressing PAC-1 and
P-selectin (CD62P) was significantly higher in the metabolic syndrome patients than in the controls
(Figure 1B,D), indicating an enhanced activation state. In addition, the increased percentage of activated
platelets positively correlated with the blood glucose levels (Figure 1C,E). P-selectin can translocate
to the cell surface upon cell activation, where it can be cleaved and released into the circulation as
soluble P-selectin (sP-selectin). However, we found no differences in the circulating levels of sP-selectin
between the two groups (Figure 1F). Likewise, circulating levels of platelet chemokines that can be
released upon their activation, such as platelet factor-4 (PF-4/CXCL4) and regulated on activation
normal T cell expressed and secreted (RANTES/CCL5), were similar in both of the groups (Figure 1G,H).

3.2. The Percentage of Activated Neutrophils and Circulating Levels of IL-8 Are Elevated in Patients with
Metabolic Syndrome

We next evaluated several parameters related to the activation of different leukocyte subsets.
No differences were detected between the groups in the number of circulating neutrophils (Figure 2A)
or in the percentage of neutrophil-platelet aggregates (Figure 2B). However, neutrophil activation
(CD11b expression) was higher in metabolic syndrome patients than in the age-matched controls
(Figure 2C), and was positively correlated with circulating glucose levels (Figure 2D). Given that
chemokines, such as growth-regulated oncogene-α (GROα/CXCL1) and IL-8 (CXCL8) can induce
human neutrophil activation and chemotaxis, we quantified their levels in plasma. Although, metabolic
syndrome patients presented higher plasma levels of IL-8 than the age-matched controls, no differences
were found in the circulating levels of GROα/CXCL1 (Figure 2E,F).
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Figure 1. Platelet activation is elevated in patients with metabolic syndrome. Flow cytometry analysis
of platelets stained with conjugated antibodies against CD41 (A), CD41 and PAC-1 (B), and CD41
and P-selectin (D). Results are expressed as percentage of positive cells. Soluble (s)P-selectin (F),
platelet factor-4 (PF-4/CXCL4) (G) and regulated on activation normal T cell expressed and secreted
(RANTES/CCL5) (H) plasma levels (ng or pg/mL) were measured by enzyme-linked immunosorbant
assay (ELISA). (n = 21 control subjects and n = 18 metabolic syndrome patients). Values are expressed
as mean ± SEM. ** p < 0.01 relative to values in the control group. Correlations between circulating
glucose levels and percentage of circulating platelets PAC-1+ (C) or P-selectin+ (E).
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Figure 2. The percentage of activated neutrophils and IL-8 circulating levels are increased in patients
with metabolic syndrome. Flow cytometry analysis of heparinized whole blood co-stained with specific
markers for platelets and neutrophils (A,B). Neutrophils were also stained for CD11b (C). Results are
expressed as percentage of positive cells and as mean of fluorescence intensity (MFI). Interleukin-8
(IL-8)/CXCL8 (E) and growth-regulated oncogene-α (GROα/CXCL1) (F) plasma levels (pg/mL) were
measured by ELISA (n = 21 age-matched controls and n = 18 metabolic syndrome patients). Values
are expressed as mean ± SEM. * p < 0.05 relative to values in the control group. Correlations between
circulating glucose levels and CD11b expression on neutrophils (D).

3.3. Patients with Metabolic Syndrome Present a Higher Percentage of Circulating Eosinophils, Increased
Number of Eosinophil-Platelet Aggregates, Enhanced Eosinophil Activation and Decreased Eotaxin-2/CCL24
Plasma Levels

An increase in the number of circulating eosinophils has been previously reported in patients with
metabolic syndrome [10]. In agreement with this observation, we found that the patients with metabolic
syndrome presented a higher percentage of circulating eosinophils relative to the age-matched controls,
and this positively correlated with blood glucose levels (Figure 3A,B). Additionally, an increase in the
percentage of eosinophil-platelet aggregates (Figure 3C), as well as enhanced eosinophil activation
(CD11b expression, Figure 3D), was found in the metabolic syndrome group. As different chemokines
are involved in eosinophil activation, with eotaxin-1/CCL11, -2/CCL24, and -3/CCL26 being especially
relevant [32], we also examined their circulating levels. Whereas, no differences in the plasma levels of
eotaxin-1/CCL11 and eotaxin-3/CCL26 were detected between the two groups (Figure 3E,G), circulating
levels of eotaxin-2/CCL24 were significantly lower in the metabolic syndrome group than in the controls
(Figure 3F).
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Figure 3. The percentage of circulating eosinophils, platelet-eosinophil aggregates, and activated
eosinophils is increased in patients with metabolic syndrome. Flow cytometry analysis of heparinized
whole blood co-stained with specific markers for platelets and eosinophils (A,C). The eosinophils
were also stained for CD11b (D). Results are expressed as percentage of positive cells and as mean
of fluorescence intensity (MFI). Eotaxin-1/CCL11 (E), eotaxin-2/CCL24 (F), and eotaxin-3/CCL26 (G)
plasma levels (pg/mL) were measured by ELISA (n = 21 age-matched controls and n = 18 metabolic
syndrome patients). Values are expressed as mean ± SEM. * p < 0.05 relative to values in the control
group. Correlations between circulating glucose levels and percentage of circulating eosinophils (B).

3.4. Patients with Metabolic Syndrome Present a Higher Percentage of Circulating Monocytes and Enhanced
Monocyte Activation

Next, we analyzed monocyte subpopulations in peripheral blood by flow cytometry, finding
that the percentage of total circulating monocytes was higher in metabolic syndrome patients than
in the control subjects, which, again, positively correlated with the levels of circulating glucose
(Figure 4A,B). Monocytes can be divided into three subsets with distinct features, including their
differential expression of the cell surface markers CD14, CD16, and CCR2 (Table S1, Supplemental data).
We examined for changes in these subsets in the two groups, finding that, whereas the percentage
of circulating type 1 monocytes (Mon1) was significantly lower in metabolic syndrome patients than
in controls, the percentage of type 2 (Mon2) and type 3 (Mon3) monocytes was significantly higher
(Figure 4C). No differences in the percentage of monocyte-platelet aggregates were found between the
groups (Figure 4D,E), in accord with the results for neutrophil-platelet aggregates. When monocyte
activation (CD11b expression) was evaluated, all of the monocyte subsets were found to be in an
activated state in metabolic syndrome patients (Figure 4F,H), which positively correlated with glucose
levels (Figure 4G). However, neither CCR2 expression on monocytes nor the plasma levels of its
cognate ligand MCP-1/CCL2 differed between the groups (Figure 4I–K).
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syndrome patients). Values are expressed as mean ± SEM. * p < 0.05 relative to values in the control
group. Correlations between circulating glucose levels and percentage of circulating monocytes (B) as
well as CD11b expression on monocytes (G).

3.5. The Percentages of Circulating Lymphocytes, Lymphocyte-Platelet Aggregates and Activated CD8+

Lymphocytes Are Elevated in Patients with Metabolic Syndrome

Mature T cells express the general co-receptor CD3, and also express either CD4 (T helper cell)
or CD8 (cytotoxic T cell) epitopes, depending on the type of T cell. Flow cytometry analysis showed
that metabolic syndrome patients presented higher percentages of circulating CD3+, CD4+, and
CD8+ lymphocytes than controls (Figure 5A,B), and the percentage of CD8+ lymphocytes positively
correlated with circulating glucose levels (Figure 5C). Moreover, the percentage of CD3+, CD4+, and
CD8+ lymphocytes bound to platelets (Figure 5D,E), and also the activation state (CD69 expression)
of CD3+ and CD8+ lymphocytes (Figure 5G,H) was greater in patients than in control subjects.
Interestingly, a positive correlation was found between the percentage of CD8+ lymphocyte-platelet
aggregates and CD8+CD69+ cells with plasma glucose levels (Figure 5F,I). TNFα is a central adipokine
in metabolic syndrome [12,15], and we found an increase in its circulating levels in metabolic syndrome
patients (Figure 5J), which again positively correlated with the circulating glucose concentrations
(Figure 5K). By contrast, whereas the circulating levels of IFNγ, a cytokine that is released by Th1
lymphocytes, were not different between patients and controls (Figure 5L), the anti-inflammatory
cytokine IL-4, which Th2 lymphocytes mainly produce, was significantly lower in the circulation of
metabolic syndrome patients (Figure 5M). Indeed, an inverse correlation was found between IL-4 and
circulating glucose levels (Figure 5N). The plasma levels of the lymphocyte-associated cytokines IL-6,
IL-10, IL-12, IL-13, IL-25, and IL-33 were also measured, but no differences were found between the
groups (data not shown).
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The CX3CL1/CX3CR1 axis is involved in leukocyte recruitment and in the development of 
cardiovascular disorders [24–26,33]. Thus, we next evaluated CX3CR1 expression in platelets, 
leukocyte subtypes, and leukocyte-platelet aggregates of both groups by flow cytometry. We found 
that the percentage of CX3CR1-expressing platelets was significantly higher in the metabolic 
syndrome group than in the controls and positively correlated with blood glucose levels (Figure 
6A,B). Although both neutrophil- and eosinophil-platelet aggregates of metabolic syndrome patients 
showed increased CX3CR1 expression when compared with the control group (Figure 6C,D, 

Figure 5. The percentage of circulating CD3+ lymphocytes (CD4+ and CD8+), platelet-CD3+ lymphocyte
(CD4+ and CD8+) aggregates, CD8+ lymphocyte activation, and tumor necrosis factor-α (TNFα)
circulating levels, are significantly elevated in patients with metabolic syndrome, whereas the plasma
levels of IL-4 are decreased. Heparinized whole blood was co-stained with specific markers for platelets
and CD3+, CD4+, and CD8+ lymphocytes (A,B,D,E), as well as for CD69 (G,H). Results are expressed as
the percentage of positive cells. TNFα (J), IFNγ (L) and IL-4 (M) plasma levels (pg/mL) were measured
by ELISA (n = 21 control subjects and n = 18 metabolic syndrome patients). Values are expressed as
mean ± SEM. * p < 0.05 or ** p < 0.01 relative to values in the control group. Correlations between
circulating glucose levels and the percentage of circulating CD8+ cells (C), platelet-CD8+ lymphocyte
aggregates (F), activated CD8+ lymphocytes (I), as well as TNFα (K) and IL-4 (N) circulating levels.

3.6. Enhanced CX3CR1 Expression in Platelets, Different Leukocyte Subsets and Leukocyte-Platelet Aggregates
in Patients with Metabolic Syndrome

The CX3CL1/CX3CR1 axis is involved in leukocyte recruitment and in the development of
cardiovascular disorders [24–26,33]. Thus, we next evaluated CX3CR1 expression in platelets,
leukocyte subtypes, and leukocyte-platelet aggregates of both groups by flow cytometry. We
found that the percentage of CX3CR1-expressing platelets was significantly higher in the metabolic
syndrome group than in the controls and positively correlated with blood glucose levels (Figure 6A,B).
Although both neutrophil- and eosinophil-platelet aggregates of metabolic syndrome patients showed
increased CX3CR1 expression when compared with the control group (Figure 6C,D, Heparin),
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neither expressed CX3CR1 after platelet dissociation (Figure 6C,D, EDTA). The percentage of the
CX3CR1+ eosinophil-platelet aggregates positively correlated with circulating glucose levels (Figure 6E).
Additionally, in the total monocyte subpopulation, an increase in the percentage of CX3CR1-expressing
cells was evident in the metabolic syndrome patients, irrespective of whether platelets were bound or
unbound (Figure 6F). Detailed analysis of this population revealed that the Mon1 monocytes were
responsible for these differences (Figure 6G,H). A similar profile was detected in CD3+ lymphocytes
from metabolic syndrome patients (Figure 6I) and the percentage of CD3+CX3CR1+ lymphocytes was
found to positively correlate with blood glucose levels, with or without bound platelets (Figure 6J,K).
This enhanced CX3CR1 expression in CD3+ lymphocytes was due to CD8+, and not CD4+ lymphocytes
(Figure 6L,M). In spite of these findings, the circulating levels of soluble fractalkine/CX3CL1 ligand did
not differ between the two groups (Figure 6N).

3.7. Circulating Leukocytes from Patients with Metabolic Syndrome Show Superior Adhesiveness to
TNFα-Stimulated Arterial Endothelium, Which is Partly Dependent on CX3CL1 and CCL2 Activity

We tested the role of the CX3CL1/CX3CR1 and CCL2/CCR2 axes on leukocyte adhesion to
dysfunctional arterial endothelium (HUAEC monolayers) under dynamic flow conditions to explore
the functional consequences of these observations. We used TNFα as an inflammatory stimulus to
mimic the dysfunctional endothelium, as it is a key cytokine in metabolic syndrome [12,15], and its
circulating levels are elevated in metabolic syndrome patients (Figure 5J). Additionally, TNFα induces
endothelial CX3CL1 expression [25] and CCL2 generation [34]. Leukocyte adhesiveness was greater in
the metabolic syndrome group than in the control group when samples of heparinized whole blood
from metabolic syndrome patients and age-matched controls were perfused across TNFα-stimulated
HUAEC (Figure 7A). Notably, the neutralization of CX3CL1 or CCL2 activity on HUAEC led to a
decrease in platelet-leukocyte endothelial adhesion in the metabolic syndrome group only after TNFα
stimulation of HUAEC (Figure 7A).

When the platelets were disaggregated from leukocytes with EDTA, leukocyte adhesion to
endothelial cells remained significantly higher in the metabolic syndrome group than in the
control group (Figure 7B), despite the significantly lower number of leukocytes that adhered to
TNFα-stimulated HUAEC than when platelets were bound (Figure 7A, Heparin). The neutralization
of either CX3CL1 or CCL2 activity on HUAEC again markedly reduced TNFα-induced leukocyte
adhesion in the metabolic syndrome group, but not in the control group (Figure 7B). Consistent
with these observations, immunofluorescence studies revealed enhanced adherent platelet-leukocyte
complexes to TNFα-stimulated endothelial cells from metabolic syndrome patients when compared
with age-matched controls and some of these adhered complexes expressed both CCR2 and CX3CR1
receptors (Figure 7C,E,G,I). Further analysis of the monocyte subpopulation (CD14+) showed that
most of them expressed both chemokine receptors (Figure 7E,I). Of note, when the platelets were
disaggregated from leukocytes with EDTA, leukocyte adhesion to TNFα-stimulated HUAEC was
evidently diminished, but this parameter was markedly greater in the metabolic syndrome group than
the control group and again monocytes mainly expressed CCR2 and CX3CR1 receptors (Figure 7D,F,H,J).
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Figure 6. Enhanced CX3CR1 expression on platelets, platelet-neutrophil, -eosinophil, -Mon1,
-CD3+CD8+ lymphocyte aggregates, Mon1 monocytes and CD3+CD8+ lymphocytes in metabolic
syndrome patients. Flow cytometry analysis of heparinized and (ethylenediaminetetraacetic acid)
EDTA-treated whole blood co-stained with specific markers for CX3CR1+ and platelets, neutrophils,
eosinophils, Mon1, 2 and 3 monocytes as well as CD3+, CD4+ and CD8+ lymphocytes (A–D,F–I,L,M).
Results are expressed as percentage of positive cells. Fractalkine/CX3CL1 (N) plasma levels (pg/mL)
were measured by ELISA (n = 21 control subjects and n = 18 metabolic syndrome patients). Values
are expressed as mean ± SEM. * p < 0.05 or ** p < 0.01 relative to values in the control group;
++p < 0.01 relative to values in the respective heparin group. Correlations between circulating
glucose levels and CX3CR1-expressing platelets (B), CX3CR1-expressing platelet-eosinophil aggregates
(E), CX3CR1-expressing platelet-CD3+ lymphocyte aggregates (J), and CX3CR1-expressing CD3+

lymphocytes (K).
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Figure 7. Circulating leukocytes from metabolic syndrome patients show increased adhesiveness to
TNFα-stimulated HUAECs, which is partly dependent on both CX3CL1/CX3CR1 and CCL2/CCR2
interactions. HUAEC were stimulated with TNFα (20 ng/mL) for 24 h. Some of the cells were
incubated with a CX3CL1 or a CCL2 neutralizing antibody or an isotype-matched control antibody
(MOPC-21). Subsequently, whole blood from metabolic syndrome patients and age-matched controls
incubated without (A) or with (B) EDTA was perfused across endothelial monolayers for 7 min at
0.5 dyn/cm2 and leukocyte adhesion quantified (n = 21 control subjects and n = 18 metabolic syndrome
patients). Results are presented as leukocyte adhered per mm2 (cells/mm2). Values are expressed
as mean ± SEM. ** p < 0.01 relative to values in medium; ++p < 0.01 relative to TNFα+MOPC-21;
∆p < 0.05 or ∆∆p < 0.01 relative to the respective age-matched control group. Immunofluorescence
analysis showing adherent platelet–leukocyte cell complexes, platelet-monocyte aggregates, leukocytes
or monocytes to TNFα-stimulated HUAEC (C–J). Heparinized blood from age-matched controls and
patients with metabolic syndrome was incubated without or with EDTA. After the flow chamber assay,
cells were fixed with 4% paraformaldehyde and blocked in PBS containing 1% BSA. Subsequently,
cells were incubated for 2 h with an Alexa 594-conjugated antibody against human CD45 to detect
leukocytes (1:50 dilution, red, C,D,G,H) or an APC-conjugated antibody against human CD14, to detect
monocytes (1:50 dilution, red, E,F,I,J). Additionally, all of the cells (C–J) were incubated for 2 h with an
Alexa Fluor 350-conjugated antibody against human CCR2 (1:50 dilution, blue) and a FITC-conjugated
antibody against human CX3CR1 (1:50 dilution, green). Images were captured with a Zeiss Axio
Observer A1 fluorescence microscope. Bar graph = 50 µm.
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4. Discussion

Metabolic syndrome is associated with an increased risk of developing arteriosclerosis and
serious ischemic events [5–10]. Previous studies have provided evidence of low-grade systemic
inflammation in patients with metabolic syndrome (reviewed in [2]). In the present study, we
carried out a detailed characterization of the different immune cell types and soluble inflammatory
markers in metabolic syndrome and correlated some of these data with the circulating levels of
glucose. The enhanced inflammatory status in metabolic syndrome that is reported herein has
functional consequences, as illustrated for circulating platelet-bound leukocytes, which have increased
adhesiveness to dysfunctional arterial endothelium, a prominent feature of the atherogenic process.
The neutralization of the CX3CL1/CX3CR1 or CCL2/CCR2 axes partially diminished the initial adhesion
of platelet-leukocyte and leukocyte adhesion to stimulated arterial endothelium, constituting a potential
preventive target for cardiovascular events.

Platelet activation is known to be associated with atherogenesis and cardiovascular morbidity [35].
Indeed, platelets express specific cell adhesion molecules upon their activation, such as P-selectin, and
they release several inflammatory chemokines, including PF-4/CXCL4 or RANTES/CCL5 [35]. Platelet
activation has previously been reported in metabolic syndrome [12,16,36,37], and we here confirm and
extend these observations by showing positive correlations between the platelet activation state and
blood glucose levels. Platelet surface molecules, such as GPIIb/IIIa (recognized by PAC-1) or P-selectin,
are critically involved in the interaction of platelets with endothelial cells and leukocytes [35], all of
which are central for atherosclerotic lesion formation. However, in contrast to previous reports [13,19],
the circulating levels of sP-selectin, PF-4/CXCL4, or RANTES/CCL5 did not differ between the
groups that were investigated here, which suggests a moderate thrombogenic profile in the metabolic
syndrome patients.

We examined different leukocyte subtypes to gain insight into the immune state of the metabolic
syndrome environment. Although no differences in the percentage of circulating neutrophils or
platelet-neutrophil aggregates were detected between the patients and controls, a clear increase
in the percentage of activated cells (CD11b expression) was observed in patient samples, which
correlated with circulating glucose levels and suggests the potential existence of a proatherogenic
state. This is consistent with our finding of increased circulating levels of IL-8, which is involved in
neutrophil activation. By contrast, an increase in the number of circulating eosinophils was detected
in metabolic syndrome patients, which correlated with the blood glucose levels. This finding of
increased circulating eosinophils has been previously described and associated with impaired lung
function in patients with metabolic syndrome [10]. These events were accompanied by elevations
in platelet-eosinophil aggregates and eosinophil activation (CD11b expression). However, despite
these findings, and, although eotaxins are known key eosinophil chemoattractants, we found no
differences in the circulating levels of eotaxin-1/CCL11 and eotaxin-3/CCL26 between the groups, but
circulating levels of eotaxin-2/CCL24 were significantly lower in the metabolic syndrome group. It is
possible that other chemokines or other nonchemokine factors, such as complement factor C5a or
platelet activating factor, might be responsible for the activation of this leukocyte subtype [38]. These
intriguing observations may imply a yet unknown role for these cells in metabolic syndrome and
warrant further investigation.

Human monocytes are known to be a heterogeneous cell population that is commonly classified
into three subtypes: classical CD14+CD16−CCR2+ (Mon1), intermediate CD14+CD16+CCR2+ (Mon2),
and nonclassical CD14+CD16+CCR2− (Mon3) [39]. A previous study found no significant differences
in the total number of circulating monocytes between the metabolic syndrome patients and healthy
controls [17], which contrasts with our findings and those of another study [18]. Moreover, the
increased percentage of total monocytes in patients with metabolic syndrome that is reported here
positively correlated with circulating glucose levels. Closer examination revealed that this was due to
the increase in the percentage of Mon2 and Mon3 monocytes as the percentage of Mon1 monocytes
was diminished, as previously described [20]. In this context, increased numbers of Mon2 and Mon3
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subtypes in hyperlipidemia has been associated with atherosclerosis development [40], and other
studies have noted an enhancement in circulating CD16+ monocytes (Mon2 and Mon3) in CVD [41],
which is possibly linked to disease outcome [42]. Furthermore, there is evidence to support that
mobilized classical monocytes from the bone marrow mature into nonclassical monocytes through an
intermediate subset. Along this line, an analysis of our results suggests that the increase of the Mon2
and Mon3 populations that are found in metabolic syndrome is likely due to a phenotypic shift of Mon1
monocytes (Figures S5 and S6, Supplemental data). However, how these different monocyte subtypes
correlate with disease pathogenesis and clinical outcomes in metabolic syndrome is unknown. Of note,
all of the monocyte subsets were found to be in an activated state (increased CD11b expression), and
again this effect positively correlated with plasma glucose concentrations. Overall, our results suggest
that activated monocytes in metabolic syndrome are more prone to interact with the dysfunctional
endothelium and to release monocyte-derived inflammatory mediators, with the potential to initiate
and amplify the atherogenic process.

The lymphoid lineage has been scarcely investigated in a metabolic syndrome environment.
We show that, although an increased percentage of circulating CD3+ lymphocytes was detected
in metabolic syndrome patients, as previously reported [18], both CD4+ and CD8+ cells were
responsible for this enhancement. Additionally, a higher percentage of CD3+CD4+ and CD3+CD8+

lymphocyte-platelet aggregates was found in the metabolic syndrome patients than in controls. By
contrast, the enhanced activation state of CD3+ lymphocytes in metabolic syndrome patients was
mainly due to CD3+CD8+ cells. We also found that the percentages of circulating CD8+ cells, CD8+

cell-platelet aggregates, and CD8+CD69+ cells positively correlated with the blood glucose levels.
In this context, the CD8+ cells are pro-atherogenic [43] and the CD8+ T-cell numbers in blood have
been shown to correlate with the incidence of coronary events [44]. Thus, it is possible that CD8+ cells
have a prominent role in the inflammatory status that is associated with metabolic syndrome. Indeed,
some CD8+ cell-derived cytokines, such as TNFα, are significantly elevated in a metabolic syndrome
scenario, whereas those that are derived from CD4+ lymphocytes either remained unchanged or
decreased (IL-4) [45,46]. In regard to the latter observation, basophils and natural killer T cells are
alternative sources of IL-4 [47,48], although an analysis of their circulating levels in this pathology has
not been reported.

CX3CL1 receptor (CX3CR1) up-regulation is known to be associated with coronary artery
disease [33] and with the development of CVD [24,49]. In this regard, two findings are worthy
of mention. First, enhanced CX3CR1 expression was found in the platelets, platelet-neutrophil,
-eosinophil, -Mon1 monocytes, and -CD8+ T cell aggregates, as well as in platelet-unbound Mon1
monocytes and CD8+ T lymphocytes of metabolic syndrome subjects. Second, positive correlations with
circulating glucose concentrations were found for CX3CR1-expressing platelets, platelet-eosinophil,
platelet-CD3+ T cell aggregates, and CD3+ T lymphocytes unbound to platelets.

Activated platelets can mediate the endothelial adhesion of circulating leukocytes, a characteristic
feature of dysfunctional endothelium [11]. Indeed, the augmented numbers of CX3CR1+ platelets are
likely to be involved in the increased platelet-neutrophil, -eosinophil, -Mon1 monocytes, and -CD8+

T lymphocyte adhesion to the dysfunctional arterial endothelium in metabolic syndrome patients,
but not in controls. In this line, significantly diminished leukocyte arrest was found in the absence
of platelets, and the neutralization of CX3CL1 activity significantly impaired both platelet-leukocyte
and leukocyte arterial arrest induced by TNFα to a similar extent. The analysis of these adhesive
interactions suggests that CX3CL1 and CCL2 activity neutralization affect the endothelial arrest of
the platelet-Mon1 monocyte aggregates and Mon1 monocytes, since these cells express both CX3CR1
and CCR2 receptors and the reductions in leukocyte adhesion are of a similar magnitude. Given
this, it is tempting to speculate that the reduced percentage of circulating pro-inflammatory (Mon1)
monocytes detected in metabolic syndrome patients would be the consequence of their adhesion to,
and migration through, the dysfunctional arterial endothelium. Accordingly, therapeutic intervention
of these chemokine/chemokine receptor axes may only be effective under pathological conditions.
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Despite these findings, soluble fractalkine/CX3CL1 circulating levels did not differ between the patients
and controls, which is in agreement with a previous report [50].

In conclusion, we report that the low-grade systemic inflammation that is associated with metabolic
syndrome is accompanied by a mild pro-thrombotic state with heightened platelet activation, which,
together with the activation of different leukocyte subsets, results in the formation of platelet-leukocyte
aggregates and their adhesion to dysfunctional arterial endothelium. The neutralization of
CX3CL1/CX3CR1 or CCL2/CCR2 chemokine axes partly inhibits leukocyte adhesion through impaired
proinflammatory monocyte (Mon1) adhesiveness to the dysfunctional endothelium, which suggests
a potential link between the systemic inflammatory response and CVD development in metabolic
syndrome. Finally, the positive correlations between glucose circulating levels and different circulating
inflammatory mediators (TNFα) and the negative correlations with the anti-inflammatory cytokine
IL-4 might be used as potential markers of CVD. Overall, it can be seen from metabolic syndrome that
the modulation of the cellular inflammatory components in metabolic syndrome, especially Mon1
monocytes, might be crucial to prevent further cardiovascular complications.
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detection in whole blood by flow cytometry, Figure S5: Flow cytometry detection and morphologic gating of
human monocytes for the immunophenotype study of the different monocyte subsets, Figure S6: Comparison
of CD14, CD16, CCR2 and CX3CR1 expression in the different monocyte subsets of MS patients and healthy
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