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S1. Cell State Transition Model: 

In our experiments, we have observed three distinct cell-types based on morphology: cobble 

(CB), elongated spindle (ES) and circular (CR). Each of these cell types is considered as an 

individual cell state.  In our cell state transition model, we have assumed that a cell can transit 

from one state to another. The total number of cells in our experimental system varies with time 

as cells divide and die. Therefore, we have considered death and birth of cells. To accommodate 

cell death in our model, an absorbing state called dead state (DD) is considered. The state 

transition model is graphically represented in the Supplementary Figure S1. 

 

Supplementary Figure S1: State Transition Model. A live cell can be in any of the three 

morphological states CB, ES, and CR. Any cell can die and move to the dead state (DD). Birth of 

new cell in a particular state is shown by the arrow without source. Fi-j represents the fraction of 

cells in ith state moving to the jth state in a time interval. qi is the fraction of cells in ith state 

dividing in a time interval. 
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Mathematically this state transition model is represented by the following set of conservation 

equations for a time interval [t, t+ Δt]:  

𝑁𝐶𝐵(𝑡 + ∆𝑡) = 𝑁𝐶𝐵(𝑡) × 𝐹𝐶𝐵−𝐶𝐵(𝑡) + 𝑁𝐸𝑆(𝑡) × 𝐹𝐸𝑆−𝐶𝐵(𝑡) + 𝑁𝐶𝑅(𝑡) × 𝐹𝐶𝑅−𝐶𝐵(𝑡) 

                         + 𝑁𝐶𝐵(𝑡) × 𝑞𝐶𝐵(𝑡)                                                                                             − 𝐸𝑞 (1) 

𝑁𝐸𝑆(𝑡 + ∆𝑡) = 𝑁𝐶𝐵(𝑡) × 𝐹𝐶𝐵−𝐸𝑆(𝑡) + 𝑁𝐸𝑆(𝑡) × 𝐹𝐸𝑆−𝐸𝑆(𝑡) + 𝑁𝐶𝑅(𝑡) × 𝐹𝐶𝑅−𝐸𝑆(𝑡) 

                      + 𝑁𝐸𝑆(𝑡) × 𝑞𝐸𝑆(𝑡)                                                                                                 − 𝐸𝑞 (2) 

𝑁𝐶𝑅(𝑡 + ∆𝑡) = 𝑁𝐶𝐵(𝑡) × 𝐹𝐶𝐵−𝐶𝑅(𝑡) + 𝑁𝐸𝑆(𝑡) × 𝐹𝐸𝑆−𝐶𝑅(𝑡) + 𝑁𝐶𝑅(𝑡) × 𝐹𝐶𝑅−𝐶𝑅(𝑡) 

                      + 𝑁𝐶𝑅(𝑡) × 𝑞𝐶𝑅(𝑡)                                                                                                  − 𝐸𝑞(3) 

𝑁𝐷𝐷(𝑡 + ∆𝑡) = 𝑁𝐶𝐵(𝑡) × 𝐹𝐶𝐵−𝐷𝐷(𝑡) + 𝑁𝐸𝑆(𝑡) × 𝐹𝐸𝑆−𝐷𝐷(𝑡) + 𝑁𝐶𝑅(𝑡) × 𝐹𝐶𝑅−𝐷𝐷(𝑡) + 𝑁𝐷𝐷(𝑡)

× 𝐹𝐷𝐷−𝐷𝐷(𝑡)                                                                                                        − 𝐸𝑞(4) 

                                                                                                                                                       

𝑁𝑖(𝑡) and 𝑁𝑖(𝑡 + ∆𝑡) are the total number of cells (live as well as dead) at state 𝑖 at 𝑡𝑖𝑚𝑒 = 𝑡 

and 𝑡𝑖𝑚𝑒 =  𝑡 + ∆𝑡 respectively; i = CB, ES, CR, DD.  

𝐹𝑖−𝑗(𝑡) is the fraction of cells of ith state moving to the jth state in the interval [t, t+ Δt]; here, i, 

j=CB, ES, CR, DD. 

 𝑞𝑖(𝑡) is the fraction of cells in ith state dividing in the interval [t, t+ Δt]; i = CB, ES, and CR. 

The system has the following constraints: 

a) 0 ≤ 𝐹𝑖−𝑗(𝑡) ≤ 1, for i = CB, ES and CR; j = CB, ES, CR and DD. 

b) ∑ 𝐹𝑖−𝑗(𝑡) = 1𝑗=𝐶𝐵,𝐸𝑆,𝐶𝑅,𝐷𝐷 , for i = CB, ES, CR.  

c) 𝐹𝐷𝐷−𝑗(𝑡) = 0 𝑎𝑛𝑑 𝐹𝐷𝐷−𝐷𝐷(𝑡) = 1 for  j = CB, ES, CR. 

d) 0 ≤ 𝑞𝑖(𝑡) ≤ 1, for i = CB, ES, and CR. 
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Equation 1-4 can be written in terms of fold change in cell number in a time interval and fraction 

of cells in each cell state: 

 

𝑓𝑑(𝑡) × 𝑓
𝐶𝐵

(𝑡 + ∆𝑡) 

=  𝑓𝐶𝐵(𝑡) ×  𝐹𝐶𝐵−𝐶𝐵(𝑡) +  𝑓𝐸𝑆(𝑡) × 𝐹𝐸𝑆−𝐶𝐵(𝑡) + 𝑓𝐶𝑅(𝑡) × 𝐹𝐶𝑅−𝐶𝐵(𝑡) + 𝑓𝐶𝐵(𝑡) × 𝑞𝐶𝐵(𝑡) 

                                                                                                                                    - Eq (5) 

𝑓𝑑(𝑡) × 𝑓
𝐸𝑆

(𝑡 + ∆𝑡) 

     =  𝑓𝐶𝐵(𝑡) ×  𝐹𝐶𝐵−𝐸𝑆(𝑡) +  𝑓𝐸𝑆(𝑡) × 𝐹𝐸𝑆−𝐸𝑆(𝑡) + 𝑓𝐶𝑅(𝑡) × 𝐹𝐶𝑅−𝐸𝑆(𝑡) + 𝑓𝐸𝑆(𝑡) × 𝑞𝐸𝑆(𝑡)  

                                                                                                                                   - Eq (6)             

𝑓𝑑(𝑡) × 𝑓
𝐶𝑅

(𝑡 + ∆𝑡) 

=  𝑓𝐶𝐵(𝑡) ×  𝐹𝐶𝐵−𝐶𝑅(𝑡) +  𝑓𝐸𝑆(𝑡) × 𝐹𝐸𝑆−𝐶𝑅(𝑡) + 𝑓𝐶𝑅(𝑡) × 𝐹𝐶𝑅−𝐶𝑅(𝑡) + 𝑓𝐶𝑅(𝑡) × 𝑞𝐶𝑅(t) 

                                                                                                                                   - Eq (7) 

𝑓𝑑(𝑡) × 𝑓
𝐷𝐷

(𝑡 + ∆𝑡) 

=  𝑓𝐶𝐵(𝑡) ×  𝐹𝐶𝐵−𝐷𝐷(𝑡) + 𝑓𝐸𝑆(𝑡) × 𝐹𝐸𝑆−𝐷𝐷(𝑡) + 𝑓𝐶𝑅(𝑡) × 𝐹𝐶𝑅−𝐷𝐷(𝑡) 

                        +𝑓𝐷𝐷(𝑡) × 𝐹𝐷𝐷−𝐷𝐷(𝑡)                                                                         - Eq (8) 

Here,  

Fold change in total number of cells (live and dead) in the interval [t, t+ Δt], 

𝑓𝑑(𝑡) =  
𝑁(𝑡 + ∆𝑡)

𝑁(𝑡)
 

fi(t) and fi(t+Δt) are fraction of cells in the ith state at time t and (t+ Δt) respectively; i = CB, ES, 

CR, DD. 

Summation of Equations 5-8 gives the overall conservation equation of the system, 

𝑓𝑑(𝑡) = 1 + [𝑓
𝐶𝐵

(𝑡) × 𝑞𝐶𝐵(𝑡) + 𝑓
𝐸𝑆

(𝑡) × 𝑞𝐸𝑆(𝑡) + 𝑓
𝐶𝑅

(𝑡) × 𝑞𝐶𝑅(𝑡)]                         - Eq(9) 
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S2: Estimation of model parameters for the state transition model: 

We measured the fraction of cells in different cell states (CB, ES, CR) at different time points (t 

= 0, 12, 24, 36, 48 and 60 h) by image analysis. We also measured the fraction of dead cells and 

the fold change in the total cell number (live as well as dead) at each time point. We use the data 

from these experiments to estimate the model parameters.  

  

S2.1 Estimation of the fraction of cells dividing: 

Our experimental observations are at six time points (t = 0, 12, 24, 36, 48, 60 h). From equation 

9, we estimate the fraction of cell dividing at each time interval. Equation 9 can be written in 

matrix form, 

[𝑓𝑑 − 1]𝑡 = [𝑓
𝐶𝐵

𝑓
𝐸𝑆

𝑓
𝐶𝑅]𝑡 × [

𝑞𝐶𝐵

𝑞𝐸𝑆

𝑞𝐶𝑅

]

𝑡

 

In vector notation, this equation is written as 

𝐾(𝑡) = 𝑭(𝑡) × 𝒒(𝑡) 

We estimated the unknown 𝒒(𝑡), through linear least square optimisation. We used Trust-

Region-Reflective Algorithm implemented in MATLAB lsqlin function [1].  

The estimated qi values are shown in the Supplementary Table S1.  

 

S2. 2 Estimation of fractional flow of cells from one state to other states: 

Cell state transition in our experiments is reversible and key signaling processes like 

phosphorylation of EGFR changes with time. Also, we have not observed any steady state for 

cell state transition data in the interval of 0 to 60 hr. Therefore, we cannot consider constant flow 
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rates of cells from one state to another. We estimated the fractional flow of cells from one state 

to another state for each of the 12 hr intervals.  

Eq (5-8) can be written in matrix format as follows, 

[

𝑓𝑑 × 𝑓𝐶𝐵

𝑓𝑑 × 𝑓𝐸𝑆

𝑓𝑑 × 𝑓𝐶𝑅

𝑓𝑑 × 𝑓𝐷𝐷

]

𝑡+∆𝑡

= [

𝐹𝐶𝐵−𝐶𝐵 + 𝑞𝐶𝐵 𝐹𝐸𝑆−𝐶𝐵 𝐹𝐶𝑅−𝐶𝐵 0
𝐹𝐶𝐵−𝐸𝑆 𝐹𝐸𝑆−𝐸𝑆 + 𝑞𝐸𝑆 𝐹𝐶𝑅−𝐸𝑆 0
𝐹𝐶𝐵−𝐶𝑅 𝐹𝐸𝑆−𝐶𝑅 𝐹𝐶𝑅−𝐶𝑅 + 𝑞𝐶𝑅 0
𝐹𝐶𝐵−𝐷𝐷 𝐹𝐸𝑆−𝐷𝐷 𝐹𝐶𝑅−𝐷𝐷 1

]

𝑡

 × [

𝑓𝐶𝐵

𝑓𝐸𝑆

𝑓𝐶𝑅

𝑓𝐷𝐷

]

𝑡

 

Following the constraint of the model,  ∑ 𝐹𝑖−𝑗(𝑡) = 1𝑗=𝐶𝐵,𝐸𝑆,𝐶𝑅,𝐷𝐷 , where i = CB or ES or CR, 

we do not need to separately estimate the fractional flow of cells to dead state. Therefore, the 

above matrix can be reduced to, 

[

𝑓𝑑 × 𝑓𝐶𝐵

𝑓𝑑 × 𝑓𝐸𝑆

𝑓𝑑 × 𝑓𝐶𝑅

]

𝑡+∆𝑡

= [[

𝐹𝐶𝐵−𝐶𝐵 𝐹𝐸𝑆−𝐶𝐵 𝐹𝐶𝑅−𝐶𝐵

𝐹𝐶𝐵−𝐸𝑆 𝐹𝐸𝑆−𝐸𝑆 𝐹𝐶𝑅−𝐸𝑆

𝐹𝐶𝐵−𝐶𝑅 𝐹𝐸𝑆−𝐶𝑅 𝐹𝐶𝑅−𝐶𝑅 

]

𝑡

+ [

𝑞𝐶𝐵 0 0
0 𝑞𝐸𝑆 0
0 0 𝑞𝐶𝑅

]] × [

𝑓𝐶𝐵

𝑓𝐸𝑆

𝑓𝐶𝑅

]

𝑡

 

This can be written in vector notion as  

𝑪(𝑡 + ∆𝑡) = [𝑨(𝑡) + 𝑸(𝒕)] × 𝑩(𝑡)                                                                              - Eq (10) 

We have estimated the elements of Q(t) in section S2.1. Now we estimate 𝑨(𝑡) of Equation 10, 

for each 12 hr interval, from the experimental data using parameter optimization. Objective 

function for this optimization can be written as [𝒆(𝑡)𝑻𝒆(𝑡)]𝑨(𝑡)
𝑚𝑖𝑛  where e(t) is the residual between 

observed and estimated C(t+Δt).  

However, for an underdetermined system, such an objective function can cause overfitting and 

can generate extremely different A(t)for each time interval. That would be unrealistic as the cell 

state transition parameters in two successive time points in a real biological system will not 

differ drastically. 
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Following Chiba et al. [2] we assume that the difference in each element of A(t) of two 

consecutive time intervals is small in terms of L1-norm of the difference. This allows us to 

constrain the parameter space and estimate the A(t) for all the time intervals simultaneously.  

The objective functions used for estimation of cell state transition parameters are, 

Objective function 1 = (∑ ∑(𝒆(𝑡)𝑇𝒆(𝑡))𝑡∈𝑇𝑨(𝑡)
𝑚𝑖𝑛 ) 

Objective function 2 = (∑ ∑(|𝑨(𝑡 + 𝛥𝑡) − 𝑨(𝑡)|𝑡∈𝑇𝑨(𝑡)
𝑚𝑖𝑛 )) 

Here, T = (0 h, 12 h, 24 h, 36 h, 48 h) and Δt = 12 h. 

We used a well-established multi-objective genetic algorithm, NSGA-II, proposed by Deb [3] 

that is implemented in MATLAB function gamultiobj. This was used to minimize both the 

objective functions simultaneously. We performed 1000 independent optimization, and the best 

parameter set in each run was decided through Pareto front analysis [4]. The best parameter set 

from these 1000 optimization runs is considered as the optimized parameter values and used in 

further analysis. A similar method was used to estimate the transition parameter for the short-

time experiment (T = 24, 27, 30, 33, 36 h).  

 

All the estimated parameters are shown in the Supplementary Table S2. As a representative data 

of the estimation method, the Supplementary Figure S13a shows the Pareto plot for one of the 

thousand independent runs for estimating the parameters for cells treated with 10 ng/mL of EGF. 

Supplementary Figure S13b shows the distribution of objective functions for these thousand 

runs. Supplementary Figure S14 shows the estimated fraction of cells in each cell state from the 

model using the selected parameter set.  

 



S8 

We have visualized the cell state transitions diagrammatically in terms of normalized flux 

through different state transition paths (only live cell states). Normalized flux for a particular cell 

state transition path i-j in a particular time interval [t, t+Δt] is defined as, 

𝐽𝑖−𝑗(𝑡) = �̂�𝑖−𝑗(𝑡) × 𝑓𝑖(𝑡) 

�̂�𝑖−𝑗(𝑡) is the fraction of live cells moving from ith state to jth state at time t. i, j = CB, ES and 

CR. 𝑓𝑖(𝑡) is the fraction of live cells at time t. i = CB, ES, and CR. 

 

S3. Null model: 

In the null model, we assume that the observed changes in the distribution of cells in three 

morphological states originate solely from cell division and cell death and there is no transition 

from one live cell state to another live cell state.  

 

The model for this is just a reduced version of our full model, 

𝑓𝑑(𝑡) × 𝑓
𝐶𝐵

(𝑡 + ∆𝑡) =  𝑓𝐶𝐵(𝑡) ×  𝐹𝐶𝐵−𝐶𝐵(𝑡) + 𝑓𝐶𝐵(𝑡) × 𝑞𝐶𝐵                        - Eq (11) 

𝑓𝑑(𝑡) × 𝑓
𝐸𝑆

(𝑡 + ∆𝑡) =  𝑓𝐸𝑆(𝑡) × 𝐹𝐸𝑆−𝐸𝑆(𝑡) + 𝑓𝐸𝑆(𝑡) × 𝑞𝐸𝑆                         - Eq (12)             

𝑓𝑑(𝑡) × 𝑓
𝐶𝑅

(𝑡 + ∆𝑡)  =  𝑓𝐶𝑅(𝑡) × 𝐹𝐶𝑅−𝐶𝑅(𝑡) + 𝑓𝐶𝑅(𝑡) × 𝑞𝐶𝑅                        - Eq (13)                                                                                                 

𝑓𝑑(𝑡) × 𝑓
𝐷𝐷

(𝑡 + ∆𝑡) 

=  𝑓𝐶𝐵(𝑡) ×  𝐹𝐶𝐵−𝐷𝐷(𝑡) + 𝑓𝐸𝑆(𝑡) × 𝐹𝐸𝑆−𝐷𝐷(𝑡) + 𝑓𝐶𝑅(𝑡) × 𝐹𝐶𝑅−𝐷𝐷(𝑡) 

                        +𝑓𝐷𝐷(𝑡) × 𝐹𝐷𝐷−𝐷𝐷(𝑡)                                                                - Eq (14) 
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The system has the following constraints: 

a) 0 ≤ 𝐹𝑖−𝑖(𝑡) ≤ 1, for i = CB, ES, CR, DD;  

b) 0 ≤ 𝐹𝑖−𝐷𝐷(𝑡) ≤ 1, for i = CB, ES, CR; 

c) 𝐹𝑖−𝑖 +  𝐹𝑖−𝐷𝐷 = 1, for i = CB, ES, CR; 

d) 𝐹𝐷𝐷−𝐷𝐷(𝑡) = 1 

e) 0 ≤ 𝑞𝑖(𝑡) ≤ 1, for i = CB, ES, CR. 

All other notations used in section S2 remain the same.  

 

Eq (11-14) can be written in matrix format as follows, 

[

𝑓𝑑 × 𝑓𝐶𝐵

𝑓𝑑 × 𝑓𝐸𝑆

𝑓𝑑 × 𝑓𝐶𝑅

𝑓𝑑 × 𝑓𝐷𝐷

]

𝑡+∆𝑡

= [

𝐹𝐶𝐵−𝐶𝐵 + 𝑞𝐶𝐵 0 0 0
0 𝐹𝐸𝑆−𝐸𝑆 + 𝑞𝐸𝑆 0 0
0 0 𝐹𝐶𝑅−𝐶𝑅 + 𝑞𝐶𝑅 0

𝐹𝐶𝐵−𝐷𝐷 𝐹𝐸𝑆−𝐷𝐷 𝐹𝐶𝑅−𝐷𝐷 1

]

𝑡

 × [

𝑓𝐶𝐵

𝑓𝐸𝑆

𝑓𝐶𝑅

𝑓𝐷𝐷

]

𝑡

 

Following the constraint 𝐹𝑖−𝑖 +  𝐹𝑖−𝐷𝐷 = 1, for i = CB, ES, CR, we do not need to separately 

estimate the fractional flow of cells to dead state. Therefore, the above matrix can be reduced to, 

[

𝑓𝑑 × 𝑓𝐶𝐵

𝑓𝑑 × 𝑓𝐸𝑆

𝑓𝑑 × 𝑓𝐶𝑅

]

𝑡+∆𝑡

= [[

𝐹𝐶𝐵−𝐶𝐵 0 0
0 𝐹𝐸𝑆−𝐸𝑆 0
0 0 𝐹𝐶𝑅−𝐶𝑅 

]

𝑡

+ [

𝑞𝐶𝐵 0 0
0 𝑞𝐸𝑆 0
0 0 𝑞𝐶𝑅

]] × [

𝑓𝐶𝐵

𝑓𝐸𝑆

𝑓𝐶𝑅

]

𝑡

 

This can be written in vector notion as  

𝑪(𝑡 + ∆𝑡) = [𝑨(𝑡) + 𝑸(𝒕)] × 𝑩(𝑡)                                                                              - Eq (15) 

For this null model, we estimate the A(t) and Q(t) following the method described in S2.2 
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Supplementary Table S1: Estimated fractional cell division values 

Time interval 

(h) 

 Untreated 1 ng/mL 

EGF 

5 ng/mL 

EGF 

10 ng/mL 

EGF 

25 ng/mL 

EGF 

0-12 

𝑞𝐶𝐵 0.174 0.198 0.093 0.023 0 

𝑞𝐸𝑆 0.174 0.198 0.093 0.023 0 

𝑞𝐶𝑅 0.174 0.198 0.093 0.023 0 

12-24 

𝑞𝐶𝐵 0.139 0.127 0.164 0.095 0.024 

𝑞𝐸𝑆 0.139 0.127 0.165 0.095 0.024 

𝑞𝐶𝑅 0.139 0.127 0.164 0.095 0.024 

24-36 

𝑞𝐶𝐵 0.082 0.059 0.024 0.087 0.051 

𝑞𝐸𝑆 0.082 0.059 0.024 0.087 0.051 

𝑞𝐶𝑅 0.082 0.059 0.024 0.087 0.051 

36-48 

𝑞𝐶𝐵 0 0 0.012 0.012 0 

𝑞𝐸𝑆 0 0 0.012 0.012 0 

𝑞𝐶𝑅 0 0 0.012 0.012 0 

48-60 

𝑞𝐶𝐵 0.012 0.037 0.025 0 0 

𝑞𝐸𝑆 0.012 0.037 0.025 0 0 

𝑞𝐶𝑅 0.012 0.037 0.025 0 0 
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Supplementary Table S2: Estimated fractional state transition values (Fi-j): 

a) Untreated: 

 
0-12 h 12-24 h 24-36 h 

CB ES CR DD CB ES CR DD CB ES CR DD 

CB 0.78 0.12 0.09 0.01 0.93 0.04 0.03 0 0.93 0.04 0.03 0 

ES 0.24 0.33 0.17 0.26 0.34 0.29 0.17 0.2 0.34 0.28 0.23 0.15 

CR 0.35 0.28 0.35 0.02 0.35 0.41 0.21 0.03 0.21 0.59 0.19 0.01 

 

 
36-48 h 48-60 h 

CB ES CR DD CB ES CR DD 

CB 0.85 0.08 0.06 0.01 0.92 0.03 0.05 0 

ES 0.33 0.29 0.23 0.15 0.33 0.33 0.22 0.12 

CR 0.2 0.67 0.06 0.07 0.21 0.67 0.05 0.07 

 

 

b) 1 ng/mL EGF: 

 
0-12 h 12-24 h 24-36 h 

CB ES CR DD CB ES CR DD CB ES CR DD 

CB 0.68 0.22 0.08 0.02 0.67 0.22 0.08 0.03 0.75 0.13 0.11 0.01 

ES 0.7 0.16 0.11 0.03 0.73 0.14 0.09 0.04 0.72 0.14 0.12 0.02 

CR 0.57 0.07 0.32 0.04 0.57 0.09 0.29 0.05 0.44 0.17 0.29 0.1 

 

 
36-48 h 48-60 h 

CB ES CR DD CB ES CR DD 

CB 0.89 0.06 0.04 0.01 0.72 0.1 0.16 0.02 

ES 0.59 0.25 0.13 0.03 0.47 0.29 0.23 0.01 

CR 0.45 0.17 0.2 0.18 0.4 0.18 0.22 0.2 
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Supplementary Table S2 continued. 

c) 5 ng/mL EGF: 

 0-12 h 12-24 h 24-36 h 

CB ES CR DD CB ES CR DD CB ES CR DD 

CB 0.14 0.06 0.8 0 0.3 0.15 0.32 0.23 0.81 0.14 0.04 0.01 

ES 0.31 0.42 0.13 0.14 0.32 0.43 0.12 0.13 0.34 0.43 0.12 0.11 

CR 0.63 0.26 0.05 0.06 0.66 0.32 0.02 0 0.77 0.2 0.02 0.01 

 

 36-48 h 48-60 h 

CB ES CR DD CB ES CR DD 

CB 0.84 0.12 0.04 0 0.87 0.08 0.04 0.01 

ES 0.34 0.44 0.14 0.08 0.35 0.45 0.17 0.03 

CR 0.77 0.19 0.03 0.01 0.73 0.2 0.03 0.04 

 

 

d) 10 ng/mL EGF: 

 

 

0-12 h 12-24 h 24-36 h 

CB ES CR DD CB ES CR DD CB ES CR DD 

CB 0.07 0.07 0.86 0 0.07 0.11 0.77 0.05 0.56 0.18 0.11 0.15 

ES 0.5 0.25 0.11 0.14 0.5 0.26 0.11 0.13 0.65 0.26 0.04 0.05 

CR 0.32 0.09 0.5 0.09 0.31 0.1 0.56 0.03 0.61 0.3 0.07 0.02 

 

 36-48 h 48-60 h 

CB ES CR DD CB ES CR DD 

CB 0.7 0.18 0.11 0.01 0.78 0.12 0.09 0.01 

ES 0.65 0.26 0.04 0.05 0.62 0.27 0.04 0.07 

CR 0.55 0.28 0.08 0.09 0.51 0.27 0.08 0.14 
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Supplementary Table S2 continued. 

e) 25 ng/mL EGF: 

 
0-12 h 12-24 h 24-36 h 

CB ES CR DD CB ES CR DD CB ES CR DD 

CB 0.07 0.09 0.81 0.03 0.04 0.04 0.91 0.01 0.04 0.03 0.91 0.01 

ES 0.07 0.14 0.56 0.23 0.07 0.14 0.56 0.23 0.08 0.29 0.38 0.25 

CR 0.1 0.17 0.7 0.03 0.08 0.15 0.75 0.02 0.11 0.14 0.74 0.01 

 

 

 

 

 

 

 

Supplementary Table S3: Antibodies used in the experiments 

a) Western blotting: 

Antibody Make Dilution 

Anti-Phospho-EGF Receptor (Tyr 1068) Cell Signaling Technology-3777 1:4000 

Anti-EGF Receptor Cell Signaling Technology-4267 1:4000 

Anti-FAK Cell Signaling Technology-13009 1:2000 

Anti-Phospho-FAK (Tyr 397) Invitrogen-700255 1:2000 

Goat anti-rabbit HRP-conjugate Cell Signaling Technology-7074P2 1:5000 

 

 

 
36-48 h 48-60 h 

CB ES CR DD CB ES CR DD 

CB 0.07 0.05 0.75 0.13 0.09 0.05 0.74 0.12 

ES 0.06 0.46 0.3 0.19 0.05 0.49 0.24 0.22 

CR 0.09 0.09 0.79 0.02 0.15 0.15 0.69 0 
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Supplementary Table S3 continued. 

b) Immunofluorescence: 

Antibody Make Dilution 

Anti-Vimentin Alexa Fluor 488 conjugated Abcam-ab195877 1:50 

Anti-Snail1 Alexa Fluor 488 conjugated eBioscience-53-9859-82 1:50 

 

c) Flow cytometry: 

Antibody Make Dilution 

Anti-Phospho-EGF Receptor (Tyr 1068) Cell Signaling Technology-3777 1:500 

Anti-EGF Receptor Cell Signaling Technology-4267 1:500 

Goat anti-Rabbit Alexa Fluor 488 conjugated Invitrogen-A-11070 1:1000 

 

 

Supplementary Table S4: Primers used in qPCR 

Gene Sequence 

Vimentin Forward AGTCCACTGAGTACCGGAGAC 

Reverse CATTTCACGCATCTGGCGTTC 

Fibronectin Forward AGGAAGCCGAGGTTTTAACTG 

Reverse AGGACGCTCATAAGTGTCACC 

Snail 1 Forward TCGGAAGCCTAACTACAGCGA 

Reverse AGATGAGCATTGGCAGCGAG 

Zeb 1 Forward TTACACCTTTGCATACAGAACCC 

Reverse TTTACGATTACACCCAGACTGC 
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Supplementary Figure S2: Spindle and Circular cells are more scattered than cobble cells. 

MDA-MB-468 cells were treated with 10 ng/mL of EGF and number of nearest neighbours for 

each cell was measured by image analysis. A radial distance of five pixels from the periphery of 

each cell is defined as the neighbouring distance to that particular cell. Cells lying within the 

neighbouring distance of a cell are the nearest neighbours to that particular cell. The differences 

in the median numbers of nearest neighbours of three cell types are statistically significant 

(Kruskal-Wallis test, p < 0.01).  
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Supplementary Figure S3: Migration assay. Cells were treated with different doses of EGF for 

24 hr and migration was assayed using Boyden Chamber. Cells migrated to the other side of the 

transwell membrane were stained and imaged. a) The membrane was scanned with the 5X 

objective lens. Each image represents one of the individual tiles scanned from the entire 

membrane. b)  Four randomly zoomed-in locations from the images in S3a to show the shape of 

cells with clarity. Scale bar: 200 µm. 

 

 



S17 

 

Supplementary Figure S4: Effect of EGF on cell death and viability. MDA-MB-468 cells were 

treated with different doses of EGF for different durations. (a) Fold change in total cell number 

and (b) the percentage of cell death, were measured by Propidium Iodide assay. Each data point 

represents the mean of three independent assays and error bars indicate standard deviation. Fold 

change in cell number with time was statistically significant only for untreated, 1 ng/mL, 5 

ng/mL and 10 ng/mL EGF treated cells (Kruskal-Wallis Analysis of Variance p < 0.05). There 

was no statistically significant difference between untreated and 1 ng/mL EGF treated cells. 

Time-dependent increase in cell death was statistically significant in all treatment groups 

(Analysis of variance, p < 0.01).  
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Supplementary Figure S5: Population distribution of MDA-MB-468 cells when treated with 10 

ng/mL of EGF and imaged at 3 h intervals in the period of 24 to 36 h. Each data point represents 

the mean of three independent experiments and error bars indicate standard deviation.  
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Supplementary Figure S6: Cell state transition diagram for MDA-MB-468 cells treated with 25 

ng/mL of EGF. Each line represents one state transition path. State transition parameters were 

estimated from the quantitative imaging data. Numerical values over the lines indicate the 

normalized flow of cells through these paths. Pointed black arrows show the dominant transition 

paths.  
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Supplementary Figure S7: Comparison between experimental observations and predictions by 

the null model. a) Fold change in the number of dead cells and b) fold change in the total cell 

number for cells treated with 10 ng/mL EGF. 
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Supplementary Figure S8: Dynamics of phospho-EGFR and total EGFR measured by flow 

cytometry. a) 10 ng/mL of EGF treated cells. b) 25 ng/mL of EGF treated cells. Percentage 

positive population was estimated through Overton histogram subtraction. Cells stained with 

only secondary antibody was used as a control in histogram subtraction (-ve control).  
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Supplementary Figure S9: Temporal dynamics of phosphorylation of FAK. MDA-MB-468 

cells were treated with different doses of EGF and different molecules were detected by Western 

Blots.  
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Supplementary Figure S10: Effect of Gefitinib on the viability of cells. MDA-MB-468 cells 

were treated with different doses of Gefitinib for different durations and cell viability was 

measured by MTT assay. The percentage cell viability was calculated relative to cells treated 

with an equivalent amount DMSO in media (without Gefitinib). Dose- and time-dependent effect 

of Gefitinib on cell viability was statistically significant (two-way ANOVA, p < 0.01). 
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Supplementary Figure S11: The plot shows the quality of cell type classification through 

machine learning. True label denotes the actual cell type defined by the user. Predicted label 

denotes the cell type identified by the algorithm after machine learning. Diagonal elements 

represent the correct prediction of the cell type and the non-diagonal elements represent the false 

positives. A value of 1 indicates that all the cells were rightly classified by the machine as 

defined by the user. 
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Supplementary Figure S12: Standard curve to determine the linear regime of fluorescence-

based plate reader assay. a) The linear regime of total cell number measurement assay. b) The 

linear regime of dead cell number measurement assay. R: correlation coefficient for linear 

regression.  
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Supplementary Figure S13: a) Pareto front of one of the 1000 independent parameter 

estimations for 10 ng/mL EGF treated cells. Red filled circle represent the optimal solution of the 

Pareto front. b) Distribution of the objective functions. Each blue filled circle represents the best 

solution of each of the 1000 independent parameter estimations for 10 ng/mL EGF treated cells. 

Red filled circle represent the overall optimal solution. 
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Supplementary Figure S14: Comparison between experimental observations and predictions by 

the state-transition model for cells treated with 10 ng/mL of EGF.  a) for cells is Cobble state, b) 

for cells in spindle state and c) for cells in circular state.  
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