Supplemental material

Figure S1.	PRISMA Flow Diagram		
Figure \$2	Changes in TC levels after administration of grape products as		
Figure S2.	compared with controls		
Eiguno C2	Changes in HDL-C levels after administration of grape products as		
Figure S3.	compared with controls.		
Figure S4	Changes in TG levels after administration of grape products as		
Figure S4.	compared with control		
	Funnel plots of effect size versus standard error for studies evaluating		
Figure S5.	levels of TC (panel A), HDL-C (panel B), LDL-C (panel C) levels after		
	administration of grape products or placebo.		
	Funnel plots of effect size versus standard error (panel A) and Duval		
Figure S6.	and Tweedie's trim and fill analysis (panel B) for studies evaluating		
	levels of TG after administration of grape products or placebo.		
Table S1.	Meta-regression analyses for TC, HDL-C, TG and LDL-C.		

Figure S1. PRISMA Flow Diagram

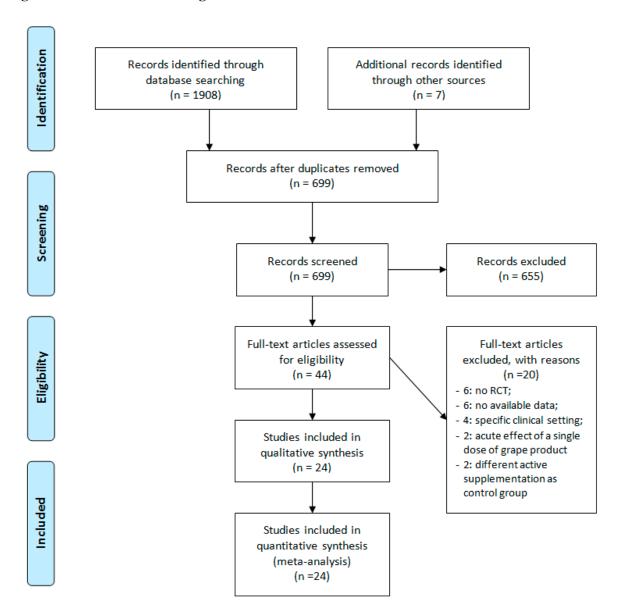


Figure S2. Changes in TC levels after administration of grape products as compared with controls

Study name	Sta	tistics for	each study	<u>y</u>		Difference	in means a	nd 95% CI
	Difference in means	Lower limit	Upper limit	p-Value				
Argani 2016	-25,000	-28,462	-21,538	0,000	-	- I	1	1
Banini 2006	-4,800	-10,428	0,828	0,095		l —	▆┤	
Dohadwala 2010	-2,000	-4,533	0,533	0,122			-■	
Hansen 2005	-8,500	-28,244	11,244	0,399	—	- -	_	—
Hollis 2009	-15,000	-17,531	-12,469	0,000		-		
Jiménez 2008	-19,100	-28,146	-10,054	0,000	1—	-■-		
Kar 2009	-4,000	-6,567	-1,433	0,002			╼╴	
Martinez-Maqueda 2018	-4,000	-5,731	-2,269	0,000				
Mellen 2010	-1,300	-3,650	1,050	0,278			-	
Millar 2018	-11,000	-16,205	-5,795	0,000		 ■	-	
Park 2009	-1,300	-8,037	5,437	0,705		-	━	
Preuss 2000	-3,000	-12,511	6,511	0,536		I —	╼┼─	
Sano 2007	0,000	-5,235	5,235	1,000			-	
Siasos 2013	-4,000	-12,188	4,188	0,338			-	
Sivaprakasapillai 2009	-4,000	-6,741	-1,259	0,004			╼┈│	
Taghizadeh 2016	-4,000	-7,434	-0,566	0,022		-	-■-	
Tomé-Carneiro 2012	-10,900	-16,180	-5,620	0,000		 ■	-	
Vaisman 2015	-4,500	-7,736	-1,264	0,006		-	╼┈│	
Vigna 2003	-8,000	-11,038	-4,962	0,000		-■	-	
Yubero 2013	-25,800	-28,954	-22,646	0,000	-			
Zem 2005 (a)	-4,000	-7,405	-0,595	0,021		.	╼┈│	
Zem 2005 (b)	-4,000	-8,493	0,493	0,081		-	╼┤	
	-7,625	-10,832	-4,419	0,000			-	
					-30,00	-15,00	0,00	15,00

Figure S3. Changes in HDL-C levels after administration of grape products as compared with controls.

Study name	Statistics for each study				Difference	in means a	nd 95% CI	
	Difference in means	Lower limit	Upper limit	p-Value				
Argani 2016	7,300	-12,995	27,595	0,481	ſ	1-		-
Banini 2006	0,700	-1,975	3,375	0,608			-	
Dohadwala 2010	1,000	-0,326	2,326	0,140			-	
Hansen 2005	1,500	-5,929	8,929	0,692			-	-
Hollis 2009	2,000	0,961	3,039	0,000		l		
Jiménez 2008	2,500	0,786	4,214	0,004			-	
Kar 2009	0,000	-0,854	0,854	1,000			•	
Martinez-Maqueda 2018	2,000	-1,315	5,315	0,237		l	 ■ -	
Mellen 2010	0,700	0,126	1,274	0,017		l		
Millar 2018	0,900	-1,264	3,064	0,415			-	
Park 2009	2,000	1,271	2,729	0,000				
Preuss 2000	1,600	-1,062	4,262	0,239			+=-	
Sano 2007	0,200	-1,461	1,861	0,813				
Sivaprakasapillai 2009	3,000	2,255	3,745	0,000				
Taghizadeh 2016	4,000	2,218	5,782	0,000				
Tomé-Carneiro 2012	1,500	0,415	2,585	0,007				
Urquiaga 2015	1,900	-0,578	4,378	0,133			=	
Vaisman 2015	0,900	-0,907	2,707	0,329			-	
Vigna 2003	0,100	-0,848	1,048	0,836		I		
Yubero 2013	2,500	1,870	3,130	0,000				
Zem 2005 (a)	0,000	-0,805	0,805	1,000			•	
Zem 2005 (b)	0,000	-1,260	1,260	1,000			•	
Zunino 2014	2,170	0,224	4,116	0,029			-	
	1,371	0,840	1,902	0,000		ı	•	
					-30,00	-15,00	0,00	15,00

Figure S4. Changes in TG levels after administration of grape products as compared with controls

Study name	Stat	tistics for	each stud	<u>y</u>		Difference		in means a
	Difference in means	Lower limit	Upper limit	p-Value				
Argani 2016	-30,700	-34,957	-26,443	0,000	- 1	+		
Banini 2006	-6,000	-16,575	4,575	0,266		.		- ■+
Dohadwala 2010	-7,000	-15,522	1,522	0,107			-	-■-
Hansen 2005	-2,600	-19,094	13,894	0,757		-	_	-
Hollis 2009	-6,000	-21,494	9,494	0,448		-	_	
Jiménez 2008	-19,900	-34,253	-5,547	0,007		-		-
Kar 2009	-26,900	-34,174	-19,626	0,000				
Martinez-Maqueda 2018	-9,000	-10,195	-7,805	0,000				
Mellen 2010	-6,800	-7,227	-6,373	0,000				
Millar 2018	-49,000	-58,481	-39,519	0,000		-		
Park 2009	-1,700	-39,292	35,892	0,929		-		=
Sano 2007	-13,000	-20,207	-5,793	0,000				.
Sivaprakasapillai 2009	-6,000	-9,356	-2,644	0,000			1	ĕ
Taghizadeh 2016	-18,000	-20,367	-15,633	0,000			1	
Tomé-Carneiro 2012	-11,800	-20,433	-3,167	0,007		-		-
Urquiaga 2015	-27,400	-39,451	-15,349	0,000		-		
Vaisman 2015	-6,200	-14,294	1,894	0,133			-	+
Vigna 2003	-18,000	-29,297	-6,703	0,002		-	\vdash	
Zern 2005 (a)	-17,700	-24,131	-11,269	0,000		-	H	
Zern 2005 (b)	-8,000	-18,961	2,961	0,153		-	-	+
Zunino 2014	-0,600	-8,035	6,835	0,874			\dashv	• -
	-14,475	-17,778	-11,172	0,000	1		•	
					-60,00	-30,00	0,	00

Figure S5. Funnel plots of effect size versus standard error for studies evaluating levels of TC (panel A), HDL-C (panel B), LDL-C (panel C) after administration of grape products or placebo.

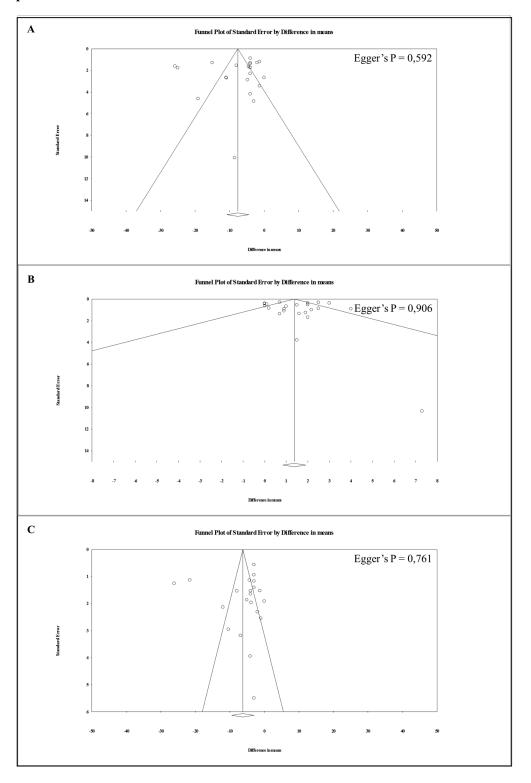


Figure S6. Funnel plots of effect size versus standard error (panel A) and Duval and Tweedie's trim and fill analysis (panel B) for studies evaluating levels of TG after administration of grape products or placebo.

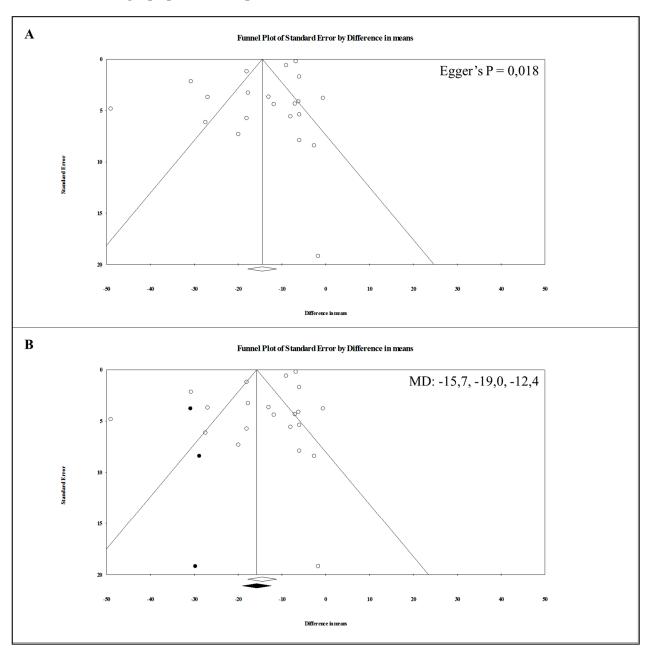


Table S1. Meta-regression analyses for TC, HDL-C, TG and LDL-C.

A) TC (22 datasets -21 studies)	Z -value	P-value
Age	0.29	0.77
Male gender	0.34	0.73
BMI	0.34	0.74
Diabetes	0.63	0.53
Dyslipidemia	0.19	0.85
Follow up	-1.33	0.19

B) HDL-C (23 datasets – 22 studies)	Z-value	P-value
Age	-2.58	0.01
Male gender	-0.19	0.85
BMI	-0.34	0.74
Diabetes	-1.54	0.12
Dyslipidemia	-0.51	0.61
Follow up	1.02	0.31

C) TG (21 datasets – 20 studies)	Z-value	P-value
Age	-0.59	0.56
Male gender	-0.34	0.73
BMI	0.82	0.41
Diabetes	-1.25	0.21
Dyslipidemia	-1.86	0.06
Follow up	-0,29	0.77

D) LDL-C (21 datasets – 20 studies)	Z -value	P-value
Age	-0.19	0.84
Male gender	0.97	0.33
BMI	-0.24	0.81
Diabetes	0.72	0.47
Dyslipidemia	-0.13	0.90
Follow up	0.23	0.82