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Abstract: Polycystic ovary syndrome (PCOS) is a complex disorder associated with ovarian dysfunction,
infertility, menstrual irregularity, and hormonal impairments. Over the last decade, several studies have
shown that some PCOS women have insulin resistance (InsR) and hyperinsulinemia, apart from being
overweight or obese. Therefore, a crucial clinical aspect is that PCOS patients might develop glucose
intolerance and type 2 diabetes. Insulin-sensitizing drugs have been used as first-line treatment to
improve hyperinsulinemia in women with PCOS. Although reducing PCOS symptoms and signs, several
used insulin-sensitizer drugs may induce side effects, which reduces compliance. D-chiro-inositol (DCI),
which is a naturally occurring stereoisomer of inositol, has been classified as an insulin-sensitizer and
seems to mitigate multiple InsR-related metabolic alterations in PCOS with a safe profile. However,
according to a multi-targeted design, the supplementation with DCI can be synergistically integrated
by combining other potential insulin-sensitizing drugs and/or nutraceuticals. The literature provides
the initial support for using several unexplored nutraceutical interventions that may target relevant
metabolic abnormalities associated with InsR in PCOS. With a need to promote interest in clinical
research, this review aims to discuss the efficacy of DCI and the role of emerging nutraceuticals for
managing InsR in PCOS.
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1. Introduction

Polycystic ovary syndrome (PCOS) is one of the most prevalent endocrine disorders in women
of reproductive age and represents one of the leading causes of infertility [1]. PCOS is characterized
by different signs and symptoms, and the current diagnosis requires at least two of the following
features: anovulation, hyperandrogenism, and ovaries characterized by multiple small follicles at
ultrasound examination [2]. However, it has recently been recognized that dysmetabolic features are
crucial clinical aspects that need to be considered. As indicated by epidemiological studies, insulin
resistance (InsR) and compensatory hyperinsulinemia are present in approximately 80% of obese women
with PCOS, and in 30—40% of lean women [3,4]. Clinical manifestations commonly associated with
InsR and present in PCOS are hyperandrogenism, menstrual irregularities, and other cardiometabolic
complications. Moreover, InsR plays a key role in the pathophysiology of metabolic syndrome (MetS),
which increases the risk of developing type 2 diabetes (T2D), cardiovascular disease (CVD), hypertension,
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and dyslipidemia [5]. Hyperinsulinemia and InsR induce ovarian androgen synthesis and reduce
serum sex hormone-binding globulin (SHBG) concentrations, which leads to increased levels of free
testosterone. The association between InsR and ovarian hyperandrogenism indicates that insulin
influences ovarian function [6]. The first-line treatment of PCOS is lifestyle modification, which is most
notably diet. PCOS women, who are not overweight, are often affected by InsR, and modest weight loss
improves clinical outcomes in patients of a near-normal body weight [7].

However, there is no clear recommendation about the composition of the diet for PCOS women,
but the reduction in daily caloric intake, adherence to low-glycaemic index (GI) dietary patterns,
and consumption of nutraceuticals derived from food sources may improve insulin sensitivity and
metabolic parameters [8§-10]. Numerous pharmacological and non-pharmacological approaches have
been proposed to improve InsR-related metabolic alterations in PCOS. In this context, insulin-sensitizing
drugs (e.g., metformin) have been widely used to treat insulin-resistant PCOS patients. These drugs were
proven to be effective not only on anovulatory cycles, menstrual irregularity, and hyperandrogenism
but also on InsR parameters [11]. However, the cost-effectiveness of this pharmacological treatment,
together with patient-related side effects, may reduce subject compliance and limit the use of these
drugs [12]. The most common side effects of insulin-sensitizing drugs are nausea, vomiting, abdominal
pain, and diarrhea. Recently, oral supplementation with natural substances, such as D-chiro-inositol
(DCI), which is a stereoisomer of inositol, have been found to have good efficacy in reducing InsR, while
also improving metabolic indices and ovarian function in PCOS patients with fewer side effects [13].
The interest in nutraceutical compounds is growing since they can potentially play a considerable role
in managing those patients for whom a pharmacological treatment is still not advisable. The article aims
to summarize the current knowledge on the effects of DCI and other unexplored insulin-sensitizing
nutraceuticals that may benefit InsR-related conditions in PCOS.

2. Metabolic Consequences of InsR in PCOS

Several mechanisms have been proposed for the development of InsR in PCOS. A schematic
overview of InsR and its role in the pathogenesis of PCOS is shown in Figure 1. As a compensatory
response to InsR, hyperinsulinemia amplifies the effect of the luteinizing hormone (LH) within ovarian
theca cells. Resultant activation of P450c17x, which is a key enzyme involved in androgen synthesis,
enhances the production of androgens [14,15]. Insulin also increases the adrenocorticotropic hormone
(ACTH), which, in turn, mediates adrenal androgen production and accentuates LH-stimulated
ovarian steroidogenesis. Moreover, hyperinsulinemia is thought to contribute to hyperandrogenism
by inhibiting liver synthesis of SHGB that increases testosterone availability. Current data also
suggest that insulin activates the synthesis of androgens in theca cells via multiple pathways, such
as the phosphoinositide-3 kinase (PI3K) signalling or the mitogen-activated protein kinase (MAPK)
pathway [16]. An additional mechanism is related to abnormal serine and tyrosine phosphorylation of
the insulin receptor substrate-1 (IRS-1), which affects metabolic pathways both in classic insulin targets
(skeletal muscles and adipocytes) and ovaries [14,17]. Hyperinsulinaemia further exacerbates the
pathogenesis of PCOS by inhibiting the production of the insulin-like growth factor-1 (IGF-1) binding
protein in the liver, which leads to elevated circulating levels of IGF-1. This, in turn, stimulates ovarian
thecal cell androgen production [13,14]. Decreased glucose transporter 4 (GLUT4) in adipocytes,
which leads to reduced glucose uptake, is also a contributor to the development of InsR in PCOS
women [18]. In combination, hyperinsulinaemia and hyperandrogenaemia can disrupt follicle growth.
This is accompanied by menstrual irregularity, anovulatory sub-fertility, and accumulation of immature
follicles. A well-written review by Diamanti-Kandarakis describes the modulating action of insulin
on ovarian steroidogenesis as well as the importance of the insulin signalling pathway in the control
of ovulation [16]. A higher body mass index (BMI) exacerbates InsR in PCOS women more than
among those without PCOS [19,20]. Hyperandrogenism promotes android fat distribution in the upper
body, both in lean and obese women, when compared with non-PCOS women [21,22]. Androgens
seem to play a crucial role in the pathogenesis of metabolic syndrome (MetS) in PCOS subjects. MetS
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include a cluster of metabolic abnormalities such as obesity, hypertension, and dyslipidemia, and
this condition is related to InsR. The prevalence of MetS is higher in hyperandrogenic subjects than
non-hyperandrogenic anovulatory women affected by PCOS [23]. The incidence of glucose intolerance
and T2D in PCOS patients is 23-35% and 4-10%, respectively, depending on certain risk factors. In lean
PCOS women, the incidence is 10-15% and 1-2%, respectively [24,25]. A meta-analysis showed that
PCOS women are at a two-fold and a three-fold higher risk of being overweight or obese, compared
with non-PCOS individuals. Importantly, this prevalence is affected by ethnicity. Racial and ethnic
differences seem to modify the metabolic phenotype of PCOS when compared to InsR [26,27]. Lipid
profile abnormalities have also been reported in PCOS women [28]. Dyslipidemia in PCOS women is
characterized by high serum triglycerides (TG) and free fatty acid (FFA) concentrations, increased levels
of low-density lipoprotein cholesterol (LDL-c), and decreased high-density lipoprotein cholesterol
(HDL-c) levels [29]. Another metabolic consequence in PCOS includes hypertension. PCOS women
appear to be at increased risk for hypertension. The prevalence of PCOS premenopausal women is
estimated at between 9% and 25%, which is higher than the general population [30,31].
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Figure 1. Overview of insulin resistance in PCOS. LH = luteinising hormone. PCOS = polycystic ovary
syndrome. SHBG = sex hormone binding globulin. T2D = type-2 diabetes.

3. The Relevance of D-chiro-inositol and other Nutraceuticals in Insulin Signaling and InsR:
Preclinical Evidence

As the relationships between InsR and PCOS manifestations were established over the last decade,
the efficacy of insulin-sensitizing compounds has been studied in many experimental conditions [32,33].
DCI was proven to be effective not only on InsR but also on specific clinical outcomes associated with
PCOS (e.g., menstrual irregularity, and anovulatory cycles) [34,35]. Various nutraceutical interventions
have been investigated in experimental studies, which was followed by clinical trials. PCOS and InsR
share several pathophysiological factors. Therefore, it is not unlikely that other natural molecules with
insulin-sensitizing activity may improve the sensitivity to insulin in PCOS. For example, Ipomea Batatas,
Lagerstroemia Speciosa (banaba), and lignans extracted from flaxseed (Linum usitatissiumum) may be
considered as insulin-sensitizers and seem to improve several InsR-related metabolic alterations with a
safe pharmacological/nutraceutical profile.

3.1. D-Chiro-Inositol

Inositol and its stereoisomers are considered to be insulin sensitizers and act as mediators of
insulin action. The physiological functions of insulin are regulated by two inositol phosphoglycan (IPG)
mediators, containing either myo-inositol (MI) or DCI [36]. DCI is synthesized by an epimerase, which
is an insulin-dependent enzyme that converts MI into DCI. When InsR occurs, the conversion rate is
compromised, reducing the level of DCI in cells. Moreover, it has been demonstrated that the urinary
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excretion of DCI is reduced individuals affected by T2D [37]. Therefore, the exogenous administration
of DCI ensures adequate tissue content, which enhances the activity of the insulin-receptor and
reduces glucose levels [38]. Accumulating evidence suggests that DCI improves several cellular
events associated with InsR. The PI3K/protein kinase B (Akt) pathway is one of the most important
signalling pathways involved in InsR. DCI improves InsR modulating the PI3K/Akt pathway and
reducing the concentration of blood glucose in T2D rats. DCI also enhanced the GLUT4 expression
on skeletal muscle [39]. Additionally, DCI supports the enhancement of glucose conversion to ATP
by increasing its transport in the Krebs cycle. This is achieved by the stimulation of the pyruvate
dehydrogenase (PDH) enzyme [40]. Early studies also demonstrated that the administration of DCI
improves insulin sensitivity in thesus monkeys, which enhances insulin action on muscle glycogen
synthase and glycogen phosphorylase [41]. Along with these findings, supplementation with DCI
reduces InsR in numerous experimental models affected by hyperglycemia or T2D, which also indicates
that the DCI may be more effective than MI in restoring insulin sensitivity and glycogen synthesis.
However, the current status of the functional role of DCI in insulin action, and its deficit as related to
InsR, has been extensively reviewed [42].

3.2. Flaxseed Lignans

Flaxseed is an important source of several bioactive compounds, including «-linolenic acid (ALA)
and lignans. Recently, there has been a growing interest in lignans, a class of phytoestrogens, because
of their favourable effects on human health. Flaxseed is considered to be a functional food due to its
potential beneficial effects and valuable source of nutrients. Lignans are the major components of
flaxseed that have been identified as exhibiting health benefits on metabolic disorders associated with
PCOS. Flaxseed lignans are nonsteroidal phytoestrogens that have a chemical structure resembling
mammalian estrogens and, hence, it produces estrogen-like effects in mammals. Moreover, flaxseed
lignans are metabolized by intestinal bacteria to become bioavailable in the plasma [43]. Lignans derived
from flaxseed have gained growing attention due to their multiple biological activities. Flaxseed lignans
were reported to lower plasma cholesterol, blood pressure, and glucose concentrations. Additionally,
the antioxidant and anti-inflammatory properties of flaxseed lignans have been confirmed in rat models
of diabetes and in carbon tetrachloride-induced oxidative stress in rats [44—46]. However, although
the biological mechanism of lignans on insulin metabolism is not fully elucidated, the antioxidant
and anti-inflammatory activities have been considered to contribute to the anti-diabetic benefits of
lignans. Fukumitsu et al. investigated the effect of flaxseed lignan metabolites on the development
of diet-induced obesity in mice, showing that a high-fat diet (HFD) supplemented with lignans
reduced visceral fat, decreased serum insulin, and lowered total cholesterol concentrations. Moreover,
administration of flaxseed lignans induced the expression of adipogenesis-related genes, including
adiponectin, leptin, GLUT4, and peroxisome proliferator-activated receptor gamma (PPAR-y) [47].
These effects may improve obesity and reduce the risk of lifestyle-related diseases, including diabetes
and hypertension. Wang et al. also showed that the administration of flaxseed lignans to HFD mice
lowered fasting blood insulin and FFA levels, and improved insulin tolerance and homeostasis model
assessment of insulin resistance (HOMA-IR) by upregulating GLUT4 expression [48]. Recent findings
indicate that flaxseed lignans alleviate hepatic steatosis and insulin resistance by enhancing insulin
signalling and AMP-activated protein kinase (AMPK) activation [49].

3.3. Ipomea Batatas

Ipomoea batatas (L.) Lam, which is also known as sweet potato, has been used for many years in
folk medicine in various parts of the world. For example, the leaves are used to treat T2D by Akan
tribes of Ghana [50]. White-skinned sweet potato (WSSP) has also been used in Shikoku, Japan, as a
folk medicine to treat diabetes and other diseases. The major phytochemicals present in the leaves
of sweet potato are triterpenes, alkaloids, coumarins, flavonoids, saponins, tannins, and phenolic
acids [51]. The polyphenols present in the leaves showed various biological functions including radical
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scavenging properties and antidiabetic activity in vitro and in vivo, which may promote human health.
Several investigators found that several phytochemicals from sweet potato had glucose-lowering effects
in diabetic animal models. It has been demonstrated that powdered WSSP can improve symptoms of
diabetes and decrease high insulin concentrations in streptozotocin-induced diabetic rats and obese
Zuker fatty rats [52,53]. Furthermore, oral administration of WSSP to obese Zucker rats for longer than
six weeks was shown to reduce the symptoms of hyperinsulinemia and hyperlipidemia by decreasing
blood TG and FFA concentrations [53]. More recent in vivo antidiabetic studies have shown that
polyphenols such as flavones and caffeoylquinic acid modulate lipid metabolism. This improves
blood glucose concentration and reduces the incidence of diabetic complications caused by blood lipid
abnormalities and insR [54,55].

3.4. Lagerstroemia Speciosa (banaba)

The first animal study on the glucose-lowering effects of Lagerstroemia Speciosa (banaba) was
reported by Garcia in 1940 [56]. Several experimental studies in animal models have subsequently shown
that banaba extracts exert beneficial effects on blood glucose and lipid regulation. The glucose-lowering
effects of banaba have been attributed to corosolic, acid, and ellagitannins. The biological action of
these compounds on glucose and lipid metabolism involves multiple mechanisms, such as enhanced
cellular uptake of glucose, decreased gluconeogenesis, and regulation of lipid metabolism. These effects
may be mediated by PPAR, MAPK, and nuclear factor kappa-B (NF-kB) [57]. Leaf banaba extracts
effectively control hyperglycemia and hyperinsulinemia by reducing blood glucose, insulin, TG, and
glycated haemoglobin levels in diabetic mice. Furthermore, these effects were associated with increased
expressions of liver PPAR-o« mRNA and adipose tissue PPAR-y mRNA. These results suggest that the
banaba extract may improve insulin sensitivity by regulating PPAR-mediated lipid metabolism [58].
Three ellagitannins extracted from banaba have also shown to increase glucose uptake in isolated rat
adipocytes [59]. Miura et al. conducted numerous studies on diabetic mice treated with corosolic acid.
This compound, at a single dose of 10 mg/kg, significantly reduced blood sugar levels, which increased
the expression of GLUT4. The same authors showed that even a single dose of 2 mg/kg corosolic acid
may reduce blood sugar levels. This supports the hypothesis that corosolic acid improves glucose
metabolism by reducing InsR [60,61]. An interesting study examined the effects of corosolic acid on
osteoblastic bone formation. The effects appear to be mediated by the modulation of MAPK and
NF-kB [62]. Recent findings also suggest that corosolic acid protects renal damage in diabetic animals.
This compound inhibits the proliferation of diabetic glomerular mesangial cells via MAPK signalling
pathways [63].

4. Clinical Potential for improving InsR in PCOS

Numerous nutraceutical-based treatments have been investigated in women with PCOS to target
the metabolic outcomes associated with this condition (Table 1). The effects of oral DCI supplementation
in women with PCOS have been evaluated in several intervention trials with a daily dosage ranging
from 500 to 1200 mg, over a period from 6 to 24 weeks. A randomized, double-blind controlled trial
was conducted to determine whether oral DCI modulates an increase in the release of the DCI-IPG
mediator and an improvement in insulin sensitivity in women with PCOS. After six weeks of DCI
supplementation, it has been shown that increased release of DCI-IPG was significantly associated
with improved insulin sensitivity. These findings suggest that the DCI-IPG mediator may be a target
for therapeutic interventions in PCOS [64]. The oral administration of 1200 mg of DCI once daily for
six to eight weeks in 44 obese women with the PCOS improved ovulatory function and decreased
serum androgen concentrations, blood pressure, and plasma TG concentrations [65]. Genazzani et al.
observed that DCI administration positively affect insulin sensitivity in obese PCOS patients, revealing
that supplementation with DCI (500 mg/day for 12 weeks) is effective in those PCOS patients who have
a family history of T2D [66]. PCOS has been associated with increased generation of reactive oxygen
species (ROS). The resultant oxidative stress induces a pro-inflammatory state that may contribute to
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InsR and hyperandrogenism in PCOS [67]. Clinical evidence suggests that treatment with oral DCI
1000 mg daily decreases the production of ROS in ovarian follicular fluid obtained from women with
PCOS [68]. Although DCI has been shown to be effective against InsR, other integrative approaches
should be considered to expand the therapeutic armamentarium for women with InsR and PCOS.
Moreover, given the frequent concurrence of PCOS and InsR, and the mechanistic similarities between
these two conditions, it is crucial to investigate the clinical relevance of other natural molecules with
insulin-sensitizing activity. So far, there is a paucity of clinical studies exploring the insulin-sensitizing
activities of nutraceuticals in the PCOS setting. However, numerous safe and well-tolerable compounds
have emerged as relevant to treat InsR and, therefore, potentially useful to improve the sensitivity to
insulin in PCOS. Several randomized clinical trials have been conducted to investigate the efficacy
of flaxseed or its derivatives on glycemic control, insulin sensitivity, and lipid metabolism. A recent
randomized controlled clinical trial found evidence that flaxseed supplementation in patients with PCOS
may improve dyslipidemia, obesity, InsR, and inflammation. In particular, the results indicated that 12
weeks of flaxseed powder supplementation had beneficial effects on insulin metabolism parameters,
body composition, high-sensitivity C-reactive protein (hs-CRP), TG, HDL-c, leptin, and hirsutism [69].
A systematic literature search was performed by Pan et al. to assess the effects of flaxseed on lipid
abnormalities. Flaxseed or its bioactive compounds significantly reduced total cholesterol and LDL-c
concentrations. However, these changes were dependent on the type of intervention, initial lipid
concentrations, and characteristics of the subjects (e.g., sex or age) [70]. There are conflicting results
regarding the effects of flaxseed on glycemia or insulin sensitivity. A meta-analysis was conducted to
sum the data from 25 randomized clinical trials and draw a better conclusion. The results indicate that
flaxseed supplementation may improve glycemic control. The changes may be more pronounced with
whole flaxseed consumption, in subjects with higher baseline glucose levels, and in interventions longer
than twelve weeks [71]. Adiponectin, which is produced by adipocytes and acts as a modulator of
insulin sensitivity, has been shown to be low in insulin-resistant states. A multicentre study elucidated
the efficacy of Ipomoea batatas on circulating adiponectin levels and insulin sensitivity. After five months
of treatment, the study has shown an increase in adiponectin associated with the improvement of insulin
sensitivity and glycated haemoglobin in patients with T2D [72]. In addition, a recent clinical trial by Shih
et al. demonstrated that Ipomoea batatas effectively reduces glycated haemoglobin [73]. Several clinical
data from small intervention trials reveal that the extracts of banaba exhibit significant glucose-lowering
effects in humans. After two weeks of treatment, a dose-dependence study shows that oral formulations
of an extract from the leaves of banaba standardized to 1% corosolic acid exert a 30% decrease in blood
glucose levels of subjects affected by T2D [74]. In a study conducted by Tsuchibe et al., healthy subjects
with a baseline blood glucose level of 104 mg/dL received 10 mg corosolic acid extracted from banaba
and standardized to 18% corosolic acid. After two weeks of supplementation, the authors observed a
12% decrease in fasting and postprandial glucose concentrations [75]. Fukushima et al. also clarified
the effect of corosolic acid from banaba on post challenge plasma glucose levels in humans. In this
study, 31 subjects were orally administered 10 mg corosolic acid in a double-blind and cross-over design.
The capsules were given 5 min before a 75 g oral glucose tolerance test. Blood glucose levels were
measured at 30 min intervals for 2 h. The authors observed that the treatment lowered blood glucose
levels when compared with controls, and the values were statistically significant at the 90-min time
point [76]. Overall, these clinical studies demonstrate that DCI and the above-mentioned nutraceuticals,
alone and in combination, have potential clinical applications to improve insulin sensitivity and
metabolic abnormalities associated with PCOS.
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Table 1. Summary of the cited clinical studies and meta-analyses involving the use of d-chiro-inositol, flaxseed, sweet potato, and banaba.

Author Intervention Study Design Population Dosage/Duration Outcomes Results
11 women 1200 mg Hormones, plasma DCI, . . .
Chea[:f]et al DCI supplementation RCT with placebo (18-40y) twice daily DCI-IPG release, DC?}IgI? éf 1:;2;;:?;??5:3;:?2:;?&&
with PCOS for 6 weeks insulin sensitivity y
Nestler e al 44 obese women Hormones, lipid profiles, BP Increase of the action of insulin,
[65] ’ DCI supplementation RCT with placebo (18-40y) 1200 mg/day for 6 to 8 weeks la;mg ins}zﬂin T improvement of ovulatory function
- with PCOS p and decrease androgens, BP, and TG
Genazzani et al. 22 obese women Improvement of hormonal pattern,
[66] . DCI supplementation Intervention trial (age not reported) 500mg/day for 12 weeks Hormones and plasma insulin ~ especially LH and FSH, and restores
with PCOS insulin sensitivity
20 women - . -
DeLeo etal. DCI supplementation Intervention trial (age not reported) 500 mg twice daily for12 weeks Ox1d§t1ve stress on Reduction ° f the oxidation of
[68]. . follicular fluids thiol groups
with PCOS
. 41 patients . Reduction in body weight, HOMA-IR,
Hald[e(u(;l] etal. :Laxsfeeig‘i;fg Open label RCT (18-45y) 30 g/day for 12 weeks biﬁ:}:z:r(\)ilzcajlm ?;;r:lis TG, hs-CRP and leptin, and increase in
’ PP with PCOS P QUIKI, and HDL
Supplementation with . 1539 subjects . . .
Paf;g; al flaxseed and its Metz;—;rl‘éacl}szls of (age not reported) Meclllsﬁactli((:;;e 83 g %\;gﬁglan Blood lipid concentrations Reduction in total and LDL-cholesterol
derivatives with HC, T2D, or healthy i
Supplementation with 2080 subjects Whole flaxseed from 10-60 g

Mohammadi-Sartang et al.

whole flaxseed, flaxseed

Meta-analysis of

(mean age from 29.4 to 67.6 y)

ALA from1to 15 g;

Glucose control and Reduction in blood glucose, insulin
[71] oil. and lienan extract 25 RCTs with PCOS, HC, T2D, CVD, Lignans from 21 to 600 mg insulin sensitivity levels, and increase in QUIKI
. &n MetS, obesity, or healthy Duration from 2 to 48 weeks
Ludvik et al. Supplementation RCT with 61 patients 4 g/day Insulin Se.n.smwty.’ 2D . . [mp ro.vemen"c in HbAlc, TG' .
X . parameters, lipids, adiponectin, adiponectin, fibrinogen, and insulin
[72] with sweet potato Placebo (mean age 57.2 y) with T2D for 20 weeks oo O
hs-CRP, and flbrmogen sensitivity
Shih et al. Supplementation with RCT with (xii:;zng?sg?t ) 132 g/day for 8 weeks Anthropometric and Improvement in HbAlc, and reduction
[73] sweet potato no placebo par tic%pan l:s y y biochemical parameters in BMI
. . . 10 subjects
J ud[);ﬁ al Suss::zfgt;‘rio;a;valg; an IFOC;;:;L}:) (55-70y) 16,32 an2d fzzéﬂf/day for Blood glucose levels Reduction in blood glucose levels
With T2D
Tsuchibe et al. ;‘:_Es;s:g?ziﬁ;ztte}; RCT with fﬁfitgy 10 mg/day Postprandial blood glucose and  Inhibitory effect on postprandial blood
[75] from banaba no placebo (mean a é e57.7y) for 2 weeks anthropometric parameters glucose. Reduction in BMI.
Supplementation with 31 subjects
Fukushima et al. ppremen double-blind and (mean age 51.6 y) 10 mg;
corosolic acid extracted

[76]

from banaba

cross-over RCT

with T2D and impaired
glucose tolerance

different time points

Fasting plasma glucose

Lowering effect on post-challenge
plasma glucose levels

Abbreviation: D-chiro-inositol, DCI. Randomized controlled trial, RCT. Polycystic ovary syndrome, PCOS. Inositolphosphoglycan, IPG. Blood pressure, BP. Triglycerides, TG.
Luteinizing hormone, LH. Follicle-stimulating hormone, FSH. Homeostatic model assessment of insulin resistance, HOMA-IR. High-sensitivity C-Reactive Protein, hs-CRP. Quantitative

Insulin-Sensitivity Check Index, QUIKI. High Density Lipoprotein, HDL. Hypercholesterolemia, HC. Type 2 diabetes, T2D. Low-density lipoprotein, LDL. Cardiovascular disease, CVD.
Metabolic syndrome, MetS. a-linolenic acid, ALA. Glycated haemoglobin, HbAlc. Body mass index, BMIL
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5. Conclusions

There has been a continuous growth in the nutraceutical field in recent years, becoming a key
research area associated with health improvement and disease prevention [77-79]. PCOS is not
only a reproductive pathology but also a systemic condition and its etiopathogenesis is still not
completely understood. In the past, therapy for PCOS has been foused on treatment of hirsutism and
restoration of ovulation. Currently, a major challenge in PCOS pathogenesis research is to clarify the
complicated relationship between InsR and the development of PCOS. Recently, the approach of clinical
practice has been a progressive changed and improved toward prevention together with standard
treatments [80]. Pharmacologic reduction in insulin levels may ameliorate complications associated
with hyperinsulinemia and hyperandrogenemia and appear to offer a therapeutic modality for PCOS.
Current therapeutic tools are represented by hormonal contraceptives, anti-androgen drugs, and
insulin-sensitizing drugs. However, several of these approaches, including the use of insulin-sensitizing
drugs, often induce side effects. Therefore, new alternative strategies have been proposed to treat and
or prevent InsR and metabolic abnormalities in PCOS [81]. The use of nutraceutical compounds may
offer a new avenue for several adjunctive treatment strategies [82,83]. Based on available evidence, DCI
may improve metabolic/glycemic abnormalities in PCOS patients. Whether this translates into clinical
benefit with a reduced onset of metabolic complications remains to be confirmed. Given the lack of
significant adverse effects, DCI is an attractive treatment option to modulate insulin metabolism and
orchestrate ovarian function. Moreover, a relatively large number of nutraceuticals have been studied
to improve metabolic parameters and InsR in PCOS patients. Although recommendations for clinical
use are premature, bioactive compounds from flaxseed, sweet potato, and banaba may target relevant
underlying pathways involved in the metabolic dysfunctions associated with PCOS. The results
discussed in this case provide preliminary evidence for the use of these nutraceuticals to improve a
glycemic profile and cardiometabolic abnormalities in women with PCOS. We have highlighted the
possibility that these nutraceticals may potentially expand the armamentarium available to physicians.
However, clinical data are still preliminary, and the results need to be replicated in other settings,
especially PCOS, and on well-selected populations. Higher powered trials are required to expand
limited literature and investigate whether these nutraceuticals may be an adjunctive treatment to target
clinical metabolic outcomes associated with PCOS.
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