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Abstract: Periodontitis is a chronic and multifactorial inflammatory disease that can lead to tooth
loss. At present, the diagnosis for periodontitis is primarily based on clinical examination and
radiographic parameters. Detecting the periodontal pathogens at the subgingival plaque requires
skilled professionals to collect samples. Periodontal pathogens are also detected on various mucous
membranes in patients with periodontitis. In this study, we characterized the oral microbiome profiles
from buccal mucosa and supragingival space in a total of 272 healthy subjects as a control group,
and periodontitis patients as a disease group. We identified 13 phyla, 193 genera, and 527 species
and determined periodontitis-associated taxa. Porphyromonas gingivalis, Tannerella forsythia, Treponema
denticolar, Filifactor alocis, Porphyromonas endodontalis, Fretibacterium fastiosum and Peptostreptococcus
species were significantly increased in both the buccal mucosa and the supragingival space in
periodontitis patients. The identified eight periodontitis-associated bacterial species were clinically
validated in an independent cohort. We generated the prediction model based on the oral microbiome
profiles using five machine learning algorithms, and validated its capability in predicting the status of
patients with periodontitis. The results showed that the oral microbiome profiles from buccal mucosa
and supragingival space can represent the microbial composition of subgingival plaque and further
be utilized to identify potential microbial biomarkers for the diagnosis of periodontitis. Besides,
bacterial community interaction network analysis found distinct patterns associated with dysbiosis
in periodontitis. In summary, we have identified oral bacterial species from buccal and supragingival
sites which can predict subgingival bacterial composition and can be used for early diagnosis of
periodontitis. Therefore, our study provides an important basis for developing easy and noninvasive
methods to diagnose and monitor periodontitis.
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1. Introduction

Periodontitis is a multifactorial and inflammatory disease that affects about 30%–35% of the
global population and about 70% of individuals 65 years of age and older. If untreated, periodontitis
results in periodontal tissue destruction and loss of teeth eventually. Moreover, it increases with age
and is closely associated with systemic diseases, such as cardiovascular disease, diabetes, and even
Alzheimer’s disease, etc. Periodontal disease is an inflammatory disease caused by host immune
responses to bacterial infections. Bacteria in the periodontal pocket can easily access the inflamed
epithelium and travel to other body sites via the bloodstream [1]. Thus, the inflammations caused by the
periodontitis do not only remain in the oral cavity, but could be spread throughout the body. Three main
well-known mechanisms: metastatic infection, metastatic injury, and metastatic inflammation explain
how the periodontitis is connected with the systemic diseases [2]. Recently, it has been reported that
the treatment of the periodontitis improves the systemic diseases [3] and saliva could be used as a
biomarker for one of the systemic disease, cystic fibrosis [4]. As described above, the traveling bacteria
could cause the systemic diseases and worsen the systemic diseases especially for the patients with
underlying diseases. Therefore, early diagnosis and monitoring of periodontitis can be a good practice
for the prevention of the systemic disease as well as the periodontal disease. At present, the diagnosis
of periodontitis is primarily based on clinical examination and radiographic parameters [5] that
appear only when periodontitis progresses. Unfortunately, there is no microbiologic or histopathologic
assessment for clinicians to support the diagnosis. Commensal microbiota in healthy oral cavity live in
harmonious symbiotic relationship, while the initiation of periodontitis is closely associated with a
dramatic change of microbial community referred to as dysbiosis [6]. Therefore, the development of
peritonitis-associated bacterial panels could provide the early diagnosis for the periodontitis and the
prognosis of the disease after treatments.

Gram-negative Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia were frequently
isolated from dental plaques in periodontal patients and were considered specific pathogens of
periodontal disease [7]. A strong correlation between the proportions of several cultivable bacteria and
periodontal disease has been reported [8–10]. More recently, culture-independent molecular techniques
were applied to identify oral bacteria more abundant in periodontal lesions [11,12]. During the past
10 years, the next-generation sequencing (NGS) of bacterial 16S rRNA (ribosomal RNA) gene has
provided us with a deeper understanding of the complexity of the microbiome [13,14].

Periodontitis is a chronic inflammatory disease initiated by the colonization of subgingival
periodontal pathogens. Although detecting the periodontal pathogens at the subgingival plaque
should be the most definitive method to identify the cause of the disease, it requires skilled professionals
for sample collection. It has been shown that periodontal microorganisms are not only restricted to
subgingival pockets, but are also found on various mucous membranes in patients with periodontitis
including buccal mucosa and supragingival plaque [15–17]. Thus, detecting periodontal pathogens
in the buccal mucosa or supragingival space could be easily performed by non-professionals in a
non-invasive manner, and aid the diagnosis of the disease. In addition, if a self-diagnostic device based
on the peritonitis-associated bacterial panels is developed, it could be easily applied into the samples
collected from the buccal mucosa or supragingival space.

A previous study showed that gut human metagenomic data from healthy subjects and patients
can be used as biomarkers to predict diseases using machine learning algorithms [18]. Several studies
also reported that selected features from the whole microbiome data and machine learning algorithms
can be applied to predict the multiple diseases [19,20]. Interestingly, Chen et al. showed that the oral
microbiome profiles can be potential biomarkers for arthritis screening [21], and the compositions of
the microbiota communities from 76 subgingival plagues samples have been used to generate models
for predicting the clinical status of patients with periodontal diseases [22]. However, the prediction of
periodontitis using oral microbiome profiles from buccal mucosa or supragingival space has not been
studied yet. Therefore, we hypothesized that the diversity of the microbiome community is different
between the healthy group (control group) and the periodontitis group (disease group) in the buccal
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mucosa and supragingival space. In other words, we set a null hypothesis as: “There is no difference
of microbiome diversity in healthy group and disease group.” To test the hypothesis, we characterized,
compared, and tested the diversity of the oral microbiome profiles from the buccal mucosa and
supragingival space, both in 62 healthy subjects and 210 periodontal patients in Korea. Furthermore,
we clinically validated the identified periodontitis-associated microbiome, using the plaques from an
independent cohort (105 healthy subjects and 116 periodontal patients) not used in the microbiome
analysis. Additionally, we developed bioinformatic pipelines to identify and test potential microbial
biomarkers for the early diagnosis of periodontitis and the monitoring of periodontitis progression.

2. Materials and Methods

2.1. Study Population and Clinical Examination

A total of 272 subjects (healthy subjects: 62, periodontitis subjects: 210) were recruited at the
Department of Periodontics, Pusan National University Dental Hospital (Yangsan, Korea). Prior to
clinical examination, full medical and dental history was obtained through interviews. In general,
we excluded individuals who were pregnant or breastfeeding, had systemic diseases that may affect
periodontal status, or had received antibiotics in the last 6 months or periodontal therapy (scaling and
root planning) in the last 3 months. Similarly, a person on anti-inflammatory drugs, a subject with acute
infection (e.g., herpetic gingivostomatitis) or chronic mucosal lesion (e.g., pemphigus, pemphigoid)
of the oral cavity, or a smoker was excluded. Patients with periodontitis had moderate-to-severe
periodontitis, including clinical attachment loss > 3 mm, and radiographic evidence of extensive
bone loss. The healthy control group consisted of individuals with clinically healthy periodontal
tissues (low scores of bleeding on probing in < 10% of the sites and no sites with PD > 3 mm or
clinical attachment loss). Full-mouth clinical examinations including probing depth (PD), clinical
attachment level (CAL), gingival index (GI), and plaque index (PI) were carried out by one practitioner.
The experimental protocol was approved by the Institutional Review Board of Pusan National
University. Even though the sample size in the current study was larger than those of previous
microbiome studies associated with periodontal disease [14,23–26], a power analysis for sample size
was performed using a web application of microbiome power calculator, which is based on Monte
Carlo simulations and Wilcoxon–Mann–Whitney test [27]. The simulation results demonstrated that
the current study with 272 samples had sufficient power (equal or greater than 0.8 for both buccal and
supragingival parameters) to detect at least significant differences in community diversity between
groups, as well as differences in abundance of the 20 most important operational taxonomic units
(OTUs).

2.2. Plaque Sample Collection

Buccal and supragingival plaque samples were collected with the full-mouth periodontal
examination. All participants were requested to refrain from food for 2 h and oral hygiene such as
brushing or flossing the teeth for 2 h before sampling. Buccal swab samples were obtained from the
mucosa of both cheeks. Supragingival plaque samples were collected from each participant from
the mesiobuccal surface of upper or lower 1st molars. Samples were collected after isolating the
selected sampling site with cotton rolls and air drying gently. All samples were collected with a sterile
microbrush and placed in a separate sterile 1.5-mL microcentrifuge tube. Plaque samples were stored
at −80 ◦C for subsequent processing.

2.3. DNA Preparation and 16s rRNA Sequencing

DNA was extracted using MasterPure Gram positive DNA purification kit (Lucigen, Middleton,
WI, USA) according to the recommended manufacture protocol. Each sequenced sample was used
to prepare the sequencing library according to the Illumina 16S Metagenomic Sequencing Library
protocols. The quality and quantity of the DNA sequencing library were assessed by PicoGreen
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(Molecular Probes, Eugene, OR, USA) and Nanodrop (Thermo Fisher Scientific, Waltham, MA, USA).
The 16S rRNA genes were amplified from input genomic DNA using 16S V3-V4 primers and a
subsequent limited-cycle amplification step was performed with multiplexing indices and Illumina
sequencing adapters. The final products were pooled and normalized by the PicoGreen, and the size of
libraries was verified using the LabChip GX HT DNA High Sensitivity Kit (PerkinElmer, Waltham, MA,
USA). Finally, the libraries were sequenced using MiSeq or HiSeq 2500 platforms (Illumina, San Diego,
CA, USA).

2.4. Microbiome Analysis and Statistical Analysis

Basic microbiome analyses have been performed using the QIIME2 [28] and associated plugins.
To measure alpha diversities, abundance-based coverage estimator (ace) metric (for richness), Shannon’s
index (for evenness), and Faith’s phylogenetic diversity (for alpha rarefaction plots) method were
used. For the beta diversity analysis, the unweighted UniFrac distance was used. Using the distance
matrix, principal coordinates analysis (PCoA) has been performed. Kruskal–Wallis pairwise tests
and permanova tests were used to assess the statistical significances between or among groups for
alpha and beta diversities, respectively. To assign taxonomy to the unique representative sequences,
pre-trained Naive Bayes classifier, using Human Oral Microbiome Database (HOMD) 16S rRNA
Extended RefSeq sequences (version 15.1) [29], were used. Centered log-ratio (CLR) method was used
to compute the relative abundance of bacterial species with the average number of reads ≥ 5 in a
sample, and the Pearson correlation was used to assess the association between bacterial species and
demographic characteristics/clinical parameters. To statistically test differential abundance of bacterial
species between healthy and periodontitis groups, DESeq2 [30] and LefSe [31] tools were used. For
the prediction models for microbial biomarkers, five different machine learning algorithms, K nearest
neighbor (KNN), LogitBoost, logistic model tree (LMT), support vector machine (SMO), and Naïve
Bayes, implemented in WEKA 3.8 software [32] were used. The bacterial community interaction
networks have been constructed using SparCC method [33] and visualized in Cytoscape software [34].
Detail bioinformatic methods were described in the Supplementary Methods.

2.5. Microbiome Validation using Real-Time Polymerase Chain Reaction (RT-PCR)

Species-specific primers and probes targeting the variable regions of the 16S ribosomal RNA
(r RNA) of the selected strains were used for RT-PCR. Species-specific primers were designed by
AlleleID (Premier Biosoft, Palo Alto, CA). List of primers used in this study is in Table S1. The reaction
conditions for amplification of DNA were 95 ◦C for 10 min, 40 cycles of 95 ◦C for 30 s, and 60 ◦C for 30 s.
The RT-PCR analyses were conducted using a real-time PCR system (Applied Biosystems, Thermo
Fisher Scientific, Waltham, MA, USA). Total bacterial count was determined by 16S rRNA. The relative
abundance of the target bacteria was calculated using the ∆∆Ct method and was normalized to
16S rRNA.

2.6. Data Avalialbity

The raw sequencing data have been deposited at NCBI GenBank under BioProject ID PRJNA576446
(BioSample SAMN12993997 - SAMN12994540).

2.7. Ethics Statement

All donors provided written informed consent, and their rights were protected according to
the protocol that was reviewed and approved by the Institutional Review Board of Pusan National
University (IRB No. PNUDH-2017-023).
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3. Results

3.1. Microbial Community Diversities

In total, 272 subjects—62 healthy subjects (H) and 210 periodontitis subjects—were recruited
and the plaque samples were obtained from both the buccal mucosa (B) and the supragingival site
(S) (Table 1 and Table S2). The extracted and targeted amplified DNA (16S rRNA) was used for the
sequencing library construction, followed by sequencing in the illumina platforms. The raw sequencing
reads were processed using the QIIME2 pipelines [28]. A total of 42,090,259, quality-filtered sequencing
reads were obtained at an average of 77,372 reads per sample and the filtered reads were grouped
into 14,555 unique representative sequences (features). To perform accurate taxonomy assignments,
we used a pretrained Naïve Bayes classifier using HOMD 16S rRNA Extended RefSeq sequences [29]
and the features were successfully classified into 13 phyla, 28 classes, 50 orders, 93 families, 193 genera,
and 527 species.

Table 1. Demographic characteristics and clinical parameters of healthy subjects and patients with
periodontitis (mean ± standard deviation).

Characteristic Healthy (n = 62) Periodontitis (n = 210) P-Value

Age (years) 28.45 ± 8.64 54.28 ± 10.92 < 0.01
Gender 1M: 25, 2F: 37 M: 116, F:94 3NS

Full mouth examination
4PD (mm) 2.4 ± 0.21 3.59 ± 0.92 < 0.01

5CAL (mm) 2.41 ± 0.21 4.08 ± 1.13 < 0.01
6GI 0.12 ± 0.11 0.98 ± 0.52 < 0.01
7PI 16.48 ± 14.17 61.02 ± 24.17 < 0.01

1M: Male, 2F: Female, 3NS: not significant, 4PD: probing depth, 5CAL: clinical attachment level, 6GI: gingival index,
7PI: plaque; For the Age, PD, CAL, GI, and PI, the difference between two groups was assessed using the Wilcoxon
rank sum test. For the Gender, Pearson’s Chi-squared test with Yates’ continuity correction was used.

At the phylum level, the eight most abundant phyla were Firmicutes, Proteobacteria, Actinobacteria,
Bacteroidetes, Fusobacteria, Saccharibacteria (TM7), Spirochaetes, and Synergistetes. Compared with the
disease status subject groups (healthy and periodontitis), the relative abundance of Firmicutes and
Bacteroidetes in the healthy group were slightly lower than in the periodontitis group (40.00% and
8.37% vs. 43.47% and 11.29%). On the other hand, Proteobacteria and Actinobacteria showed an opposite
trend (24.05% and 18.29% vs. 20.86% 13.10%). In the case of the comparison between sampling
sites, the relative abundance of Firmicutes was much higher in the buccal mucosa compared with
the supragingival space (50.12% vs. 35.24%) (Figure 1a). We also divided the samples into the
four subject groups (Healthy_Buccal: HB, Healthy_Supragingival: HS, Periodontitis_Buccal: PB,
and Periodontitis_Supragingival: PS). The overall community composition in each subject group was
depending on the sampling sites rather than the clinical status (Figure 1b).
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Figure 1. Relative abundance of bacterial phyla grouped by the disease status, sampling sites, and four
subject groups. (a) Disease status; Healthy (H) vs. Periodontitis (P) and sampling sites; Buccal mucosa
(b) vs. Supragingival space (S) (B) four subject groups; Healthy_Buccal (HB), Healthy_Supragingival
(HS), Periodontitis_Buccal (PB), and Periodontitis_Supragingival (PS).

The richness of the total amount of bacteria measured by Ace index and the rarefaction curves of
community diversity (faith’s phylogenetic diversity) for the disease status and sampling sites showed
that the diversity in the periodontitis group and the B group was higher (Figure 2a and Figure S1),
although the evenness (Shannon index) between the H group and periodontitis groups was not
significantly different (Figure 2b). Similar to the relative abundance result, the alpha diversity among
four subject groups was influenced by the sampling site (right panels of Figure 2a,b). The beta diversity
analysis revealed that the differences for all comparisons in disease status, sampling site, and four
subject groups were statistically significant. PCoA analysis showed that the individual samples were
clustered in separate groups (Figure 2c).

3.2. Identification of Bacterial Species Relevant to Clinical Parameters and Enriched in the Healthy and
Periodontitis Groups

To identify the bacterial species associated with the demographic characteristics, age and gender,
and four clinical parameters, correlations between the normalized bacterial relative abundance and the
measurements of parameters were calculated using the Pearson correlation method. A total of 12 species
were significantly associated with 5 parameters (Age, PD, CAL, GI, and PI) (Table S3). Interestingly,
P. gingivalis, a well-known specific periodontal pathogen, was associated with all parameters except
gender and the other specific periodontal pathogens, T. denticola and T. forsythia were associated with
PD, CAL, and GI. A heatmap plot for the distributions of 12 highly associated species clearly showed
that the relative abundance profiles of bacterial species in periodontitis group were pretty similar
(Figure 3).
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Figure 2. Alpha and beta diversities of bacterial communities grouped by the disease status, sampling
sites, and four subject groups. Kruskal–Wallis pairwise test was used to assess the statistical significance
between groups for the alpha diversities. In case of beta diversities, permanova test was used to evaluate
the statistical significance between groups. (a) Alpha diversity—richness (abundance-based coverage
estimator; Ace) (b) alpha diversity—evenness (Shannon diversity index), (c) Principal coordinate
analysis plots based on unweighted UniFrac distance. Adjusted P values provided on each plot are for
the indicated comparisons.
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Figure 3. A heatmap of 12 highly correlated bacterial species. Pearson correlation was used to evaluate
the association between bacterial abundances and clinical parameters (age, gender, PD, CAL, GI, and PI)
and if the adjusted p-value was less than 0.001, the bacterial species was defined as a highly correlated
bacterial species (Table S3). The heatmap was generated using the relative abundance normalized by
centered log-ratio (CLR) methods (see supplementary methods).

Next, we investigated the bacterial species that demonstrated significant differences in their
abundances between the H and periodontitis groups. When we did the test using DESeq2 method [30],
50 (buccal site, H: 11 and P: 39) and 43 species (supragingival site, H:1 and P: 43) were differentially
distributed with statistical significance between two groups (Figure 4a and Table S4). When we checked
the bacterial species enriched in the periodontitis between two sampling sites, 21 bacterial species
were common to both sampling sites (Figure 4b) and the overlap between two groups was statistically
significant (p-value: 1.607×10−15, hypergeometric test). We also performed a similar analysis using
the LefSe method [31] (Figure S2). Through both analyses, we found 8 species in both buccal and
supragingival samples of periodontitis patients significantly increased compared with the healthy
subjects. The “red” complex including P.gingivalis, T. forsythia, and T. denticola were significantly
increased in both buccal and supragingival samples in periodontitis patients. In addition, F. alocis,
P. endodontalis, F. fastiosum, and Peptostreptococcus species were also significantly increased in both
sampling sites in periodontitis patients. In buccal samples, M. faucium, C. rectus, and several Prevotealla
species were increased as well. In supragingival samples, Treponema species including T. socranskii and
Prevotella species were also significantly increased. Taken together, many of the periodontal pathogens
that have been reported to be found in the subgingival plaques were also detected in buccal and
supragingival samples and significantly increased in periodontitis patients. These results indicate
that bacterial composition of subgingival plaque associated with periodontitis can be predicted by
microbiome analysis of buccal mucosa or supragingival plaque samples without analyzing subgingival
plaque microbiome.
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Figure 4. Bacterial species enriched in the H and periodontitis groups. (a) Volcano plots for the bacterial
species for the different bacteria species abundance. DESeq2 was to use to test the statistical significance.
Differential abundance of bacteria species was defined as those with changes of at least 4-fold between
samples at a false discovery rate (FDR) of 0.001%. The x and y axes in the plot present the magnitude of
fold changes (log2 transformed) and the adjusted p-value (-log10) by Benjamini–Hochberg correction,
respectively. Dominant bacterial species in the P group were represented as red dots and dominant
bacterial species in the H group were shown as blue dots in the plot. (b) Venn diagram of the number
of differential bacterial species common/unique to the buccal (green) and supragingival (red) sites.
(c) The ROC plots and AUC for four different feature sets. ALL; all bacteria species, DESeq1; the
enriched bacterial species identified DESeq2, LefSe; the enriched bacterial species identified LefSe,
and DESeq2+LefSe; union of DESeq2 and LefSe sets. Right panel: buccal site samples with logistic
model tree (LMT) algorithm and left panel; supragingival site samples with LogitBoost algorithm.

3.3. Evaluation of Microbial Biomarkers for the Periodontitis

To discover the potential microbial biomarkers for periodontitis, we established a pipeline to
test and evaluate the prediction models. In total, 266 and 259 filtered bacterial species were used
for the input feature dataset to generate prediction models in buccal and supragingival sample sites,
respectively. First, we evaluated the performance of the classification using all bacterial species (ALL)
and five different machine learning algorithms including KNN, LMT, LogitBoost, SMO, and Naïve
Bayes (Table S5). The highest accuracy for the buccal site was 89.3% (LMT algorithm) and for the
supragingival site, it was 83.8% (LogitBoost). The F1 score performance measurement for the tests was
between 0.910 and 0.931 (buccal) and 0.805–0.899 (supragingival). The sensitivity for the tests was
between 0.876 and 0.967 (buccal) and 0.729–0.952 (supragingival), and the specificity was between
0.468 and 0.839 (buccal) and 0.306–0.726 (supragingival). Next, we explored subsets of bacterial species
to establish potential core microbial biomarkers. We used the identified bacterial species having
differential abundance between the H and periodontitis groups. Three different feature subsets: (1) the
enriched bacterial species identified DESeq2 (DESeq2), (2) the enriched bacterial species identified
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LefSe (LefSe), and (3) the union of the DESeq2 and LefSe sets (DESeq2+LefSe) were used to perform the
same classification tasks done by the ALL set. In the case of the buccal site, the best performance was
achieved by using the DESeq2+LefSe subset and KNN algorithm, and the accuracy and F1 score for the
test were comparable to the use of all bacterial species (For accuracy, ALL: 89.3% vs. DESeq2+LefSe:
88.6%; For F1 score, ALL: 0.931 vs. DESeq2+LefSe: 0.926). In the case of the supragingival site,
the DESeq2+LefSe subset and LogitBoost algorithm gave the best performance and more interestingly,
the accuracy and F1 score of the test were higher than the ones of the test with the ALL set (For accuracy,
ALL: 83.8% vs. DESeq2+LefSe: 85.3%. For F1 score, ALL: 0.899 vs. DESeq2+LefSe: 0.905). Additionally,
we used the area under the ROC curve (AUC) to evaluate the performance of the prediction models
generated by different feature subsets and algorithms (Table S5). The results demonstrated that the
performance using the DESeq2 or DESeq2+LefSe subsets were similar or comparable to the ALL set
in the buccal site (Figure 4c). For the supragingival site, the AUC value of DESeq2 subset case was
the highest among all tests (Figure 4c). Therefore, the current analysis revealed that oral microbiome
profiles were able to distinguish the healthy subjects and periodontitis patients and that the selected
bacterial species could be used as potential microbial biomarkers to diagnose periodontitis.

3.4. Clinical Valdiation of the Identified Periodontitis-Associated Microbiome

To clinically evaluate the periodontitis related microbiome identified from the microbiome analysis,
we selected 8 bacterial species (Filifactor alocis, Fretibacterium fasdtidiosum, Porphyromonas endodontalis,
Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia, Treponema denticola, and Treponema
maltophilum) enriched in the periodontitis group from both the buccal mucosa and supragingival space
and measured the relative abundance of those bacterial species in the subjects from an independent
cohort (total of 221 individuals; 105 healthy subject and 116 periodontal patients) which was not used
for the analysis. The same sampling procedure has been performed to obtain plaques from the buccal
mucosa and supragingival area from the subject in the cohort. RT-PCR analysis of the 8 bacterial
species showed that the relative abundance of the healthy group and the periodontitis group was
significantly different (Figure 5).
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Figure 5. Clinical validation of the identified microbiome related to periodontitis. Real-time PCR
(RT-PCR) was performed to measure a relative abundance of bacterial species in the sample.
The difference between two groups (H: healthy group, P: periodontitis group) was assessed using the
Wilcoxon rank sum test. The * indicates that the p-value for the test is less than 0.01.
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3.5. Bacterial Community Interaction Networks

Previously, it has been reported that oral dysbiosis characterized by an imbalance in the relative
abundance of microbial species and a shift from beneficial symbiotic bacteria to pathogenic bacteria
play important roles in the development of periodontal diseases [6]. We investigated the oral dysbiosis
by checking the interactions among bacterial species in healthy and periodontitis groups. First,
we assessed the co-occurrence of the bacterial species by constructing correlation networks. The top 100
significant absolute correlations among bacterial species were selected and visualized in Figure 6a,b.
In the case of the buccal site, several independent modules existed and among them, a distinct module
consisting of periodontal pathogens (red nodes) such as Porphyromonas, Treponema, Tannerella, Filifactor,
and Prevotella was identified in both healthy and periodontitis groups. Interestingly, the size of the
module (the number of species node) in the periodontitis group was larger than the one in the healthy
group. When we checked the average number of neighbors which is indicating the average connectivity
of a node in the network, the average number of neighbors in the periodontitis network (3.125) was
greater than the one in the healthy network (3.030). Therefore, the connectivity of the module in
the periodontitis group was denser than the one in the healthy group. On the other hand, in the
case of the supragingival site, there was a big network module including both commensal bacteria
species and periodontal pathogens. Similar to the buccal site, more periodontal pathogens and higher
connectivity were observed in the periodontitis group (the average number of neighbors; periodontitis:
3.636 vs. healthy: 3.571). Next, we extracted common modular structures between the networks in
healthy and periodontitis groups from two sampling sites. As expected, we identified a noticeable
interconnected module consisting of 10 periodontal pathogens in the periodontitis group. In the case
of the healthy group, we observed few small sub-modules including the bacterial species enriched in
the healthy group identified (Figure 6c). Overall, the network-based approach analysis has shown that
even though commensal bacteria and periodontopathogens were preserved in the network for both
healthy and periodontitis groups, the network topology of the interconnected module consisting of
periodontopathogens was altered and furthermore, the connectivity of the module was enforced.
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Figure 6. Bacterial community interaction network analysis. The co-occurrence bacterial community
networks were constructed using SparCC method and visualized in Cytoscape software. The intersection
networks between two networks between buccal and supragingival sites were obtained using Cytoscape
merge tools. (a) Interaction networks in buccal site, (b) interaction networks in supragingival site,
and (c) intersection networks in the H and periodontitis groups. Diamond shape node represents the
highly correlated bacterial species with clinical parameters. The differential bacterial species between
healthy and periodontitis groups were colored as blue (healthy) or red (periodontitis). The directions
of the correlation between two bacterial species were annotated as edge colors; red color: negative
correlation, green color: positive correlation.
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4. Discussion

Periodontitis is a chronic inflammatory disease caused by colonization of subgingival periodontal
pathogens. It has been shown that periodontal microorganisms are not only restricted to subgingival
pockets, but are also found on various mucous membranes in patients with periodontitis [14,16,17].
Microbiota on buccal mucosa and in supragingival area can be collected easily, noninvasively,
and repetitively. Therefore, sampling the microbiota on oral mucosa or supragingival area is a
promising way to diagnose periodontal diseases. Some investigations have demonstrated that
the buccal mucosa microbiota in periodontally healthy and periodontitis subjects differ, but were
almost based on traditional identification of bacteria in cultivations or culture-independent molecular
studies [35]. Many studies using NGS have used subgingival plaque to assess the composition of the
microbial periodontal community [24,25,36]. The subgingival plaque sampling has an advantage in
more accurately monitoring the condition of periodontitis than the sampling of other sites. However,
the subgingival plaque sampling is an invasive method and it requires specialized techniques to
perform. In addition, if not properly sampled, bacteria species from nearby the subgingival sites
may be contaminated, and the results of the bacterial community analysis could be in the wrong
direction. Therefore, there is a need for a sampling site that is easy to carry out in a non-invasive
manner and that reflects the condition of periodontitis. To identify reliable alternative sampling sites,
it is important to obtain and analyze a large number of samples. In the current study, we collected a
total 544 plaques samples (both buccal mucosa and supragingival site) from 272 subjects (62 healthy
subjects and 210 patients with periodontitis) to increase the reliability of the analysis. Up to this date,
only few studies have reported that buccal mucosal membrane and supragingival sampling could
serve as alternative sources for detecting and enumerating known and novel bacterial biomarkers of
periodontitis [14,15]. Thus, one of purpose of this study was to determine if buccal and supragingival
sampling could be used as a non-invasive detection method of indicator taxa for periodontitis instead of
conventional subgingival plaque sampling. A relatively simpler alternative sampling protocol would
greatly facilitate the detection of periodontitis-associated bacterial biomarkers in disease monitoring.

In our research, we used 16S rRNA gene sequencing to evaluate and compare the different
characteristics of buccal and supragingival samples between healthy subjects and periodontitis patients.
The richness of the total amount of bacteria measured by alpha diversity showed that the diversity in the
periodontitis group was higher. Other previous studies have also reported that the bacterial diversity
was higher in periodontitis patients compared with the healthy subjects [14,24]. We hypothesized
that the microbiome community diversity is different between the healthy group (control group) and
the periodontitis group (disease group) in the buccal mucosa and supragingival space in the present
study. The community diversity analyses (alpha and beta diversities) showed that there is a statistically
significant difference between the healthy group and the periodontitis group. Therefore, we were able
to reject the null hypothesis, “There is no difference of microbiome diversity in healthy group and
disease group”, which means that there was difference of the bacterial composition between the healthy
group and the periodontitis group. To identify the bacterial species associated with the demographic
characteristics (age and gender) and four clinical parameters (PD, CAL, GI, and PI), correlations
between bacterial relative abundance and the measurements of parameters were calculated. A total of
12 species were significantly associated with 5 parameters (Age, PD, CAL, GI, and PI). Interestingly,
P. gingivalis was associated with all parameters except gender, and T. denticola and T. forsythia were
associated with PD, CAL, and GI. Chen et al. have reported that subgingival P. gingivalis, T. denticola,
and T. forsythia exhibit a very strong relationship with pocket depth and clinical attachment level [22].
Also, Texal et al. have reported that at low supragingival plaque levels, P. gingivalis was significantly
associated with CAL, while at high supragingival plaque levels, T. forsythia and P. gingivalis was
associated with CAL [37].

Next, we investigated the bacterial species that demonstrated significant differences in their
abundances between periodontitis patients and healthy subjects. Through DESeq2 and LefSE analysis,
we found 8 species in both buccal and supragingival samples of periodontitis patients that were
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significantly increased compared with the healthy subjects. Among them, the “red” complex including
P. gingivalis, T. forsythia, and T. denticolar was significantly increased in both buccal and supragingival
samples in periodontitis patients. In addition, F. alocis, P. endodontalis, Fretibacterium fastiosum,
and Peptostreptococcus species were also significantly increased in both sampling sites in periodontitis
patients. F. alocis has been identified as a potential pathogen in previous studies [38,39]. It is relatively
resistant to oxidative stress and can induce inflammatory responses. Moreover, in co-culture with
P. gingivalis, F. alocis showed increased invasiveness [40]. P. endodontalis has been reported to be
associated with periodontitis [12]. Although P. endodontalis is highly sensitive to oxygen and is difficult
to cultivate from clinical samples [17], it was detected in both buccal and supragingival samples in
periodontitis patients. Peptostreptococcus is also known as a potential periodontal pathogen and
it can coaggregate with Fusobacterium nucleatum and P. gingivalis [41]. Fretibacterium belongs to the
phylum Synergistetes and has been detected in subgingival plaque from periodontitis patients [42,43].
Taken together, our result suggests that periodontal pathogens increase not only in the subgingival
space, but also in the buccal mucosa and supragingival space. Thus, their presence can be detected in
these sampling sites to aid the diagnosis of periodontitis. More importantly, we clinically validated the
periodontitis-associated microbiome using an independent cohort which consisted of 211 individuals.

It is well known that the dysbiosis characterized by an imbalance of microbial species abundance
plays an important role for the transition from periodontal health to periodontitis [6]. As expected,
we observed that periodontal pathogens were highly enriched in the periodontitis group, which could
be a signature of a shift from beneficial symbiotic bacteria to pathogenic bacteria. However, it is
still difficult to answer the question of how overall relationships among bacterial species would be
altered in periodontitis just by inspecting the increase of periodontal pathogens in the periodontitis
group. To address the question, we constructed the co-occurrence network and identified a distinctive
module consisting of known periodontopathogens that were observed in both H and periodontitis
groups. Remarkably, the module had many positive co-correlations among periodontopathogens in the
periodontitis group, and the conserved network structure patterns between buccal and supragingival
sites were detected. These results fairly agreed with the previous oral microbiome studies [23,26].
Thus, we reveled that it is important to consider not only the abundance of periodontopathogens,
but also the relationships of colonized bacterial species to understand how oral pathogens boost the
pathogenicity of a polymicrobial community in periodontitis.

In the present study, we used four different sets of oral microbiomes from buccal and supragingival
mucosa to generate the prediction models for periodontitis. The performances of five machine learning
approaches were evaluated with these sets. The ALL set with LMT and the DESeq2+LefSe set
with LogitBoost showed the best performance in the buccal and supragingival site, respectively.
By evaluating the performance of the prediction models, we showed that oral microbiome abundance
can be used as an effective measurement to predict periodontitis. Moreover, the optimal subsets of oral
microbiome abundance in buccal mucosa and supragingival plaque can be potential microbial markers
for the diagnosis of periodontitis. These results suggest that buccal and supragingival sampling
could be used as a non-invasive method of a diagnosis of periodontitis, instead of subgingival plaque
sampling. In conclusion, we have identified species that were significantly increased in buccal and
supragingival samples from periodontitis patients and further evaluated their possibility in detecting
periodontitis through machine learning.

This is the first report to show the possibility to diagnose periodontitis even at an early stage or
monitoring the progress of periodontitis by detecting specific periodontal pathogens in the buccal
mucosa or supragingival plaque. From a clinical standpoint, this study provides an important
groundwork for developing a minimally invasive and convenient method to monitor periodontitis.
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Figure S1: Rarefaction curves of community diversity (faith’s phylogenetic diversity) for the disease status; healthy
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HB, HS, PB and PS., Figure S2: Differential abundance analysis of bacterial species by LefSe method, Table S1: A list
of primers used for real-time PCR analysis. Table S2: The demographic characteristics and clinical parameters
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