
agriculture

Review

The Thin Line between Pathogenicity and
Endophytism: The Case of Lasiodiplodia theobromae

Maria Michela Salvatore 1 , Anna Andolfi 1,2,* and Rosario Nicoletti 3,4

1 Department of Chemical Sciences, University of Naples ‘Federico II’, 80126 Naples, Italy;
mariamichela.salvatore@unina.it

2 BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology,
University of Naples ‘Federico II’, 80138 Naples, Italy

3 Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops,
81100 Caserta, Italy; rosario.nicoletti@crea.gov.it

4 Department of Agricultural Sciences, University of Naples ‘Federico II’, 80055 Portici, Italy
* Correspondence: andolfi@unina.it; Tel.: +39-081-2539179

Received: 18 September 2020; Accepted: 17 October 2020; Published: 21 October 2020
����������
�������

Abstract: Many fungi reported for endophytic occurrence are better known as plant pathogens on
different crops, raising questions about their actual relationships with the hosts and other plants in the
biocoenosis and about the factors underlying the lifestyle shift. This paper offers an overview of the
endophytic occurrence of Lasiodiplodia theobromae (Dothideomycetes, Botryosphaeriaceae), a species
known to be able to colonize many plants as both an endophyte and a pathogen. Prevalently spread
in tropical and subtropical areas, there are concerns that it may propagate to the temperate region
following global warming and the increasing trade of plant materials. The state of the art concerning
the biochemical properties of endophytic strains of this species is also examined with reference to a
range of biotechnological applications.

Keywords: endophytic fungi; mutualism; plant fitness; latent pathogens; Botryosphaeria rhodina;
Botryodiplodia theobromae

1. Introduction

Endophytic fungi are plant-associated microorganisms that colonize the internal tissues of the
host without inducing disease symptoms [1]. They represent a poorly understood endosymbiotic
group of microbes that ought to be attentively considered by the scientific community, so as to provide
comprehensive knowledge regarding their beneficial role and the actual extent of their interactions
with plants.

A basic issue hindering studies on the ecological role of these microorganisms is represented by
the reported endophytic occurrence of fungal pathogens. In fact, besides the cases where latency is a
conspicuous phase of the disease cycle, there are more and more records of renowned pathogens found
within asymptomatic hosts, for which an explanation is not immediately available [2–4]. Increasing and
organizing the current knowledge on conditions associated with the occurrence of these ambiguous
species is useful for a more conclusive assessment of their functions and impact on crops. This present
paper offers an overview of a fungus which is mainly studied as a pathogen of tropical crops [4–6] but
that is potentially able to spread as an endophytic associate of plants in the temperate zone.

2. Taxonomic and Phylogenetic Aspects

Lasiodiplodia theobromae (Pat.) Griffon & Maubl. (Dothideomycetes, Botryosphaeriaceae) is the accepted
name of the species treated in this paper, prevailing over both the basionym Botryodiplodia theobromae
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Pat. and the teleomorphic name Botryosphaeria rhodina (Berk & M.A. Curtis) Arx, after the introduction in
mycology of the principle “one species—one name” [7]. Isolated and morphologically identified from a wide
range of plant hosts [5,8], it represents the type species of Lasiodiplodia which, for many years, was treated
as a monotypic genus within the Botryosphaeriaceae [9,10]. However, such a simplified taxonomy was
destined to dramatically change with the advent of DNA sequencing. In fact, starting from the year 2004,
phylogenetic analyses carried out in the course of studies on L. theobromae in novel pathosystems showed
the existence of several clades, even within the pool of strains stored in mycological collections [11–14].
Evidence of a higher complexity emerged gradually, to such an extent that more than 30 additional species
have been described to date, with some of them, such as L. endophytica, L. gonubiensis, L. pseudotheobromae,
L. thailandica and L. venezuelensis, reported as endophytes [15–23]. Hence, it is likely that several previous
findings might be incorrectly classified and that some more recent records are going to be re-examined.
The application of high-throughput DNA metabarcoding as a biomonitoring tool is expected to provide a
notable contribution in investigations concerning the endophytic occurrence of Lasiodiplodia [24].

To further complicate the issue, the existence of hybrid strains has been ascertained [15,25], which is
also considered to have affected species identification. As an example, the taxon L. viticola Úrbez-Torres,
Peduto & Gubler [26] has been shown to be a hybrid between L. theobromae and L. mediterranea;
both these taxa are known on grapevine (Vitis vinifera), which most likely represented the venue of
the hybridization process [15]. An assumption in biology considers as a species an organism whose
population is reproductively isolated from other phylogenetically related populations [27]; hence,
the existence of hybrids between several Lasiodiplodia spp. may imply that the taxa described so
far are not stable. Indeed, further reassessments are to be expected, particularly in consequence
of new combinations possibly stimulated by the circulation of plant material hosting genotypes
which are potentially capable of hybridizing with autochthonous strains. In order to avoid further
misidentifications, the use of multiple genes is recommended when considering the phylogenetic
relationships of novel strains, along with direct referencing to the type strains [15,20].

Apart from the variation characterizing the genus Lasiodiplodia, phylogenetic relationships have
also been evaluated in the species under discussion. Low genotypic diversity was observed in a
study considering three populations from different tree species in Venezuela, South Africa and Mexico.
A few predominant genotypes were encountered in the first two countries, without evidence of host
specificity and in the presence of a very high gene flow between populations from different hosts.
The geographic isolation was substantiated by the finding of unique alleles fixed in the different
populations. Moreover, the existence of some genotypes that were widely distributed throughout
the three countries, coupled with the evidence that pseudothecia are rarely produced in nature,
suggests that reproduction is predominantly clonal [8]. A similar conclusion was reached in another
phylogeographic study carried out on coconut palm (Cocos nucifera) in Brazil, where higher genotypic
variation was observed in the northeast in connection with the local higher host diversity and a
conjectured repeated introduction from Central Africa, regarded as the possible center of radiation of
the species. Differences between genotypes were mainly ascribed to mutations [28].

In Cameroon, cocoa (Theobroma cacao) and Terminalia spp. are frequently grown together in a
peculiar agri-sylvicultural system. A comparison between strains from these two known hosts of
L. theobromae showed high levels of gene diversity and low genotypic differentiation, in the presence of
high gene flow between isolates. The absence of a geographic substructure in these populations across
the region where the study was carried out is indicative of the symmetrical movement of the fungus
between these hosts. Unlike the case documented on grapevine, no evidence of hybridization was
found with the closely related L. pseudotheobromae, which also occurs on these plants [29].

Finally, quite a simple genetic structure was once more pointed out in a broader study including
strains of more varied origin. In fact, one or two main haplotypes across all genes were identified,
and these genotypes were unrelated to both the hosts and the geographic area. Such overall uniformity
clearly indicates that large-scale dispersal of L. theobromae is essentially derived from commerce and
human activities [4].
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3. Endophytic Occurrence of Lasiodiplodia theobromae

After having basically been studied as a plant pathogen responsible for serious damages of crops,
particularly in tropical and subtropical regions [5,6], in the last three decades, the literature regarding
L. theobromae has been substantially enriched by many reports concerning its endophytic occurrence on
plant species which are quite heterogeneous in botanical terms (Table 1).

Table 1. Plant hosts of endophytic Lasiodiplodia theobromae. Species where the fungus has been also
reported as a pathogen are underlined.

Source Origin Ref.

Pinophyta

Pinales, Pinaceae

Pinus elliottii South Africa [8]

Pinus caribaea var. hondurensis Venezuela [8]

Pinus pseudostrobus Mexico [8]

Pinus tabulaeformis China [30]

Pinales, Taxaceae
Cephalotaxus hainanensis China [31]

Taxus baccata India [32]

Taxus chinensis China GenBank

Magnoliids

Magnoliales,
Annonaceae Annona muricata Malaysia GenBank

Piperales, Piperaceae Piper hispidum Brazil [33,34]

Piper nigrum India [35]

Monocots

Asparagales,
Asparagaceae Dracaena draco Egypt [36]

Asparagales,
Orchidaceae

Campylocentrum micranthum Costa Rica [37]

Cattleya sp. Brazil [38]

Cymbidium aloifolium India [39]

Dendrobium moschatum India [39]

Encyclia fragrans Costa Rica [37]

Epidendrum difforme Costa Rica [37]

Epidendrum octomerioides Costa Rica [37]

Epidendrum radicans India GenBank

Eria flava India [39]

Nidema boothii Costa Rica [37]

Oncidium sp. Brazil [38]

Paphiopedilum fairrieanum India [39]

Phalaenopsis sp. Brazil [38]

Pholidota imbricata India [39]

Pholidota pallida India [40]

Pleurothallis guanacastensis Costa Rica [37]

Pleurothallis phyllocardioides Costa Rica [37]

Sobralia mucronata Costa Rica [37]
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Table 1. Cont.

Source Origin Ref.

Asparagales,
Orchidaceae

Sobralia sp. Costa Rica [37]

Trichosalpinx blasdellii Costa Rica [37]

Vanilla planifolia India [39]

Pandanales,
Pandanaceae Pandanus sp. Thailand [41]

Arecales, Arecaceae

Calamus thwaitesii Sri Lanka [42]

Cocos nucifera
Brazil [28]

India [43]

Philippines [44]

Euterpe oleracea Brazil [45]

Nypa fruticans Malaysia [46]

Poales, Cyperaceae Mapania kurzii Malaysia [47]

Poales, Poaceae Cynodon dactylon India GenBank

Zingiberales, Costaceae Costus igneus India [48]

Zingiberales, Musaceae Musa spp. Malaysia [49]

Eudicots

Proteales, Proteaceae Grevillea agrifolia Australia [50]

Ranunculales,
Menispermaceae Tinospora cordifolia India [51]

Santalales, Santalaceae Viscum coloratum China [52]

Saxifragales,
Hamamelidaceae Distilium chinense China [53]

Vitales, Vitaceae Vitis vinifera China [54]

Italy [55]

Celastrales, Celastraceae Elaeodendrum glaucum India [56]

Salacia oblonga India [57]

Fabales, Fabaceae

Acacia karroo South Africa [58]

Acacia mangium Venezuela [8]

Acacia synchronicia Australia [50]

Albizzia lebbeck India Genbank

Arachis hypogaea India [56]

Bauhinia racemosa India [56]

Butea monosperma India [59,60]

Cassia fistula India [56]

Crotalaria medicaginea Australia [50]

Dalbergia lanceolaria India [60]

Dalbergia latifolia India [56]

Glycyrrhiza glabra India [61]

Humboldtia brunonis India [62]

Indigofera suffruticosa Brazil [63]
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Table 1. Cont.

Source Origin Ref.

Fabales, Fabaceae

Libidibia (Caesalpinia) ferrea Brazil [64]

Lysiphyllum cunninghamii Australia [50]

Mimosa caesalpinifolia Brazil [64]

Ougeinia oojeinensis India [60]

Phaseolus lunatus Mexico [65]

Pongamia pinnata India [43]

Saraca asoca India [66,67]

Sophora tonkinensis China [68]

Malpighiales,
Chrysobalanaceae Licania rigida Brazil [64]

Malpighiales, Clusiaceae Garcinia mangostana Thailand [69]

Malpighiales,
Euphorbiaceae

Croton campestris Brazil [64]

Croton sonderianus Brazil [64]

Givotia rottleriformis India [60]

Hevea brasiliensis Malaysia GenBank

Peru [70]

Malpighiales,
Hypericaceae Hypericum mysorense India [71]

Malpighiales,
Rhizophoraceae

Bruguiera cylindrica Philippines [72]

Ceriops tagal China GenBank

Rhizophora mucronata China [73]

Malpighiales, Salicaceae Populus sp. China [74]

Oxalidales,
Elaeocarpaceae

Elaeocarpus ganitrus India GenBank

Elaeocarpus tuberculatus India [56]

Rosales, Moraceae

Artocarpus altilis Ecuador Genbank

Ficus opposita Australia [50]

Ficus racemosa India GenBank

Ficus trigona Ecuador GenBank

Rosales, Rhamnaceae Ziziphus xylopyrus India [60]

Rosales, Ulmaceae Zelkova carpinifolia Iran GenBank

Cucurbitales,
Cucurbitaceae Momordica charantia China [75]

Fagales, Fagaceae Quercus castaneifolia Iran GenBank

Fagales, Juglandaceae Pterocarya fraxinifolia Iran GenBank

Brassicales, Moringaceae Moringa oleifera Brazil [64]

Malvales, Malvaceae

Adansonia digitata Australia [50]

Cameroon [15]

Adansonia gregorii Australia [50]

Adansonia za Australia [50]

Gossypium hirsutum India [76]
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Table 1. Cont.

Source Origin Ref.

Malvales, Malvaceae

Grewia tiliaefolia India [56]

Helicteres isora India [60]

Kydia calycina India [60]

Theobroma cacao Brazil [77]

India [78]

Theobroma gileri Ecuador [79]

Malvales,
Thymelaeaceae

Aquilaria malaccensis India [80]

Aquilaria sinensis China [81,82]

Taiwan GenBank

Myrtales, Combretaceae

Anogeissus latifolia India [60]

Combretum leprosum Brazil [64]

Lumnitzera littorea Philippines [72]

Terminalia arjuna India [83,84]

Terminalia bellerica India [56]

Terminalia catappa Cameroon [85,86]

Terminalia crenulata India [60]

Terminalia ivorensis Cameroon [87]

Terminalia mantaly Cameroon [86,87]

Terminalia pterocarya Australia [50]

Terminalia superba Cameroon [87]

Terminalia tomentosa India [56]

Myrtales, Lythraceae
Lagerstroemia microcarpa India [60]

Lagerstroemia parviflora India [60]

Myrtales,
Melastomataceae Memecylon umbellatum India [88]

Myrtales, Myrtaceae

Calytrix sp. Australia [50]

Corymbia sp. Australia [50]

Eucalyptus sp. Australia [50]

Eucalyptus urophylla Venezuela [8]

Eugenia uniflora Brazil [64]

Psidium guajava

Venezuela [89]

Brazil [64]

India [90]

Nigeria GenBank

Psidium rufum Brazil [64]

Syzygium cordatum South Africa [11]

Syzygium cumini India [60]
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Table 1. Cont.

Source Origin Ref.

Sapindales,
Anacardiaceae

Anacardium occidentale Brazil [91,92]

Astronium fraxinifolium Brazil [64]

Mangifera indica

Australia [93]

Brazil [91]

Venezuela [94]

Costa Rica [95]

Myracrodruon urundeuva Brazil [64]

Spondias mombin Brazil [64]

Spondias sp. Brazil [64]

Sapindales, Burseraceae

Boswellia ovalifoliata India [96]

Boswellia sacra Oman [97]

Protium heptaphyllum Brazil [64]

Sapindales, Meliaceae Azadirachta indica India [43]

Khaya anthotheca Ghana [98]

Sapindales, Rutaceae Citrus sinensis USA [99]

Sapindales, Sapindaceae
Nephelium lappaceum Malaysia GenBank

Paullinia cupana Brazil GenBank

Sapindales,
Simaroubaceae

Ailanthus excelsa India [100]

Simarouba amara Brazil [64]

Ericales, Ebenaceae Diospyros montana India [60]

Ericales, Lecythidaceae
Barringtonia racemosa South Africa [101]

Careya arborea India [60]

Ericales, Sapotaceae Madhuca indica India [102]

Icacinales, Icacinaceae Nothapodytes nimmoniana India [103]

Pyrenacantha sp. India GenBank

Boraginales,
Boraginaceae

Auxemma oncocalyx Brazil [64]

Cordia obliqua India [60]

Cordia trichotoma Brazil [64]

Cordia wallichi India [60]

Gentianales,
Apocynaceae

Alstonia scholaris India [56]

Catharanthus roseus India [90,104,
105]

Hancornia speciosa Brazil [106]

Holarrhena antidysenterica India [59]

Plumeria rubra India [107]

Rauwolfia serpentina India [108]

Gentianales, Loganiaceae Strychnos potatorum India [60]

Gentianales, Rubiaceae
Coffea arabica Puerto Rico [109]

Ixora nigricans India [60]
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Table 1. Cont.

Source Origin Ref.

Gentianales, Rubiaceae

Morinda citrifolia India [110]

Psychotria flavida India [62,111]

Psychotria sp. Brazil [64]

Lamiales, Acanthaceae

Acanthus ilicifolius China [112,113]

Avicennia lanata
Philippines [114]

Malaysia [115]

Lamiales, Bignoniaceae

Jacaranda sp. Guyana [116]

Kigelia pinnata India [117]

Radermachera xylocarpa India [56]

Stereospermum angustifolium India [60]

Lamiales, Lamiaceae

Gmelina arborea India [60]

Plectranthus amboinicus India [118]

Pogostemon cablin China GenBank

Premna tomentosa India [60]

Tectona grandis India [60,119]

Teucrium polium Egypt [120]

Vitex negundo India [121]

Vitex pinnata Malaysia [122]

Lamiales, Oleaceae
Ligustrum lucidum Argentina [123]

Olea dioica India [56]

Solanales, Solanaceae

Solanum melongena Brazil GenBank

Solanum nigrum Egypt [124]

Solanum surratense India [125]

Solanum torvum India [125]

Withania somnifera India [125]

Apiales, Araliaceae Dendropanax laurifolius Malaysia GenBank

Asterales, Asteraceae Bidens pilosa Egypt [126]

The total number of 203 findings summarized in Table 1 is indicative of the widespread adaptation
of L. theobromae to an endophytic lifestyle. They refer to as many as 189 plant species from 60 families,
including representatives of the Pinophyta (seven species) along with the more numerous angiosperms.
Among the latter, there are just Annona muricata and two Piper species in the Magnoliids, while Monocots
and Eudicots are more common—particularly the families Orchidaceae (21 species) within the former,
and Fabaceae (22 species), Combretaceae (12 species), Myrtaceae and Malvaceae (9 species each) within
the latter grouping. Most of these plants are trees, which likely depends on both a preference of the
fungus for lignified tissues and on the higher number of investigations on endophytes which have
been carried out in forests and on woody hosts.

In geographical terms, a greater diffusion of L. theobromae is evident in tropical and subtropical
countries (Figure 1), which is related to both the known prevalence of the fungus in this climatic zone
and to the more consistent investigational activity in these countries, particularly India and Brazil,
with, respectively, 81 and 32 records (ca. 40 and 16% of the total). Some reports are inaccurate and do
not allow us to match the endophytic finding of L. theobromae with a definite host [127,128].
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Figure 1. Geographical distribution of endophytic Lasiodiplodia theobromae as resulting from entries
of Table 1. The color scale ranging from yellow to red is representative of the number of findings for
each country.

4. Biological and Ecological Traits

As introduced above, endophytes are basically defined by their ability to spread in host tissues
without inducing disease symptoms. However, the contraposition with pathogens is not so obvious,
considering that many pathogens have a latent stage in their life cycle during which they are
characteristically asymptomatic. The duration of this stage is very variable, and the pathogenic shift
often depends on changes in the host susceptibility induced by several kinds of stress, which may
reduce their tolerance or trigger a more aggressive behavior by the latent pathogen. For instance,
plant stress is presented as a fundamental factor stimulating the pathogenic behavior of L. theobromae
on dogwoods (Cornus florida), also considering the occasional failure of artificial inoculations during
pathogenicity trials [129]. Genetic factors also actively influence the lifestyle shift of plant-associated
fungi, as documented in a dedicated study disclosing repeated conversions during the evolutionary
history of several species [130].

Members of the Botryosphaeriaceae are renowned as latent pathogens with a wide host range
and geographical distribution [50,131]. Confirming this general feature, L. theobromae exerts such an
ecological adaptability, particularly in tropical and subtropical regions [4,5]. However, the recent
increasing trend in temperature may result in a major range expansion, placing more known and
unknown hosts at risk.

Until recently, the incidence of latent pathogens has been underestimated, particularly in the
trade of forest and horticulture plants and products; indeed, endophytes have been long disregarded
in quarantine measures [131], which has enabled fungi to spread in plant germplasm circulating
around the world [2,132]. With specific reference to L. theobromae, it has been conjectured that this
fungus might have spread from Mexico to other subtropical countries through the trade of pine
seeds [8]. Another hypothesis based on a phylogeographic approach considers the possible spread
to South America from Africa to have repeatedly occurred as a consequence of human activities [28].
The availability of molecular techniques for the routine screening of plant material has increased the
awareness that this risk has to be monitored [133]. In fact, besides considering pathogenic fungi of crops
with an undefined latent stage [134,135], the European Food Safety Agency (EFSA) has recently started
to consider the potential presence of disease agents occurring as endophytes in traded ornamental
plants [136]. This concern is further supported by data gathered in this review, also considering that
several hosts belong to widespread tree genera in boreal forests (e.g., Pinus, Populus, Quercus, Taxus and
Zelkova). On the other hand, the accumulation of data on the occurrence of endophytes also provides
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an indication that some plants could be exempt. As an example, a recent review on the endophytic
fungi of olive tree (Olea europaea), gathering all the available data concerning this important crop,
has disclosed that, to date, there are no citations concerning L. theobromae, not only in the Mediterranean
area but also in several tropical and subtropical countries where the plant has been introduced [3].

Many fungi reported for their endophytic occurrence are better known as plant pathogens. This is
to be interpreted not only considering a more or less enduring latent stage within the disease cycle,
as introduced above, but also with reference to a variable capacity by plant species to host certain
fungal pathogens without showing symptoms of infection. Besides the more established concepts
considering an improvement of host fitness in terms of growth promotion and protection against pests
and pathogens, in the case of renowned disease agents, it has been conjectured that the capacity of a
plant to host and promote their horizontal spread in the biocoenosis reflects a competitive advantage
against other susceptible species [137]. This concept is quite appropriate for L. theobromae, which has
such a high number of hosts as both a pathogen and an endophyte.

The problematic discernment of the real relationships with the host plant particularly emerged
in our overview of the endophytic occurrence of L. theobromae. Indeed, defining this fungus as an
endophyte in crops where it is known to cause disease (at least 46 plant species listed in Table 1,
underlined) arouses a certain perplexity and raises the question of how to consider observations in
the wild. The subject of plant pathology basically consists of diseases affecting crops or forest plants,
and thorough assessments concerning fungal diseases of non-crop species are infrequent. In the
absence of previous records and symptom descriptions, how can we be sure that a fungus isolated from
“asymptomatic” tissues of a plant growing in whatever natural context is not exerting pathogenicity?
It is worth observing that most of the plant species listed in Table 1 are not crops, and that for the
majority of them, there is just a single finding, which is not at all sufficient for making a decision in this
respect. Moreover, rather than being focused on the moment and circumstances of isolation, the issue
should be considered with reference to the entire life cycle of the host plant: in this respect, how to
consider reports of endophytic occurrence in centuries-old trees such as baobabs? [15,50].

Besides baobabs, there are more plants where it has been clearly demonstrated that the presumed
endophytic occurrence is rather considered to refer to isolations carried out during the latent stage
of the disease cycle. This is the case of cashew (Anacardium occidentale), where L. theobromae was
recovered from healthy tissues at a distance of up to 80 cm from cankers caused by the same, and it
was found to transmit through apparently healthy propagation material [92]. In other cases, the issue
may be considered to have a “topographical” connotation, basically when the fungus exerts its
pathogenic aptitude in some plant parts only. In fact, endophytic asymptomatic colonization of
mango (Mangifera indica) shoots and branches has been shown to be prodromal to postharvest fruit
rot [93,138]. In the case of Aquilaria spp. used for the production of agarwood, designating L. theobromae
as an endophyte seems inappropriate too; in fact, resin formation is promoted as a reaction to an
infection process which rather qualifies the fungus as a pathogen [139]. Likewise, internal infections
by L. theobromae are reported to cause blue stain of wood after felling in Pinus elliottii [8], as well as in
Terminalia spp. [87] and rubberwood (Hevea brasiliensis) [140]. It is worth considering that in similar
cases observed on neem (Azadirachta indica) [141] and Ficus insipida [142], the occurrence of the fungus
is merely referred to as a pathogenic association.

5. Bioactivities of Endophytic Isolates of Lasiodiplodia theobromae

Endophytes present potential for the exploitation of metabolites and enzymes. The biosynthesis
of many secondary metabolites is often a response to environmental factors and fulfils different
functions, such as defense, signaling and nutrient acquisition. Moreover, endophytes can influence
the metabolism of the host and modify secondary metabolites by enzymatic steps of biochemical
transformation [143].

Many studies have shown that endophytic fungi can synthesize bioactive products identical
or similar to those produced by plants, representing an alternative source of some drugs and new
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useful medicinal compounds [144,145]. For this reason, many researchers have focused their attention
on endophytes of medicinal plants, and many strains have been isolated which could be used for
producing plant-derived drugs through fermentation. Among these fungi, L. theobromae particularly
stands out for its ability to synthesize a high number of bioactive compounds [146]. The current panel
of products is expected to further increase with reference to the many studies disclosing bioactive
properties by endophytic strains of this species. Table 2 refers to investigations concerning endophytic
strains of L. theobromae as a possible source of bioactive products, which sometimes are limited to
assays carried out with culture filtrates.

Table 2. Bioactivities of endophytic isolates of Lasiodiplodia theobromae.

Bioactivity Source Sample tested Ref.

Antibacterial

Acanthus ilicifolius Secondary metabolites [112]

Aquilaria sinensis Culture filtrate extract [81]

Calamus thwaitesii Culture filtrate extract [42]

Dracaena draco Culture filtrate extract [36]

Garcinia mangostana Secondary metabolites [69]

Hancornia speciosa Culture filtrate extract [106]

Humboldtia brunonis Culture filtrate extract [62]

Madhuca indica Culture filtrate extract [102]

Piper hispidum Culture filtrate extract [33]

Terminalia arjuna Culture filtrate extract [84]

Antifungal

A. sinensis Culture filtrate extract [81]

Avicennia lanata Culture filtrate extract [114]

Bidens pilosa Culture filtrate extract and secondary metabolites [126]

H. speciosa Culture filtrate extract [106]

H. brunonis Culture filtrate extract [62]

T. arjuna Culture filtrate extract [84]

Anti-inflammatory Acanthus ilicifolius Secondary metabolites [113]

Antioxidant

Catharanthus roseus Culture filtrate and mycelial extracts [104]

C. roseus Silver nanoparticles [105]

T. arjuna Culture filtrate extract [84]

Antiprotozoal A. lanata Culture filtrate extract and chromatographic fraction [115]

Vitex pinnata Secondary metabolites [122]

Cytotoxic

Acanthus ilicifolius Secondary metabolites [112]

A. sinensis Culture filtrate extract [81]

B. pilosa Culture filtrate extract and secondary metabolites [126]

C. roseus Silver nanoparticles [90]

C. roseus Culture filtrate and mycelial extracts [104]

Morinda citrifolia Secondary metabolite [110]

Plectranthus amboinicus Secondary metabolite [118]

Enzymatic

Azadirachta indica Isolate [43]

Cocos nucifera Isolate [43]

Pongamia pinnata Isolate [43]

Psychotria flavida Isolate [111]

Terminalia catappa Isolate [86]

Terminalia mantaly Isolate [86]

Heavy metal tolerance Boswellia ovalifoliata Isolate [96]
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Concerning the antibacterial activity, extracts produced by endophytic strains from the medicinal
plant Piper hispidum were effective against four human pathogenic bacteria (i.e., Enterococcus hirae,
Escherichia coli, Micrococcus luteus and Staphylococcus aureus) and showed good activity against Salmonella
tiphy [33]. Antimicrobial activity was again displayed by endophytic strains from Hancornia speciosa,
a plant native to Brazil, used to treat various pathologies [106].

Strains isolated from leaves, twigs and bark of Terminalia arjuna showed antimicrobial activity
against Bacillus subtilis and Aspergillus niger, along with significant antioxidant properties [84].
The culture extract from an endophytic strain isolated from the mangrove Avicennia lanata in the
Philippines was very active against the yeast Saccharomyces cereviseae but inactive against several
Gram-negative and Gram-positive bacteria [114].

The culture extracts of endophytic strains from leaf and stem segments of Humboldtia brunonis were
inhibitory against Bacillus subtilis, S. aureus, Klebsiella pneumoniae, Proteus volgaris and Candida albicans [62].
The crude extract from another endophytic strain isolated from Madhuca indica in India was found
to be active against several common bacteria [102]. A strain isolated from A. sinensis showed low
antimicrobial activity against microbial pathogens, particularly Aspergillus famigatus. This strain also
displayed cytotoxic activity against some cancer cell lines [81]. Likewise, the culture extract of a strain
from Catharanthus roseus exhibited cytotoxicity against the human cervical adenocarcinoma (HeLa) cell
line [104].

The anticancer activity was particularly prominent when metal nanoparticles were prepared
by exposing the endophytic fungus to metal salt solution. In fact, L. theobromae from leaves of
Psidium guajava was used for the biological synthesis of silver nanoparticles, which provided powerful
antitumor activity against human breast and lung cancer cells [90]. Silver nanoparticles were also
prepared using an endophytic strain of L. theobromae isolated from C. roseus, inducing apoptosis in
various types of cancer cells and promoting free radical scavenging [105]. These findings suggest that
natural compounds produced by these isolates and incorporated into the nanoparticles have potential
as a novel chemotherapeutic agent.

Finally, an endophytic strain of Boswellia ovalifoliolata is capable of growing in the presence of
heavy metals (i.e., Co, Cd, Cu and Zn) in concentrations up to 600 ppm, showing that it may be used to
remove heavy metals from solid substrates [96].

6. Secondary Metabolites and Enzymes of Endophytic Lasiodiplodia theobromae

As introduced above, the biological properties of culture extracts of endophytic L. theobromae might
be linked to the capacity of the fungus to produce bioactive compounds (Figure 2). In fact, L. theobromae
is a proficient producer of compounds belonging to different classes of secondary metabolites, such as
diketopiperazines, indoles, jasmonates, melleins, lactones and phenols [146].

Biotic and abiotic stimuli influence the capacity of L. theobromae to grow and produce secondary
metabolites, with implications for its physiology, lifestyle and pathogenic aptitude [146–148]. Studies on
fungal genomes have shown that the capability of fungi to produce secondary metabolites has been
underestimated, because many secondary metabolite biosynthetic gene clusters are silent under
standard cultivation conditions [149,150]. In fact, different metabolomic profiles have been reported for
L. theobromae strains according to variation in growth conditions, with reference to temperature [147,148],
nutrient availability [151,152], presence of signal molecules [153] and incubation period [122].

Metabolomic investigations of L. theobromae have pointed out that some compounds are
produced by endophytic strains only. This is the case of preussomerins and cloropreussomerins,
compounds with an unusual structure isolated from the culture extract of a strain from leaves of
the mangrove Acanthus ilicifolius and characterized for their cytotoxicity against five human cancer
cell lines [112]. Moreover, endophytic strains from Aquilaria sinensis have been reported to produce
2-(2-phenylethyl)chromones, which are among the most abundant constituents of agarwood [154].
The coumarins meranzine and monocerin could be responsible for the antimicrobial activity of the
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culture extract of an endophytic strain from Dracaena draco, displaying characteristic inhibition zones
against Gram-positive and Gram-negative bacteria [36].Agriculture 2020, 10, x FOR PEER REVIEW 11 of 20 
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Lasiodiplodins were frequently, although not exclusively, reported as products of endophytic strains
of L. theobromae [47,69,113]. These macrolides are relevant for a variety of biological properties including
cytotoxic, antimicrobial and anti-inflammatory activities [69,155]. Within this class, lasiodiplactone A was
obtained from a mangrove endophytic strain showing anti-inflammatory activity [113]. Furthermore,
desmethyl-lasiodiplodin was isolated, together with cladospirone B and (-)-mellein, from the crude extract
of a strain from leaves of Vitex pinnata. Interestingly, cladospirone B and desmethyl-lasiodiplodin showed
good activity against Trypanosoma brucei [122].

An endophytic strain from the medicinal plant Bidens pilosa yielded four depsidones,
botryorhodines A-D, and the auxin 3-indolecarboxylic acid, which are not exclusively produced
by endophytic strains. Botryorhodines A and B show moderate cytotoxic activity against cervical
cancer cells (i.e., HeLa) and antifungal activity against pathogenic fungi, such as Aspergillus terreus and
Fusarium oxysporum [126].

The fact that two of the leading natural products, namely camptothecin and taxol,
in cancer chemotherapy were originally extracted from plants is quite interesting from an applicative
perspective [144]. The first compound has been detected as a secondary metabolite of strains isolated from
the leaves and stem of Nothapodytes nimmoniana in the Western Ghats, India [103]. One of these strains
(L-6) was investigated in depth with reference to the common phenomenon of attenuation of bioactive
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metabolite production in axenic cultures. It was found that its re-inoculation in the host promoted higher
production of camptothecin, indicating that the fungus receives eliciting signals from the host tissues,
or some factors which prevent silencing of the genes responsible for biosynthesis [156].

Taxol, the first billion-dollar natural antitumor product [157], has been reported as a secondary
metabolite of several endophytic strains of L. theobromae, from Taxus baccata, Morinda citrifolia,
Salacia oblonga and Piper nigrum [32,35,57,110]. Investigational activity carried out on the product
extracted from these strains pointed out its ability to counteract the carcinogenic effects of
dimethylbenzanthracene [158]. Moreover, valuable studies have disclosed the capacity by non-Taxus
endophytic strains to produce the compound through a similar biosynthetic pathway as the one reported
from the plant. In fact, the gene encoding 10-deacetylbaccatin-III-O-acetyltransferase, as well as the
open reading frame of WRKY1 transcription factor, were cloned and sequenced and found to share
high similarity with deposited sequences from Taxus chinensis, T. cuspidata and T. celebica [35].

Of great interest in endophytic L. theobromae is the production of phytohormones, such as
indole derivatives and jasmonic acid analogues [146]. It is known that 3-indoleacetic acid and
3-indolecarboxylic acid are the most studied auxins regulating plant growth and development.
These compounds have been frequently reported as fungal metabolites [144] and have also been
documented as being produced by L. theobromae strains. The biological role of 3-indolecarboxylic acid
has not been fully investigated, but some studies address its biosynthesis [159–161] and toxicity [147].
Several L. theobromae strains with different lifestyles are in vitro producers of jasmonic acid and
analogues. Jasmonic acid is one of the most important signal molecules involved in several plant
processes including seed germination, senescence and blooming. Hence, investigations of the bioactive
properties of jasmonic acid and related compounds are essentially focused on their role in the interaction
between host and pathogen.

The great ability of adaptation to different environments, the capacity to colonize a high number
of hosts and the expression of high amounts of extracellular enzymes make L. theobromae a producer
of relevant enzymes (Table 2) to be considered for biotechnological applications [162]. The most
recognized extracellular enzymes used to penetrate the plant host include cellulases, proteases and
lipases. Endophytic strains colonizing C. nucifera, Pongamia pinnata and A. indica exhibited great lipase
activity [43]. Moreover, endophytic strains from Terminalia catappa and T. mantaly were found to
produce amylases and cellulases [86]. Finally, L. theobromae isolated from Psychotria flavida turned out
to be able to degrade irradiated polypropylene thanks to the production of laccases [62].

7. Conclusions

This overview of the endophytism of L. theobromae based on the literature published in the last
three decades has pointed out its widespread occurrence in tropical and subtropical areas and the
likeliness of further spread to regions with a temperate climate following the increasing trade of plant
material. Hints concerning the biochemical properties are indicative of a certain degree of adaptation
to the endophytic lifestyle, particularly deriving from the ability to synthesize bioactive products
which may contribute to protection against biological adversities and improve plant fitness. However,
the analysis of the available information also raises questions on whether the ability of L. theobromae to
colonize such a high number of hosts is rather to be referred to as a fundamental pathogenic aptitude
and whether a number of reports are actually referable to its interception during the latency phase of
the disease cycle. Finding reasonable answers is clearly dependent on the analysis of additional data
resulting from dedicated investigations in both natural and agricultural contexts.
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